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Abstract

Mechanical and chemical models of vasculogenesis are critically reviewed with an empha-
sis on their ability to predict experimentally measured quantities. Final remarks suggest a
possibility to merge the capabilities of different models into a unified approach.

1 Introduction

In the embryo, primitive vascular plexus form by the process of vasculogenesis, where mesoderm-
derived precursors of endothelial cells assemble by directed cell migration and cohesion (Risau
(1995), Poole (2001), Jain (2003)). This network is characterized by polygons having a precise
size dictated by the principal and paradigmatic function of vasculature: the oxygen transport to the
tissues. Therefore the intercapillary distance is dictated by the coefficient diffusion of oxygen. This
characteristic is maintained in adult body where the capillary network embedded in the tissues and
stemmed by the vascular tree has the same geometric shape of the minimal unit participating in the
formation of embryo vascular net and is optimal for metabolic exchange (Krogh, (1919), Chilibeck
(1997), Guyton (2000)). The ability to form networking capillary tubes is a cell autonomous
property of endothelial cells. At site of vessel formation, soluble stimuli released by neighbouring
cells modify the genetic program of endothelial cells (Carmeliet (2000)) allowing them to be
responsive to permissive cues coming from extracellular environment (Ingber (1989)). Nice in vitro
models support this concept. In particular, it is well known that culturing endothelial cells on a
scaffold of Matrigel, a natural basal membrane matrix, markedly accelerates their morphological
differentiation in geometric tubular networks, which are almost identical to vascular beds formed in
vivo by vasculogenesis (Kubota (1988), Grant (1989)). This phenomenon has been called in vitro
angiogenesis (Folkman (1980)). The issue of how endothelial cells self-organize geometrically into
capillary networks is still rather obscure. How can separate individuals cooperate to the formation
of coherent structures? Which is the mechanism regulating the dimension of the patterns?

Answering this question is an issue of great interest in understanding tumor growth but also
the reconstitution of a proper and functional vascular network is a major issue in tissue engineering
and regeneration. The limited success of current technologies may be related to the difficulties to
build a vascular tree with correct geometric ratios for nutrient delivery.

In this review we focus on mathematical models of in vitro vasculogenesis. The readers in-
terested in those aimed at the description of angiogenesis or wound healing, which are related to
some of the models mentioned in the sequel, are referred to Bussolino et al. (2003), Chaplain and
Anderson (2003), Little et al. (1998), and Levine and Sleeman (2003).

Section 1 is devoted to experimental facts. The following two sections describe in details
two classes of models: the former is based on the concepts of cell persistence and endogenous
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chemotaxis, the latter is based on the mechanical interactions with the substratum. The fors
and againsts of the two models are critically discussed. A final section presents some research
perspectives.

2 Experimental Facts

[Figure 1 about here.]

Vasculogesis can be obtained in vitro using different experimental set-ups, substrata (e.g., Ma-
trigel, fibronectin, collagen, fibrin, semisolid methilcellulose), and cell-lines (e.g., human umbilical
vein endothelial cells (HUVEC), human dermal microvascular endothelial cells (HDMEC), human
capillary endothelial cells (HCEC), human marrow microvascular endothelial cells, bovine aorthic
endothelial cells (BAEC), bovine capillary endothelial cells (BCEC), bovine retin endothelial cells
(BREC), rat capillary endothelial cells (RCEC), embryonic stem cells (ESC), calf pulmonary aortic
endothelial cells (CPAEC), adrenal capillary endothelial cells (ACEC)), as reviewed in Vailhé et
al. (2001). To this list one could add melanoma cells which seem to form capillary-like structures
by themselves as described for instance in Hendrix et al. (2001) and Mariotis et al. (1999).

The term “vasculogenesis in vitro” therefore includes such a large variety of experimental
protocols that makes it almost impossibile to provide a unified illustration of the biological process.
Therefore in the present section we refer to the experimental set–up of Serini et al. (2003).
Differences with other works reported in the literature will be pointed out when needed.

In the experiments by Serini et al. (2003) a Petri dish is coated with an amount of Matrigel,
a surface which favours cell motility and has biochemical characteristics similar to living tissues,
having a thickness of 44 ± 8 µm. Human endothelial cells from large veins or adrenal cortex
capillaries (HUVEC) are dispersed in a fisiological solution which is poured on the top of the
Matrigel and sediment by gravity onto the Matrigel surface. Cells then move on the horizontal
Matrigel surface giving rise to a process of aggregation and pattern formation.

