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ABSTRACT 

Drug interactions are one of the most common causes of side effects in polypharmacy. Alcoholics 

are a category of patients at high risk of pharmacological interactions, due to the presence of 

comorbidities, the concomitant intake of several medications and the pharmacokinetic and 

pharmacodynamic interferences of ethanol. However, the data available on this issue are limited. 

These reasons often frighten clinicians when prescribing appropriate pharmacological therapies for 

alcohol use disorder (AUD), where less than 15 % of patients receive an appropriate treatment in 

the most severe forms. The data available in literature regarding the relevant drug-drug interactions 

of the medications currently approved in United States and in some European countries for the 
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treatment of AUD (benzodiazepines, acamprosate, baclofen, disulfiram, nalmefene, naltrexone and 

sodium oxybate) are reviewed here. The class of benzodiazepines and disulfiram are involved in 

numerous pharmacological interactions, while they are not conspicuous for acamprosate. The other 

drugs are relatively safe for pharmacological interactions, excluding the opioid withdrawal 

syndrome caused by the combination of nalmefene or naltrexone with an opiate medication. The 

information obtained is designed to help clinicians in understanding and managing the 

pharmacological interactions in AUDs, especially in patients under multi-drug treatment, in order to 

reduce the risk of a negative interaction and to improve the treatment outcomes. 

Keywords: drug interactions, alcohol use disorder, pharmacokinetics, pharmacodynamics, 

polypharmacy 

 

 

1. Introduction 

 Drug-drug interactions are one of the most frequent causes of adverse events during 

polypharmacy, defined as the chronic co-prescription of several drugs [1]. Indeed, it is estimated 

that 6-30% of all side effects are caused by a pharmacological interaction. This can vary from 3-5% 

in subjects taking only few drugs, increasing to 20% in subjects treated with more than 10 drugs [2]. 

A drug-drug interaction is a change in a drug’s effect, occurring when two or more drugs are 

administered during the same period. This effect can be synergistic (when the drug's effect is 

increased), antagonistic (when the drug's effect is decreased) or a new effect may appear, which 

doesn’t depend on individual drug outcomes. Various mechanisms are involved in a drug-drug 
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interaction, and these are usually classified as “pharmacokinetic” or “pharmacodynamic” [3]. 

Pharmacokinetic interactions are the most frequent and engage all the stages of drug 

pharmacokinetics (absorption, distribution through the tissues, metabolism and elimination). The 

interactions that involve the metabolism stage are the most relevant; they are extremely numerous 

and often cause a decrease or an increase in the blood concentrations of the drugs. The system of 

hepatic cytochromes is generally involved, but other enzymes, such as those catalysing 

glucuronidation reactions, can be involved. Pharmacodynamic interactions, on the other hand, 

concern the effects of the drugs and their mechanism of action. Due to these reasons, the therapeutic 

effect of a drug may be reduced, or the drug’s influence may be stronger. However, not all 

interactions are clinically relevant. Some are merely interesting facts and have no influence on the 

pharmacological treatment, while, in other cases, they may even be used for therapeutic purposes. 

Drug-drug interactions are often predictably based on previous reports and clinical studies, as well 

as the knowledge of pharmacologic principles, but clinicians don’t often realize the outcome [4]. 

Moreover, limited information is available about the epidemiology of drug-drug interactions in 

clinical practice. Few studies have summarized the data in scientific literature on possible drug 

interactions in the field of drug addiction.  

 In this study, we have focused our attention on alcohol use disorder (AUD), one of the most 

common and undertreated mental disorders [5] and in the most severe forms, less than 15 % of 

patients receive appropriate treatment [6]. Every year, 3.3 million deaths and 5.1% of the global 

burden of disease is due to alcohol consumption [7]. The standard treatment for AUD includes 
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psychological and socio-rehabilitation therapies, associated with several pharmacological therapies. 

The latter are oriented to manage alcohol withdrawal [8], the relapse prevention and the reduction 

of alcohol consumption [9]. Despite the considerable progress regarding neurotransmission 

mechanisms, there is still no definitive therapy that satisfies the numerous and heterogeneous 

phenotypes involved in alcoholism. Several drugs have been tested in pre-clinical and clinical 

studies, the U.S. Food and Drug Administration (FDA) has approved naltrexone (oral and long-

acting injectable), acamprosate and disulfiram [10]. In the European Union, nalmefene has also 

been approved for the reduction of alcohol consumption in alcoholic patients with a high drinking 

risk level, defined as > 60 g/day for men and > 40 g/day for women of alcohol intake [11]. In 

addition, sodium oxybate is approved in Austria and Italy [12], whilst in France baclofen is 

authorized as “temporary recommendation for use” [13]. Unfortunately, the prescription of these 

medications is difficult, due to the lack of knowledge of their availability, prescription guidelines 

and dosage [14]. The clinical attitude towards the medications also affects prescription, and the off-

label use is high (topiramate, gabapentin, SSRI and ondansetron). The presence of comorbid 

conditions and associated polypharmacy further complicate the framework: most patients with 

AUD have tried or are actively using other drugs, and more than 33% of them present a drug use 

disorder [15]. Thus, the drug-drug interaction is an important and underestimated concern in 

patients with AUD, applying for pharmacological treatment. So far, the aim of this review is to 

recapitulate the pharmacological interactions reported in literature of the medications approved for 
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the treatment of AUD in U.S. and in some European states (benzodiazepines, acamprosate, 

baclofen, disulfiram, naltrexone, nalmefene and sodium oxybate). 

 

2. Methodological considerations 

 This comprehensive review summarises the well-known clinically relevant interactions 

concerning the approved drugs administered in the treatment of AUD. Although the hypothetical 

interactions considering pre-clinical studies are greater, we have chosen to report only those 

documented in the clinical setting. In addition, we have excluded the pharmacological interactions 

related to a drug use disorder, focusing on clinical interactions not considering the quantity and 

frequency intake. We search MEDLINE with the terms “interaction” OR “drug interaction” OR 

“drug-drug interaction” AND each of the following drugs: benzodiazepines, acamprosate, baclofen, 

disulfiram, sodium oxybate, naltrexone and nalmefene. We have included all papers with an 

abstract in English or in other European languages, that meet the inclusion criteria, up to and 

including 30 September 2017. Relevant articles were selected according to the professional 

judgement of the authors, no language restrictions were applied and there were no restrictions on 

the types of studies and articles reviewed. The results summarised in the following paragraphs are 

presented in Figure 1 and in Tables 1, 2, 3, 4 and 5. 

 

3. Pharmacological treatment for alcohol withdrawal 

3.1 Benzodiazepines 
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 Benzodiazepines (BDZ) are GABAergic agonists with anxiolytic-hypnotic-sedative 

properties. They are administered in the treatment for AUD and, specifically, they are the gold 

standard for the treatment of alcohol withdrawal syndrome [8]. Chronic alcohol drinking affects 

numerous pathways of the central nervous system, in particular the glutamatergic system and the 

dopaminergic system, it increases the release of endocannabinoids and endogenous opioids and 

causes a down-regulation of GABA-A receptors. The modifications caused by alcohol to the 

GABA-A receptors contribute to numerous symptoms of the withdrawal syndrome, such as strong 

tremors of the hands and legs, agitation, insomnia, tachycardia and gastrointestinal symptoms [16]. 

Many different BDZ are effective because, like alcohol, they stimulate the inhibitory GABA-

signalling pathways. Chlordiazepoxide, diazepam, lorazepam and oxazepam are the most 

commonly used, but none of them has been shown to be superior to the others [17]. 

 

3.1.1 Pharmacodynamic interactions 

From a pharmacodynamic point of view, attention should be paid to the concomitant intake 

of BDZ with medicines having additive, depressive and sedative effects on the GABA-A receptors 

and on the central nervous system. They consist in opioids (analgesics, sedatives for coughs and 

replacement therapies), antidepressants, anticonvulsants, antihistamines H1-sedative [18] and 

neuroleptics [19]. The concomitant intake of opiates with BDZ can even induce a “cross-tolerance” 

phenomena: this leads to a worsening of dependence, extremely difficult to overcome [20,21]. The 

association between alcohol and BDZ is also critical: the depressants effect of both drugs may 
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become synergistic rather than a merely additive effect, due to the competitive inhibition on hepatic 

metabolism of BDZ, following alcohol intake [22]. 

 

3.1.2 Pharmacokinetic interactions 

Pharmacokinetic properties of BDZ play an important role in rationalising their prescription. 

Once absorbed by the gastrointestinal tract, BDZ and their metabolites generally have a high protein 

bound and are widely distributed in the body, accumulating in lipid-rich areas, such as the central 

nervous system and the adipose tissue. Most BDZ are metabolized by the P450 cytochrome 

enzymes (CYP3A4 and CYP2C19), then they are glucuronidated and excreted almost entirely in the 

urine. Of the BDZ most commonly used in clinical practice, midazolam is entirely metabolized by 

CYP3A4 and acts as a marker for evaluation of the activity of this cytochrome, while diazepam is 

mainly metabolized by CYP2C19 and to a lesser extent by CYP2C9 and CYP3A4 [23]. Other 

benzodiazepines, such as lorazepam and oxazepam, are directly glucuronidated and eliminated in 

the urine. Several drugs, metabolised by the same liver cytochromes, alter their blood 

concentrations or those of BDZ, when they are co-administered. A series of CYP3A4 inhibitors 

slow down the metabolism of BDZ, dangerously increasing their plasma concentrations. The most 

important are the azolic anti-fungal agents ketoconazole [24], itraconazole [25] and voriconazole 

[26], the macrolide antibiotics clarithromycin [27] and erythromycin [28], verapamil, diltiazem 

[29], aprepitant [30], grapefruit [31] and HIV protease inhibitors [32,33]. There are also a number 

of CYP3A4 inducers, which can lower plasma concentrations of BDZ to sub-therapeutic doses: 
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carbamazepine [34], phenytoin [34], phenobarbital [35], efavirenz [36] and nevirapine [37]. 

Referring to the influences on CYP2C19, phenytoin is a known inducer of the liver cytochrome. It 

is also metabolised by CYP2C9-dependent hepatic mechanism, and the interaction with a CYP2C19 

substrate is not easy to predict. As example, the concomitant intake of diazepam and phenytoin 

resulted in a case of phenytoin toxicity [38]. Both phenytoin and diazepam were stopped, and the 

symptoms resolved. Diazepam is also conditioned by the co-taking of grapefruit juice, which 

increases its plasma concentrations [39]. Lorazepam, oxazepam and clobazam [40] are not 

metabolized by liver cytochromes: thus, they could represent ideal treatments in case of impaired 

liver function or cirrhosis. Anyway, they may encounter other pharmacological interactions. The 

most clinically relevant is valproate, which decreases lorazepam concentrations by up to 50%, 

slowing down the clearance of lorazepam glucuronides [41]. Concerning the protein bound-drug, 

the interaction of diazepam with digoxin is of clinical interest. The binding on albumins of both 

molecules induces a cooperative effect on digoxin binding, reducing its urinary excretion [42]. Co-

administration of diazepam (5 mg) produced a moderate increase of digoxin half-life in plasma in 

five of the seven subjects, whereas urinary excretion of digoxin was substantially reduced in all 

subjects. Among medications at risk for combined pharmacokinetic-pharmacodynamic interactions, 

nefazodone is an antidepressant drug that increases the plasma concentrations of BDZ due to its 

inhibition activity on CYP3A4, especially for short half-life benzodiazepines (midazolam, 

alprazolam and triazolam) [43,44]. Venlafaxine, sertraline and fluoxetine have not shown the same 

significant effects, as their interference on CYP3A4 is limited [45,46]. The combination of BDZ 
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with oral contraceptives and statins, all competitive drugs on the liver cytochromes, appeared to be 

safe for therapeutic doses [47,48].  