The process of formation of a vascular-type network lasts 12-15 hours and evolves according
to the following steps:

i) In the first 3 to 6 hours endothelial cells migrate independently, keeping a round shape till
they collide with closest neighbors (Figs. 1a-b) (as observed also by Tranqui and Traqui (2000)).
It is interesting to remark that in this phase cells move much faster than in the later ones and
that the motion of the cells seems to be of amoeboid type (see, for instance, Webb and Horwitz
(2003) and Wolf et al. (2003)).

ii) The cells eventually form a continuous multicellular network (Fig. 1c) and “splat” on the
Matrigel multiplying the number of adhesion sites.

iii) The network slowly moves as a whole, undergoing a slow thinning process (Fig. 1d), prob-
ably driven by a stress field generated by mutual traction, which however leaves the network
structure mainly unaltered.

iv) Finally, individual cells fold up to form the lumen of the capillary, so that one has the for-
mation of a capillary like network along the lines of the previously formed bidimensional structure
as described in Kubota et al. (1988) and Grant et al. (1989).

It is important to notice that, since cells sediment on a surface, one of the key parameters of
the process is the density of cells per unit area (cells/mm2). For this reason in the next we will
we refer to this parameter and not the density of cells in the fisiological solution (cells/mL) which
is sometimes reported in the literature.

2.1 Cell trajectories at the early stage

If one focuses on the trajectory of a single cell it is easy to notice that in most cases the direction
of motion is well established and kept till the cells encounter other cells. Of course, a random
component is present but is usually not predominant. The trajectories of an individual cell then
shows persistence in the direction of cell motion, i.e., tendency of the cell to maintain its own
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direction of motion (Sambeth and Baumgaertner (2001) and Friedl (2004)) (Fig. 2). In most cases
the motion is apparently directed toward zones of higher concentration of cells (see Figs. 2a,b).
The two observations above suggest respectively the presence of a mechanism of persistence in cell
motion and a mechanism of cross-talk among cells. As a matter of fact, recent works (Carmeliet
(2000), Helmlinger et al. (2000)) confirm that endothelial cells in the process of vascular network
formation exchange signals by the release and absorption of Vascular Endothelial Growth Fac-
tor (VEGF-A). This growth factor can bind to specific receptors on the cell surface and induce
chemotactic motion along its concentration gradient (Ferrara et al. (2003)). Actually, chemotac-
tic cell movement is considered to be a key mechanism in several morphogenetic events, including
vasculogenesis (Roman and Weinstein (2000)).

A good candidate as soluble chemotactic mediator is VEGF-A, which is known to induce
EC growth, survival, and motility (Neufeld et al. (1999), Ferrara et al. (2003)). Moreover
autocrine/paracrine secretion of VEGF-A by ECs has been shown to be essential for the formation
of capillary beds (Helmlinger et al. (2000)). As we shall see in the following section, addition of an
anti-VEGF-A neutralizing antibody inhibits capillary network formation because it triggers EC
apoptosis.

[Figure 2 about here.]

In order to quantify both cell persistence and the chemotactic behavior in cell motion Serini
et al. (2003) performed a statistical analysis of the cell trajectories on the basis of the cell
displacement vectors over time intervals of one minute measured from videomicroscopic records.

They measured two angles, φ and θ (see Fig. 2c). The former is the angle between two
subsequent displacements relative to the same trajectory. It then gives a measure of the persistence.

The latter is the angle between the velocities and the concentration gradients at the same
point simulated starting from the distribution of cells and taking into account that VEGF-A,
like similar soluble molecules, is degraded by the environment in a finite time, mainly through
oxidation processes (Gengrinovitch et al. (1999)). The angle θ then gives a measure of the
chemotactic behavior.

Figure 2d and 2e respectively show persistence of cell direction in time and alignment with the
direction of simulated gradients of the concentration field.