 

4. Pharmacological treatment for alcohol dependence  

4.1 Acamprosate 

 Acamprosate (or calcium acetyl-homotaurinate) has a similar structure to the 

neurotransmitters taurine or gamma-aminobutyric acid (GABA), and its acetylation allows it to pass 

through the blood-brain barrier [49]. Its mechanism of action has not been fully clarified: the main 

neurochemical effects are the antagonization of the NMDA and mGluR5 receptors, the agonism of 

the GABA-A receptors at high concentrations [50], the decrease of the voltage-dependent calcium 

channels activity and the decrease of the cerebral expression of c-fos, a gene immediately expressed 

at the onset of alcohol withdrawal syndrome [51]. This drug was registered in 2004, by the FDA, 

for the treatment of withdrawal symptoms in alcohol-dependent patients [52]. Usually, 666 mg oral 

are administered, three times daily. Acamprosate achieved the best results in reducing alcohol 

relapse in the long-term, in association with psychotherapy and with a cycle of detoxification before 

beginning therapy [53,54]. 

 

4.1.1 Pharmacodynamic interactions 

Acamprosate is a safe medicine regarding pharmacological interactions. The literature 

reports that it has been administered in association with tricyclic antidepressants, selective serotonin 
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reuptake inhibitors (SSRI), anxiolytics, sedative-hypnotic drugs, and non-opiate analgesics [55]. 

The temporary dose reduction utilized in case of gastrointestinal side effects, especially diarrhoea, 

does not appear to influence the incidence of drug-drug interactions. The latest pharmacovigilance 

data do not report serious adverse events in more than one million people who assumed the drug 

[56].  

 

4.1.2 Pharmacokinetic interactions 

The absorption of acamprosate through the digestive tract is limited and slow, and varies 

considerably from individual to individual; the only data available on its absorption reports that, 

when taken with meals, the bioavailability of the drug decreases from 42% to 23% [57]. However, 

the effect of food on absorption has no clinical repercussions and it is therefore not necessary to 

adjust the dose. Studies carried out with a radio-marked tracer, 14C-acamprosate, show that the body 

does not metabolize the drug: it is not metabolized in the liver and does not represent an inhibitor, 

an inducer or a substrate for the hepatic enzymes [57]. This means that the potential for any 

metabolic interaction is very low, even in patients with impaired liver function. Acamprosate does 

not bind to plasma proteins; its half-life is longer than 20 hours [57]. Accordingly, no reciprocal 

pharmacokinetic interaction occurred between acamprosate and diazepam [58], imipramine [59], 

oxazepam [60], disulfiram [61], naltrexone [62] and alcohol [63]. 
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4.2 Baclofen 

 Baclofen is a selective GABA-B receptor agonist administered in the treatment of 

paraplegia, multiple sclerosis and serious central or spinal neurological diseases. A series of trials 

have demonstrated the effectiveness of baclofen in alcohol-dependent patients [64-66], but these 

results have not been confirmed by other authors [67,68]; consequently, overall conclusions cannot 

be made. The current recommendations suggest that the daily intake should not exceed 75-80 mg, 

although long-term studies have shown that doses superior to 250 mg/day are often necessary to 

obtain the craving–suppressing effects [69,70]. Currently, it has a temporary recommendation for 

use in alcohol dependence in France [71]. There is no definitive evidence that actions on GABA-B 

receptor are involved in its clinical effects, which include central depressant properties, such as 

sedation, ataxia, respiratory and cardiovascular depression.  

 

4.2.1 Pharmacodynamic interactions 

The pharmacological interactions of baclofen are generalizable in sedatives effects, epileptogenic 

effects, or in muscle relaxant effects. The risk of sedation and respiratory depression increases when 

baclofen is administered in combination with opiate medications [72]. The same effect, although 

not reported in the literature, may be caused by the concomitant intake of benzodiazepines. The 

most relevant drug-drug interactions concern the association of baclofen with epileptogenic drugs. 

As example, seizure-like phenomenon was reported during induction of anaesthesia with propofol, 

in a patient with syringomyelia, receiving baclofen for flexor spasms [73]. This effect was probably 
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due to the occurrence of epileptic discharges mediated by propofol stimulation on GABA-A 

receptors, because of desensitization of GABA-B receptors that failed to control the release of 

GABA. The influence of the GABA-B receptor on GABA-A mediated epileptic discharges has 

been identified only recently [74]. A similar mechanism could explain the adverse reaction 

experienced by a 15-year-old male patient, under a long-term treatment with intrathecal baclofen. 

He developed dyskinesia affecting the head and upper limbs two days after the concurrent 

administration of intrathecal ziconotide, suggesting a presumable interaction between baclofen and 

ziconotide [75]. In addition, an increased muscle relaxant effect was observed in a single patient 

receiving baclofen, with two different tricyclic drugs (amitriptyline and doxepin) [76]. Baclofen is 

relatively well tolerated and safe when given in combination with intoxicating doses of alcohol 

[77]; in a cohort of 253 subjects with alcohol dependence, using baclofen for their disorder, the 

level of sedation appears to depend on the doses of both the baclofen and the alcohol [78]. Only a 

single case of a 46-year-old alcoholic patient without any history of neurological disorders was 

reported, who had experienced two episodes of seizures while undergoing treatment with up to 240 

mg/day of baclofen [79]. 