2.2 VEGF saturation or inhibition

In order to test the importance of chemotactic signalling mechanisms Serini et al. (2003) performed
some experiments aimed at extinguishing VEGF-A165 gradients. Direct inhibition of VEGF-A
caused an apoptotic effect. To overcome this problem, they extinguished VEGF-A gradients
spreading from individual ECs plated of Matrigel by adding a saturating amount of exogenous
VEGF- A165. Indeed, saturation of VEGF-A gradients resulted in strong inhibition of network
formation. This observation is also confirmed in a set of experiments performed in Boyden chamber
and evaluated by checkerboard analysis to study the chemotactic and chemokinetic activity of
VEGF-A165.

The same statistical analysis mentioned in the previous section was repeated in saturating
conditions (Fig. 2d,e). In this case, the diagram for φ shows that cell movement maintains a certain
degree of directional persistence, while the diagram for θ shows that in saturating conditions the
movement is completely decorrelated from the direction of simulated VEGF gradients.

[Figure 3 about here.]

2.3 Chord length

The capillary-like network formed on Matrigel can be represented as a collection of nodes connected
by chords. The mean chord length measured on the experimental records in Serini et al. (2003) is
approximately constant and equal to ` ' 200 ± 20µm over a range of values of seeded cell density
n0 extending from 100 to 200 cells/mm2 (Fig. 3).
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It is interesting to notice that capillary networks characterized by typical intercapillary dis-
tances ranging from 50 to 300 µm is instrumental for optimal metabolic exchange (Chilibeck et al.
(1997), Krogh (1919), Guyton and Hall(2000)). So the characteristic size of the network in vitro
is biologically functional: a coarser net would cause necrosis of the tissues in the central region, a
finer net would be useless.

A deeper analysis of the statistical distribution of chord length can be found in Ambrosi et al.
(2004) and Gamba et al. (2003).

[Figure 4 about here.]

Ruhrberg et al. (2002) observed that mice lacking heparin-binding isoforms of VEGF-A form
vascular networks with a larger mesh (see Fig. 4). This is related to the fact that binding of some
of the isoforms with lower or higher molecular weight affects the effective diffusivity of the chemical
factor. Therefore VEGF plays a role in defining the mesh size and, in particular, different isoforms
(with different diffusivities) can lead to different mesh size. As discussed in the sequel, the model
by Gamba et al. (2003) and Serini et al. (2003) predicts that the size of the network is related to
the product of the diffusion constant and the half-life of the chemical factor.

[Figure 5 about here.]

2.4 Dependence on cell density

If on one hand the chord length is nearly independent from the density n0 of seeded cells in a
certain range, on the other hand it is observed that outside this range one does not have a proper
development of vascular networks, as observed in vivo by Fonf et al. (1999). To enlighten this
phenomenon, Serini et al. (2003) performed some experiments varying the density of seeded cells
putting in evidence the presence of a percolative-like transition (Stauffer and Aharony (1994)) at
small densities and a smooth transition to a “Swiss-cheese” configuration at large density.

In fact, below a critical value nc ∼ 100 cells/mm2 the single connected network (Fig. 5b,c)
breaks down in groups of disconnected structures (Fig. 5a). On the other hand at higher cell
densities, say above 200 cells/mm2 (Fig. 5d), the mean chord thickness grows to accommodate an
increasing number of cells.

For even higher value of n0, the network takes the configuration of a continuous carpet with
holes (Fig. 5e). This configuration is not functional. In fact, cells do not even differentiate to
form the lumen in the chords. Among other things, the paper by Tranqui and Traqui (2000) also
focuses on the formation of lacunae and analyses the content of fibronectin in the substratum.
They find that the holes are deprived of fibrin.

2.5 Stiffness of the substratum and protease inhibitors

Vailhé et al. (1999) performed some experiments changing the fibrin concentration in a substratum
of 1 mm thickness. They start with an initial condition in which cells are confluent and form a
continuous carpet of cells (probably n0 ≈ 1500 cells/mm2). Increasing the fibrin concentration
from 0.5 mg/mL to 8 mg/mL, the number of lacunae formed by HUVEC (Human Umbilical Vein
Endothelial Cells) strongly decreased, without increasing in size. In fact, capillary networks only
formed for fibrin concentration of 0.5 mg/mL with a typical chord length of 550 ± 50µm. At the
extreme value 8 mg/mL, the ensemble of cells represented a continuous carpet wih no holes. An
insight of their pictures suggests that, during the process, the cells undergo apoptosis or detach
from the surface. In fact, the total mass does not seems to be conserved during the process. This
may be due to the fact that fibrinolysis leads to cell detachment at the end of the process.

They repeated the experiments using Bovin Retinal Endothelial Cells (BREC) which required
a fibrin concentration of 8 mg/mL to form capillary network and formed a structure with a mean
chord length of 400µm. In fact, BREC presented a high fibrinolytic activity so that at lower
concentration gels were degraded too quickly and the cells could not adhere. Adding aprotin at
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a concentration of 1µg/mL decreased the degradation and allowed the formation of capillary-like
structures.

Vailhé et al. (1999) also noticed that the formation of lacunae was accompained by a degra-
dation of fibrin gels in the lacunae. They measured the fibrin degradation products present in the
culture medium and found an increase after 10 hours of seeding the HUVEC.

For this reason some experiments were performed adding protease inhibitors (aprotin up to a
concentration of 10−4 µg/mL for HUVEC). They never observed networks when the fibrin degra-
dation had been completely inhibited. On the other hand, in some cases (e.g., fibrin concentration
of 8 mg/mL) degradation was not sufficient to ensure the formation of capillary-like networks.

[Figure 6 about here.]

2.6 Effect of gel thickness

Many experiments performed by Vernon and coworkers focus on the interaction between cells and
ECM. In particular, Vernon et al. (1992), (1995), and Vernon and Sage (1995) performed some
experiments seeding Bovine Aorthic Endothelial Cells (BAEC), cells of the murine Leydig cell line
TM3, human fibroblasts, human smooth muscle cells, and murine PYS-2 cells on gelled basement
membrane matrix (BBM) of 1mm thickness. The BMM was made more rigid by adding varying
amounts of gelled native type I collagen. In particular, with 0.6mg/mL collagen, BAEC and TM3
cells formed capillary networks in 24 hours. On the other hand, increasing the amount of collagen
to 2mg/mL cells were flattened, spread, and unorganised.

In addition, they used a set up in which the substratum was distributed with a triangular
shape increasing from 10 µm to 500 µm over a length of 17 mm or from 10 µm to 400 µm over
a length of 4 mm (for comparison the thickness used in the experiments by Serini et al. (2003)
correspond to 7% of the slope length of the experiment on the thinnest side). The experiment
shows the formation of longer chords where the thickness is higher and shorter chords where it is
lower. Probably where the substratum is too thin there is even no capillary structure at all.

3 How Persistence and Endogenous Chemotaxis Drive Cap-
illary Network Formation

The work by Gamba et al. (2003) and Serini et al. (2003) focuses on the early development of
vascular network formation. Their basic assumption is that persistence and chemotaxis are the
key features determining the size of the structure. In their view, mechanical interaction of the
cells with the matrigel can be neglected for describing the behavior of the system along the first
3–6 hours.

Their mathematical model is based on the following assumptions

1. Endothelial cells show persistence in their motion;

2. Endothelial cells communicate via the release and absorption of molecules of a soluble growth
factor. This chemical factor can reasonably identified with VEGF-A (Serini et al. (2003));

3. The chemical factors released by cells diffuse and degrade in time;

4. Endothelial cells neither duplicate nor die during the process;

5. Cells are slowed down by friction due to the interaction with the fixed substratum.

6. Closely packed cells mechanically respond to avoid overcrowding.

The following state variables are introduced:

• The density n of endothelial cells;

5



• The velocity v of the endothelial cells;

• The density c of chemoattractant.

The mathematical model then writes as

∂n

∂t
+∇ · (nv) = 0 , (1)

∂(nv)

∂t
+∇ · (nv ⊗ v) = f , (2)

∂c

∂t
= D∆c+ αn− 1

τ
c . (3)

Equation (1) is a mass conservation equation corresponding to the assumption that cells do not
undergo mitosis or apoptosis during the experimental phenomenon. Equation (3) is a diffusion
equation for the chemical factor which is produced at a rate α and degrades with a half life τ .

Equation (2) assumes that cell motion can be obtained on the basis of a suitable force balance.
Although the second term at the l.h.s. of the momentum equation reminds the convective flux
of cellular matter, it should be understood as a term modelling cell persistence, their “inertia” in
changing cell direction. The “force” f then model the reasons which may cause a change in cell
persistence. They include

1. A chemotactic body force
fchem = βn∇c (4)

where β measures the intensity of cell response per unit mass. The linear dependence on n
corresponds to the assumption that each cell experiences a similar chemotactic action. Of
course, a saturation effect on the amount of chemoattractant could be included, for instance
in order to model the phenomena described in Section 2.2. The generalization of the model to
the case of multiple species of chemical factors, characterized by different physical properties
and biological actions (e.g. attraction and repulsion), is also of interest to understand how
to govern the formation of the network and will be discussed in the final section.