 

4.2.2 Pharmacokinetic interactions 

Baclofen is absorbed by the gastrointestinal tract, the peak plasma concentration appears within 1.5 

hours. It is metabolized by the liver only to a small extent, giving rise to inactive metabolites. The 

terminal half-life is about 3-4 hours and it is eliminated mainly in an unmodified form, more than 
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70% through the kidney. However, pharmacokinetics of high dose baclofen may vary from the 

conventional 80 mg daily [80]. Time-to-peak plasma levels and plasma half-lives were substantially 

longer than conventional doses. In addition, baclofen levels were observed to rise gradually over 

time in some patients on a stable dosing regimen, probably a result of impaired renal clearance. 

Currently, no pharmacokinetic interactions are known between baclofen and other drugs. Also when 

taken with tizanidine, a muscle relaxant, baclofen was safe in fifteen healthy men. They were 

administered for seven consecutive doses, without the occurrence of any clinical interaction [81].  

 

4.3 Disulfiram 

 Disulfiram was approved in 1994 by the FDA for the pharmacological treatment of 

alcoholism [82]. It is considered an aversion drug which interferes with alcohol metabolism, 

preventing the transformation of acetaldehyde (a toxic metabolite). Alcohol is metabolized in the 

liver by the enzyme alcohol dehydrogenase to acetaldehyde, which is in turn converted to the 

harmless acetic acid by the enzyme acetaldehyde dehydrogenase. Disulfiram prevents the second 

reaction, blocking the activity of acetaldehyde dehydrogenase. The maintenance dose is 250 mg per 

day (range, 125 to 500 mg), it should not exceed 500 mg daily. When the patient drinks alcohol and 

has recently taken a tablet of disulfiram, the concentration of acetaldehyde in the blood can be up to 

5-10 times higher. This mechanism is responsible for the onset of the acetaldehyde syndrome or 

Disulfiram-Ethanol Reaction (DER): flushing, headache, respiratory distress, nausea, vomiting, 

tachycardia, syncope and hypotension [83,84]. These symptoms last for several minutes and may 
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compromise the patients' health. Disulfiram is therefore contraindicated in patients taking products 

that contain alcohol, also as an excipient in parenteral medicinal products [85]. 

 

4.3.1 Pharmacodynamic interactions 

 According to the pharmacological activities of disulfiram, the most relevant interaction 

concerns medicinal products containing alcohol (drops formulation, e.g. diazepam solution). This 

association is capable of triggering DER. Most DERs are mild and patients recover without serious 

sequelae, but some lethal DERs have been documented. Disulfiram is also capable to inhibit the 

enzyme dopamine β-hydroxylase (DBH), which converts dopamine to norepinephrine. This 

mechanism has been advanced as a possible explanation for the appearance of psychosis during 

disulfiram treatment, either in monotherapy or in combination therapy, when interaction-emergent 

psychosis could occur. In literature, the onset of psychotic symptoms is reported with the 

concomitant intake of mixed amphetamine salts [86], methylphenidate [87], buspirone [88], 

marijuana [89], isoniazid [90], metronidazole [91] and medicines that have impact on the 

dopaminergic neurotransmitter. In all cases, the psychotic symptoms resolved after the 

discontinuation of both medications, without the use of antipsychotic drugs. Moreover, disulfiram 

reinforces the action of coumarinic anticoagulants, augmenting warfarin hypoprothombinemia by 

chelating the metal cations necessary for the synthesis of active prothrombin [92]. 

 

4.3.2 Pharmacokinetic interactions 
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 Disulfiram is almost entirely absorbed in the gastrointestinal tract, and it is metabolized in 

the liver to diethyldithiocarbamate (DTC), which in turn breaks down into carbon disulphide and 

diethylamine. Disulfiram requires about 12 hours reaching a pharmacological effect and its half-life 

is estimated between 60 to 120 hours. 

Different drugs metabolised by the cytochrome P450 system show pharmacokinetic interference, if 

the patient is taking disulfiram. Disulfiram increases the plasma levels and extends the half-life of 

drugs that are substrates of the isoenzyme CYP2E1, such as anaesthetics [93-95], theophylline [96] 

and paracetamol: theoretically, disulfiram might reduce the toxic effect of paracetamol on the liver 

[97]. Disulfiram also interacts with different CYP3A4 substrates. A case of probable disulfiram-

clarithromycin interaction has been reported, with the onset of fulminating hepatitis and severe 

toxic epidermal necrolysis [98]. Since both drugs inhibit CYP3A4, an accumulation of the toxic 

metabolites of disulfiram probably occurred, especially that of carbon disulphur, recognised as an 

inducer of hepatic toxicity. The influence of disulfiram on the metabolism of carbamazepine is 

negligible [99], whilst when it is administered for a long period, it inhibits the metabolism of 

diazepam and chlordiazepoxide, leading to a reduction in plasma clearance and extending their half-

life, with an increased patient’s drowsiness. Lorazepam or oxazepam are not metabolised by liver 

cytochromes, so they could be the drugs of choice, if benzodiazepine therapy is assumed 

concurrently with disulfiram [100]. Colchicine and antiretroviral medications (ARV) are other 

CYP3A4 substrates, a single case of acute colchicine intoxication following co-administration of 

disulfiram was described [101]. The ARV could influence the therapeutic efficacy of disulfiram, 
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because efavirenz and atazanavir respectively increase and decrease the disulfiram effect on 

enzymes of alcohol metabolism [102].  