2. A dissipative interaction with the substrate

fdiss = −γnv (5)

The linear dependence of fdiss on n corresponds to the assumption that each cell is subject
to the same dissipative forces.

3. The incompenetrability of cellular matter, to model the fact that closely packed cells resist
to compression

fsurf = −∇[nπ(n)] (6)

After some standard algebra, Equations (1-3) rewrite

∂n

∂t
+∇ · (nv) = 0 , (7)

∂v

∂t
+ v · ∇v = β∇c− γv −∇ϕ(n) , (8)

∂c

∂t
= D∆c+ αn− c

τ
, (9)

where ϕ(n) is defined by

n
dϕ

dn
=

d

dn
(nπ), (10)

or

ϕ =

∫
1

n

d

dn
(nπ) dn . (11)

For quick reference in the following we will refer to Equations (7-9) as PEC model (Persistence
and Endogenous Chemotaxis).
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[Figure 7 about here.]

Notice that dropping the pressure and persistence terms in (8), an assumption which corre-
sponds to immediate adjustment of the cells to the limit velocity, leads to classical chemotactic
models (see Othmer and Stevens (1997) and Levine and Sleeman(1997)), for which blow-up in
finite time is possible. The important feature of the function ϕ (n) in the qualitative analysis
and in the simulation is that it must vanish below the close-packing density N and then rapidly
increase above it. When preserving the pressure term, one has the model studied by Kowalczyk
(2004) in which the blow-up of the solution is prevented under suitable characterization of the
pressure-density dependence. To this aim, a sufficient condition is that the function ϕ(n) grows
faster than a logarithm for high cell densities, i.e.

dϕ

dn
>
C

n
, for large n .

By a Chapman-Eskog expansion Filbet et al. (2004) derive the model (1–3) as a hydrodynamic
limit of a kinetic velocity-jump process. They also performed simulations obtaining results similar
to those shown in Figure 7 and discussed in the following section.

3.1 Qualitative analysis and numerical simulations

The experiments described in the section above start with a number of cells randomly seeded on
the matrigel. To reproduce the experimental initial conditions Gamba et al. (2003) and Serini et
al. (2003) integrate numerically Eqs. (7-9) with the following initial conditions

n (x, t = 0) =
1

2πr2

M∑

j=1

exp

[
− (x− xj(ω))

2

2r2

]
, (12)

v(x, t = 0) = 0 . (13)

This choice corresponds to a collection of M Gaussian bumps in cell density; their width is of the
order of the average cell radius r ' 20µm and are centered at random locations xj distributed with
uniform probability on a square of size L. The initial velocity is null and periodicity is imposed
at the boundary of the domain.

The results of the simulations are shown in Fig. 7. Figure 8 shows how the precise network
structure depends on the initial conditions which is randomly set. However, at glance the general
features seem to be independent on the precise form of the initial condition and compare well with
the experimental results shown in Fig. 1.

[Figure 8 about here.]

Let us now consider the information encoded in the coupling of the continuum model (7,8)
with the diffusion equation (9). This can be understood in the simplest way if we neglect pressure
and assume for a moment that diffusion is a faster process than pattern formation, so that the
dynamics of c is “slaved” to the dynamics of n and the derivative term ∂c/∂t can be neglected in
a first approximation. Then it is possible to solve (9) formally for c and to substitute in (8), thus
obtaining

∂v

∂t
+ (v · ∇) v =

αβ

D
∇
(
`−2 −∆

)−1
n . (14)

The appearance in the dynamical equations of the characteristic length

` =:
√
Dτ , (15)

suggests that the dynamics could favor patterns characterized by this length scale. As a matter
of fact, if we rewrite the r.h.s. of (14) in Fourier space as

αβ

D

ik

k2 + `−2
nk ,
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we observe that the operator ik/
(
k2 + `−2

)
acts as a filter, which selects the Fourier compo-

nents of n having wave numbers of order `−2 damping the components with higher and smaller
wavenumbers.

The diffusion coefficient can be estimated from available data of molecular radii (Muller et al.
(1997), Walter et al. (1992)) using the Einstein-Stokes relation D = kBT/ (6πηrH) where kB is
Boltzmann’s constant, T the temperature, η the solvent viscosity, rH the hydrodynamic radius of
the molecule (Pluen et al. (1999)). In the case of VEGF-A, this gives D ∼ 10−7 cm2 s−1.

The other key parameter involved in the identification of the characteristic length scale is the
half life of VEGF-A, which was measured by Serini et al. (2003) in their experimental setting
using a radioactive tracer, giving the value τ = 64± 7 min.

This gives ` ∼ 100µm, which is in good agreement with experimental data.
The process of network formation is then understood in the following way. Initially, non zero

velocities are built up by the chemoattractive term due to the presence of random inhomogeneities
in the density distribution. Density inhomogeneities are translated in a landscape of concentration
of the chemoattractant factor where details of scales ` are averaged out. The cellular matter move
toward the ridges of the concentration landscape. A non linear dynamical mechanism similar to
that encountered in fluid dynamics sharpens the ridges and empties the valleys in the concentration
landscape, eventually producing a network structure characterised by a length scale of order `. In
this way, the model provides a direct link between the range of intercellular interaction and the
dimensions of the structure which is a physiologically relevant feature of real vascular networks.

[Figure 9 about here.]

Intriguingly, this seems in agreement with the observation that mice lacking heparin-binding
isoforms of VEGF-A, characterized by larger effective diffusivity, form vascular networks with a
larger mesh (see Ruhrberg et al. (2002) and Fig. 4). Although the vascular patterns observed in
vivo in Ruhrberg et al. (2002) are mainly thought to be generated by angiogenesis rather than
vasculogenesis, one cannot exclude the possibility of a simultaneous occurrence of both phenomena
(Cleaver and Krieg (1998)). Figure 5 shows for comparison the results of some simulations obtained
increasing the characteristic length.

It can be observed that scaling lengths with `, times with T =
√
D/αβN cell density in units of

the close-packing density N (confluent distribution) and VEGF concentration with C = ατN (i.e.,
a measure of the amount of soluble factor produced by a close packing density of cell during time
τ), the dimensionless model presents very few dimensionlsee parameters. One multiplies the l.h.s.
of the diffusion equation and is known to be very small. Another multiplies the drag term and
it appears to influence very weakly the simulation. As we shall see in the following sections, the
important dimensionless parameter is contained in the initial condition and compares the initial
density with the close packing one. Then the geometry of patterns essentially depends only on D
and τ while the parameters α and β influence the time needed for the structure to form. In fact,
they are related to VEGF production and chemotactic response by endothelial cells.

[Figure 10 about here.]

3.2 Percolative transition

In the previous section it is discussed how the model is able to foresee the exact dynamics starting
from realistic initial data which mimic a set of randomly seeded cells initially at rest. This section
and the following one will focus on the dependence of the characteristics of the structure on the
density of seeded cells and, in particular, on the transitions occurring at small and large densities,
respectively (compare Figs. 4 and 9). The results of the simulations are in remarkable agreement
with the experiments. By varying the initial number of cells one switches from a phase in which
dynamics generates several disconnected structures to a phase in which a single connected structure
appears. This process is an example of percolative transition.

The concept of percolation has been used in statistical mechanics to describe the formation of
connected clusters of randomly occupied sites in systems close to critical values of the parameters.
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By varying the occupation probability in infinite systems one observes a phase transition in which
the probability of percolating over a connected cluster extending across the whole system suddenly
jumps from 0 to 1 (Stauffer and Aharony (1994)). Percolative transitions have been thoroughly
investigated and are classified in a small number of “universality classes”, characterized by scal-
ing laws with well defined “critical exponents”. These exponents are fingerprints of the growth
process that led to vascular structure formation and it has been suggested that they may help
discriminating between healthy and pathological structures (Gazit et al. (1995)).

Methods of statistical mechanics were used in Gamba et al. (2003) to characterise quantita-
tively the sharp percolative transition. Its presence in the process of formation of vascular networks
is not obvious, and is linked to the average constancy of the chord length. As a matter of fact,
there are at least two ways of accommodating an increasing number of cells on a vascular-type
network. The first one is to force side-to-side connectivity allowing arbitrary chord lengths as in
Fig. 11a (left). The second one is to enforce the constraint on the chord length. In this case, when
the number of cells is too low side-to-side connectivity cannot be achieved and one only has sets
of disconnected clusters as in Fig. 11a (right).