Disulfiram interferes even with the cytochrome CYP2C9 activity: when it is administered together 

with amitriptyline, it increases the risk of a confusional and/or psychotic state due to the toxic 

effects of the tricyclic antidepressant, which accumulates in the blood [103]. Similar considerations 

can be made with other tricyclic antidepressants, such as imipramine and desipramine [104]. In the 

same way, when disulfiram is taken with phenytoin or fosphenytoin, it reduces their 

biotransformation affecting the elimination rate by non-competitive mechanisms, increasing their 

toxicity [105,106]. Finally, disulfiram may alter methadone disposition, but in the doses used for 

the management of alcoholism, there was no clinical interaction between the two drugs [107]. 

Neither rifampicin [108] nor tolbutamide [109] interact with disulfiram at therapeutic doses. 

 

4.4 Nalmefene 

 Nalmefene is a selective opioid receptor antagonist authorised by the European Medicines 

Agency in February 2013 [110] to reduce alcohol consumption in alcohol-dependent patients, with 

high levels of consumption (more than 60 grams/daily for men and more than 40 grams/daily for 

women), in accordance to the World Health Organisation guidelines [111]. Nalmefene acts as a μ 

and δ receptor antagonist and a partial k receptor agonist [112], it is structurally similar to 

naltrexone but it has a higher bioavailability and a longer plasma half-life, with a lower risk of liver 

toxicity [113]. Nalmefene has been shown to be effective in reducing alcohol consumption in 
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alcohol-dependent patients when it is taken as-needed [114-115], presumably modulating the 

activity of the opioid system and counteracting the activation of the dopaminergic mesolimbic 

pathway, induced by a chronic alcohol consumption [116]. Nalmefene is taken as needed, a tablet 

(18 mg) should be taken preferably 1-2 hours prior to the anticipated time of drinking. 

 

4.4.1 Pharmacodynamic interactions 

 Due to its activity on opioid receptors, nalmefene assumption with opioid agonists inhibits 

its pharmacological effect: this applies to all opioid analgesics, but also to cough medicines 

containing codeine. Furthermore, the unintentional prescription of nalmefene associated with an 

opioid can trigger off a withdrawal syndrome [117,118]. Although caution is advised in 

administering nalmefene in patients who also take neuroleptics, such as haloperidol and droperidol, 

medicines associated with a possible, albeit rare, occurence of cardiac arrhythmias [119], the drug 

has shown (at doses of 20 mg/daily and 80 mg/daily) to have no effect on the QT interval and T 

wave morphology [120]. No clinically interactions between nalmefene and alcohol have been 

reported [121]: changes in cognitive and psychomotor performance may occur, but the effects of the 

concomitant assumption of nalmefene and alcohol do not exceed the sum of the effects of each of 

these substances taken separately. 
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4.4.2 Pharmacokinetic interactions 

Nalmefene does not show relevant pharmacokinetic differences between males and females, 

young people and the elderly, or different ethnic groups [122]. Oral bioavailability of nalmefene 

after a single administration is nearly 41 %, the peak plasma concentration is rapidly reached after 

about 1.5 hours and the terminal half-life is estimated at about 12 hours [123]. Nalmefene is largely 

metabolized in the liver and transformed into nalmephene 3-O-glucuronide, mainly by the enzyme 

UGT2B7 and, to a lesser extent, by the enzymes UGT1A3 and UGT1A8. A small proportion of 

nalmefene is converted into 3-O-sulphate nalmefene and nornalmefene by CYP3A4. Metabolites do 

not have a pharmacological effect, renal excretion is the main route of their elimination. Despite the 

high liver metabolism, the drug is not a hepatotoxin, therefore it doesn’t compromise liver function 

or alter the laboratory values, even for prolonged periods of time [124]. However, the 

administration of a single dose of nalmefene in twelve patients with hepatic impairment increased 

the drug exposure, compared to healthy volunteers. Nalmefene clearance was reduced by 31 %, 

while the half-life of the drug increased by 32 %, indicating the presence of an inverse relationship 

between nalmephene clearance and the degree of liver impairment [125]. 

No relevant pharmacokinetic interactions have been reported, but possible interactions with 

powerful inhibitors of the enzyme UGT2B7, such as diclofenac and naproxene [126], ketoconazole 

[127] and low concentrations of amitriptyline [128], cannot be excluded. Problems are unlikely to 

occur with occasional use, but there is no data on a long-term therapy. Conversely, the concomitant 
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administration of a UGT2B7 inducer, such as different chemotherapeutic agents [129] or di-

hydroartethmisine [130], may reduce nalmefene plasma concentrations to sub-therapeutic ranges.  

 

4.5 Naltrexone 

 Naltrexone is an opioid receptor antagonist. It is a competitive antagonist of μ receptors, and 

to a lesser extent of δ e k receptors. In AUD, several studies have demonstrated its efficacy in 

reducing the rate of recidivism and the craving levels [131]. Currently, the FDA recommends 50 

mg/daily of naltrexone for treating AUDs, but some findings suggest that higher doses (up to 150 

mg/day) may be effective in reducing alcohol consumption [132]. Blocking the activation of opioid 

receptors, naltrexone reduces the release of dopamine into the alcohol-induced reward circuit and 

the gratifying effects [133]. For these reasons, naltrexone is one of the most suitable drugs for 

reducing the alcohol desire, while other medications, such as acamprosate, are more effective in 

maintaining abstinence [134]. 

 

4.5.1 Pharmacodynamic interactions 

 Naltrexone is contraindicated in patients taking opioid drugs because of its antagonism 

activity, both in antalgic therapy, in replacement therapy and/or during anaesthesia. Although this 

combination is not recommended in the package leaflet of opioid medications, approximately 1.8% 

of the patients receiving opioid maintenance therapy have assumed naltrexone in their lifetime 

[135]. Consequently, co-administration with morphine and its derivatives, oxycodone, 
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buprenorphine, fentanyl [136], codeine and methadone [137], but also with opioid analgesics such 

as pentazocin and nalbufin, should be avoided. Before administering naltrexone, it is advisable to 

have stopped opioid therapy for at least ten days: in the case of concomitant assumption, the patient 

is at high risk of a withdrawal syndrome; a hypersensitivity reaction to the opioid agonist may occur 

in rare cases [138]. In addition, two cases of lethargy and drowsiness were reported after 

concomitant use of naltrexone with tioridazine, a phenothiazine [139]. Although concurrent intake 

of naltrexone and antidepressants (tricyclic, SSRI and serotonin-norepinephrine reuptake inhibitor 

or SNRI), neuroleptics and benzodiazepines is not recommended, for the risk of lengthening the QT 

interval to the electrocardiogram and possible cardiac arrhythmias, no cardiovascular events have 

been reported in the literature. In the ultra-short opiate detoxification, the QTc interval was 

significantly lengthened (median value 420 msec vs. 453 msec) in combination with clonidine, but 

this was probably due to hypopotassiemia and clonidine itself [140]. In the case of a simultaneous 

administration with disulfiram or baclofen, no interactions are expected [141,142]. The PTX3003 

experimental product, a combination of baclofen, naltrexone and sorbitol, is actually being tested in 

a phase III clinical trial for patients with Charcot-Marie-Tooth type 1A disease, showing good 

efficacy and an excellent tolerability profile [142]. Regarding acamprosate, the administration with 

naltrexone in healthy volunteers significantly increases the maximum plasma concentration and the 

area under the plasma concentration-time curve of acamprosate, but no adverse effects have been 

documented; on the contrary, it has been hypothesized that this effect may have a positive and 

"reinforcing" role in alcohol-dependent patients [62]. No relevant interactions among naltrexone 
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and alcohol were described. The co-administration of the drug and 240 ml solution at the increasing 

concentrations of alcohol did not change the pharmacokinetic profile of naltrexone [143].  

 

4.5.2 Pharmacokinetic interactions 

There are no data supporting pharmacokinetic interactions of naltrexone. Some in vitro studies have 

highlighted that neither naltrexone, nor its main metabolite, 6-β-naltrexol, are metabolized through 

human CYP450 enzymes [144]. They are mainly metabolized by hepatic di-hydrodiol 

dehydrogenase (DD1, DD2 and DD4), which are inhibited competitively by testosterone and di-

hydrotestosterone, but this interaction remains of an uncertain clinical significance. As a result, 

there are several studies that show the reliability of naltrexone administration in different categories 

of patients. In particular, it has been safely administered in 215 patients with multiple sclerosis 

[145] and 46 Crohn's disease patients [146], while the protracted-release formulation was effective 

and well tolerated in 23 HIV-positive patients with a concurrent alcohol and/or opiate use disorder 

[147]. Precisely, naltrexone had already been shown to have no effect on the bioavailability of 

zidovudine, as it did not modify the area under the curve (AUC) when co-administered with the 

anti-retroviral drug [148]. The administration of naltrexone (50 mg/daily) was well tolerated also in 

twelve arachnophobic patients treated with alprazolam (1 mg/daily) [149], and in 14 opioid 

dependent patients treated with prazepam (10 mg, twice daily) [150]. Moreover, the simultaneous 

intake of naltrexone and citalopram [151] or sertraline [152] did not produce any side effects.  
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4.6 Sodium oxybate 

 Sodium oxybate is the sodium salt of γ-hydroxybutyric (GHB) acid, a short-chain fatty acid 

derived from γ-aminobutyric acid (GABA). The latter is a prominent inhibitory neurotransmitter of 

the central nervous system, which acts as a neuromodulator of the dopaminergic, GABAergic and 

opioidergic pathways [153]. The terms GHB and sodium oxybate are often used indifferently, but 

only the sodium oxybate (i.e. the sodium salt of GHB) has a clinical application. Sodium oxybate 

was approved in Italy in 1992 for the treatment of alcohol dependence; in 1999 it was also approved 

in Austria. It is considered effective and safe for the treatment of alcohol dependence, alcohol 

withdrawal syndrome, and for the prevention of relapse [154], not necessarily as the second or third 

choice. A safe approach to use sodium oxybate is to fraction it into three to six daily administrations 

(50 to 100 mg/kg/day). It has an alcohol-mimicking effect, comparable to an alcohol “substitute”: 

acting on the GABA-B receptors, it causes an increase in the release of dopamine in the nucleus 

accumbens [155]. Fortunately, episodes of craving and abuse of the drug in alcoholic patients are 

very limited (around 10%), and no cases of death from sodium oxybate overdose have been 

reported [156].  

 

4.6.1 Pharmacodynamic interactions 

Sodium oxybate is a central nervous system depressant. When it is co-administered with 

medications impairing the central nervous system, it showed synergistic effects only with few of 

them. When sodium oxybate and lorazepam were coadministered, increased sleepiness was 
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observed, whereas it was safely administered with tramadol (100 mg), methadone, protriptyline (10 

mg) and duloxetine (60 mg) [157-158]. Even the association between sodium oxybate and 

disulfiram was safe: the number and type of adverse events of each drug is comparable in the group 

treated with both drugs, to those patients treated with just one drug [159]. However, a possible 

additive effect cannot be excluded, when higher dosages of sodium oxybate (up to 9 g/day) are 

coadministered with higher dosages of hypnotics, opioids or antidepressants [160]. The co-

administration of modest doses of GHB (50 mg/Kg) and ethanol resulted in increased episodes of 

vomiting, hypotension, and a greater decrease in O2 saturation, but only minimal pharmacokinetic 

interactions were observed [161]. Moreover, recent studies with a new formulation of sodium 

oxybate showed a different profile compared to alcohol, the sedative effects are less marked and 

there is no reciprocal reinforcement between the two substances; the co-administration was safe 

[162].  

 

4.6.2 Pharmacokinetic interactions 

 Sodium oxybate is largely absorbed after oral administration in healthy volunteers with a 

history of recreational use [163] and in alcohol-dependent patients [164]. It acts rapidly, sodium 

oxybate reaches the plasma concentration peak in 30-120 minutes and the terminal half-life is 

around 30-60 minutes. It is mainly metabolised in the liver; only a small part (around 2-5%) being 

excreted unchanged in the urine. Despite the drug being metabolised in the liver, the literature 

contains no reports of pharmacokinetic interactions between sodium oxybate and other medications. 
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In vitro, sodium oxybate did not significantly inhibit the cytochrome P450 enzymes CYP1A2, 

CYP2C9, CYP2C19, CYP2D6, CYP2E1 or CYP3A, at higher concentrations than therapeutic 

levels [157]. Sodium oxybate does not interfere with anti-retroviral drugs and/or interferon: the 

hepatic pathways involved in the metabolism of sodium oxybate [160] are different from those that 

metabolise the drugs used in the treatment for HIV, HBV and HCV [165]. Even omeprazole did not 

affect the pharmacokinetics of sodium oxybate to a clinically significant extent [166]. A single, 

supposed pharmacokinetic interaction has been reported in a case of chronic cluster headache, 

where the concomitant intake of sodium oxybate and topiramate resulted in a neurological coma 

[157].  

 

5. Conclusion 

 Polypharmacy is a high-risk condition, due to the pharmacokinetic and pharmacodynamic 

properties of the medications being assumed at the same time. In recent years, interest in 

pharmacological treatments for AUD and their safety have been increasing, but pharmacological 

interactions are insufficiently considered [14,167]. Patients with alcoholism may be treated 

concomitantly with antihypertensives, diuretics, antibiotics, antivirals and lipid-lowering drugs, 

some of which have shown to interact with the pharmacological treatment of AUD. This implies 

that when it is necessary to start treatment with an aversive or an anti-craving medication, all the 

possible drug-drug interactions should be carefully considered. Most of the interactions documented 

in literature have been reported for the BDZ class and disulfiram. It is widely supported that no 

member of benzodiazepines exceeds the others for the treatment of alcohol withdrawal, but their 
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different pharmacokinetic properties may justify the use of a specific molecule, especially in 

patients at risk of drug interactions. The pharmacokinetic profile of diazepam has unique 

advantages in alcoholic patients, such as the short time to peak effect and a long elimination half-

life, resulting in a lower incidence and severity of withdrawal symptoms and rebound phenomena 

[168]. However, interactions with drugs metabolized by the CYP2C19, CYP2C9 and CYP3A4 

enzymes are possible and its prescription should in any case be assessed on a case-by-case 

approach. Disulfiram is one of the most commonly used drugs in alcohol dependence and, in this 

class of drugs, it has the greatest risk of pharmacological interactions. Its dangerous association 

with more than 40 drugs, five organic solvents, one pesticide and at least one species of mushroom 

had already been reported several years ago [169]. It is characterised by serious pharmacodynamic 

interactions, which concern both medications containing alcohol and specific medicines associated 

with the onset of psychiatric events. Nevertheless, it may interact with various liver enzymes, 

including CYP2E1, CYP2C9 and CYP3A4. Baclofen and sodium oxybate are relatively safer drugs 

for co-administration, as well as nalmefene and naltrexone, without forgetting that the opioid 

withdrawal syndrome due to their association with an opioid may be fatal. On the other hand, 

acamprosate is devoid of pharmacological interactions, being successfully prescribed in association 

with antidepressants, BDZ, non-opiate analgesics, naltrexone and disulfiram. The accumulated 

information should contribute to a greater safety in the use of the drugs prescribed for AUDs in 

patients undertaking multi-drug treatment, in order to reduce the risk of a negative interaction and to 

optimize the clinical outcomes. 
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Figures captions 

 

Figure 1. Radar charts showing the potential combination of pharmacological treatments of alcohol dependence with several classes of medications. The data length of a 

spoke is proportional to the magnitude of the potential association between the two drugs. A line connect the data values for each spoke. 
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Tables 

 

Table 1. Pharmacodynamic interactions among BDZ and different classes of medications 

Drug class Generic name Availability Interaction 

Opioids Codeine 

Fentanyl 

Idromorphone 

Morphine 

Methadone 

Oxycodone 

Tramadole 

Medical prescription BDZ could enhance the effects of these drugs on the CNS, such as sedation, 

confusion and respiratory depression 

Co-administration increases the risk of addiction to these medications, through 

a “cross-tolerance” phenomenon 

Antidepressants Bupropione 

IMAO 

Mirtazapine 

Nefazodone 

SSRI 

SNRI 

Trazodone 

Tryciclic antidepressants 

Medical prescription BDZ could enhance the effects of these drugs on the CNS, such as sedation, 

confusion and impaired motor performances 

 

Anticonvulsants Carbamazepine 

Ethosuccimide 

Felbamate 

Gabapentin 

Lacosamide 

Lamotrigine 

Medical prescription BDZ could enhance the effects of these drugs on the CNS, such as sedation, 

confusion and impaired motor performances 
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Levetiracetam 

Oxcarbazepine 

Phenytoin 

Phenobarbital 

Pregabalin 

Topiramate 

Valproic acid 

Vigabatrin 

Zonisamide 

Antihistamines First-generation 

Antihistamines 

OTC and medical prescription BDZ could enhance the effects of these drugs on the CNS, such as sedation, 

confusion and impaired motor performances 

Neuroleptics Classical neuroleptics 

Atypical neuroleptics 

Medical prescription BDZ could enhance the effects of these drugs on the CNS, such as sedation, 

confusion and impaired motor performances 

OTC: over the counter. Availability of medicines was analysed in the Italian pharmaceutical market. 
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Table 2. Pharmacokinetic interactions among BDZ and different classes of medications 

Target  Drug class Generic name Availability 

CYP3A4 Inhibitors Azolic anti-fungal agents Itraconazole 

Ketoconazole 

Voriconazole 

OTC and Medical prescription 

Macrolids antibiotics Erythromycin 

Clarithromycin 

Medical prescription 

HIV protease inhibitors Saquinavir 

Ritonavir 

Lopinavir 

Medical prescription 

Calcium antagonists Diltiazem 

Verapamil 

Medical prescription 

Antiemetics Aprepitant Medical prescription 

Antidepressants Nefazodone Medical prescription 

Grapefruit juice  OTC 

Inducers Anticonvulsants Carbamazepine 

Phenytoin 

Medical prescription 

Barbiturates Phenobarbital Medical prescription 

Antiretrovirals Efavirenz 

Nevirapine 

Medical prescription 

CYP2C19 Inhibitors Grapefruit juice  OTC 
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Substrate and Inducer Anticonvulsants Phenytoin Medical prescription 

Glucuronidation enzymes  Anticonvulsants Valproic acid Medical prescription 

Protein bound-drug  Digital glycosides Digoxin Medical prescription 

OTC: over the counter. Availability of medicines was analysed in the Italian pharmaceutical market. 
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Table 3. Interactions between baclofen and sodium oxibate with different classes of medications 

Drug class Generic name Availability Interaction 

Baclofen    

Opioids Buprenorphine 

Codeine 

Fentanyl 

Idromorphone 

Morphine 

Methadone 

Nalbuphine 

Oxycodone 

Pentazocin 

Tramadole 

Medical prescription Co-administration could increase the sedative effect and the risk of a respiratory 

depression 

 

Anesthetic Propofol 

 

Medical prescription A single case of recurrent generalized seizures with the concomitant intake of 

propofol has been reported 

Analgesic Ziconotide 

 

Medical prescription A single case of dyskinetic syndrome with the concomitant intake of intrathecal 

ziconotide has been reported 

Tryciclic 

antidepressants 

Amitriptyline 

Doxepin 

Medical prescription Co-administration could increase the muscle relaxant effect 

Sodium oxibate    

Anticonvulsants Topiramate Medical prescription A single case of high plasma concentrations of topiramate with the concomitant 

intake of sodium oxybate has been reported 
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OTC: over the counter. Availability of medicines was analysed in the Italian pharmaceutical market. 
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Table 4. Interactions between disulfiram with different classes of medications 

Pharmacodynamic interactions   

Drug class Generic name Availability Interaction 

Drugs containing alcohol 

 

 Medical prescription and 

OTC 

The association is capable of triggering the disulfiram-ethanol reaction, 

with serious consequences for patients 

Anticoagulants 

 

Warfarin Medical prescription Disulfiram may augment warfarin hypoprothombinemia by chelating the 

metal cations necessary for the synthesis of active prothrombin 

Antibiotics 

 

Isoniazid 

Metronidazole 

Medical prescription These compounds, when administered in combination, may significantly 

alter metabolism of brain catecholamines 

Psychostimulants Amphetamine 

Methylphenidate 

Buspirone 

Marijuana 

Medical prescription Disulfiram interferes with the mechanism of action of these drugs, 

inhibiting the dopamine β-hydroxylase activity, resulting in hallucinations, 

behavioural disorders and/or psychosis 

Pharmacokinetic interactions   

Target  Drug class Generic name Availability 

CYP2E1 Disulfiram inhibition Anaesthetics Halothane 

Isoflurane 

Sevoflurane 

Medical prescription 

Methylxanthine Theophylline Medical prescription and OTC 

Analgesic Paracetamol Medical prescription and OTC 

CYP3A4 Inhibitor Antibiotics Clarithromycin Medical prescription 
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 Anti-rheumatic Colchicine Medical prescription 

 Antiretrovirals Atazanavir Medical prescription 

Inducer Antiretrovirals Efavirenz Medical prescription 

Disulfiram inhibition Benzodiazepines Chlordiazepoxide 

Diazepam 

Medical prescription 

CYP2C9 Inhibitor Tryciclic antidepressants Amitriptyline 

Desipramine 

Imipramine 

Medical prescription 

  Anticonvulsants Phenytoin 

Fosphenytoin 

Medical prescription 

OTC: over the counter. Availability of medicines was analysed in the Italian pharmaceutical market. 
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Table 5. Interactions between naltrexone and nalmefene with different classes of medications 

Drug class Generic name Availability Interaction 

Naltrexone    

Opioids Buprenorphine 

Codeine 

Fentanyl 

Idromorphone 

Morphine 

Methadone 

Nalbuphine 

Oxycodone 

Pentazocin 

Tramadole 

Medical prescription Co-administration decreases the effect of opioid agonists and increases the 

risk of a withdrawal syndrome.  

In rare cases, a hypersensitivity reaction to opiate agonist may occur. 

Neuroleptics Thioridazine Medical prescription Naltrexone enhances the effects of Thioridazine on the CNS. Two cases of 

excessive drowsiness and lethargy have been reported. 

Alcohol disorders 

treatment 

Acamprosate Medical prescription Naltrexone increases the absorption and bioavailability of acamprosate. 

Nalmefene    

Opioids Buprenorphine 

Codeine 

Fentanyl 

Idromorphone 

Morphine 

Methadone 

Medical prescription Co-administration decreases the effect of opioid agonists and increases the 

risk of a withdrawal syndrome. 
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Oxycodone 

Tramadole 

OTC: over the counter. Availability of medicines was analysed in the Italian pharmaceutical market. 
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