It appears that Nature in this case chose the second way because widely spaced capillary
networks, like the one on the left of Fig. 11a, would not be able to perform their main function,
i.e. to supply oxygen and nutrients to the central part of the tissues (Guyton and Hall(2000)).
This confirms that there must exist a precise mechanism controlling the average chord length
during vascular formation, like the one hypothesized in the deduction of model (1–3).

Gamba et al. (2003) and Coniglio et al. (2004) performed a detailed analysis of the type of
percolative transition which is observed finding that from both experiments and simulations it
occurs in the neighbourhood of nc ∼ 100 cells/mm2. They also concluded that the transition falls
in the universality class of random percolation, even in the presence of migration and dynamical
aggregation. This is confirmed by the fractal dimension of the percolating cluster. In fact, as
shown in Fig. 11e, on scales larger than rc ≈ 0.8 mm, both the value obtained on the basis of the
experiments (D = 1.85± 0.10) and that obtained on the basis of the numerical simulations (D =
1.87±0.03) are close to the theoretical value expected for random percolation (D = 1.896). Another
interesting characteristic of the capillary network structure is given by a bi-fractal behavior. In
fact, if observed at a scale smaller than rc the vascular network shows a different scaling behavior
characterized by a fractal dimension of D ≈ 1.50 ± 0.02 both on the basis of experiments and
simulations. According to Gamba et al. (2003) this might be the signature of the dynamical
process that led to the formation of the network.

[Figure 11 about here.]

3.3 Swiss-cheese transition

The same mechanism schematised in the previous section and sketched in the cartoon in Figs. 11b-
d might in principle also explain the formation of lacunae. If the number of cells doubles, then
there are two ways of accomodating the new cells. Either placing them in a more homogeneous
way, forming smaller squares, as on the left of Figure 11c, or addensing the new cells next to
the others, as on the right of Figure 11c. In the first case the size of the squares halves, in the
second case it remains nearly the same, but the chords thicken. It seems that, for the same reason
explained in the percolative transition, Nature prefers to keep the size of the network as far as
possible. Eventually, this leads to the formation of lacunae as on the right of Fig. 11d.

In order to study the formation of lacunae starting from a continuous monolayer of cells (using
the words in Serini et al. (2003), the “Swiss cheese” transition, see also Fig. 5d) Kowalczyk et al.
(2004) studied the linear stability properties of the model (7–9) (actually they also considered the
presence of a non crucial viscous term).

They found that if ϕ′(n0) > αβτ then the uniform solution with cell density n0 is linearly
stable. At criticality instability starts as a long wave instability. Assuming ϕ to be a convex
function the criterium above means that the system is unstable at low densities and stabilizes at
higher densities (close packing densities), in agreement with the experiments.
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Decreasing even further the density of cells, the critical wave number increases and becomes
infinite in the limit of “very small” ϕ′(n0).

The PEC model then describes the dynamics of the generation of lacunae as follows: Chemo-
taxis with the related parameters (motion, production, degradation) is the key destabilising force
while pressure is the main stabilizing force.

Actually, the presence of the pressure term is crucial as it avoids overcompression in the chords
and allows to reproduce also the transition to the “Swiss-cheese” regime experimentally observed
for n0 > 300 cells/mm2 (Fig. 5d).

4 Cell Traction and Capillary Network Formation

Mechanical models aimed at describing the formation of capillary network were developed in the
last decade after the pioneering paper by Murray, Oster, and Harris (1983), which was mainly
devoted to mesenchymal morphogenesis on the basis of some experiments done by Harris, Stopak,
and Wild (1981) on the interaction between ECM and fibroblasts, a type of cell well known for its
strong pulling force. This paper and the following ones (Oster et al. (1983), Murray and Oster
(1984a,b)) modelled the interactions between a cell population and the ECM substratum they
move in, giving a special emphasis on the morphogenic role played by cellular traction forces.

The essential features of the models developed on this basis to deal with vasculogenesis are the
following:

1. Cells exert traction forces onto the extra-cellular matrix, which is a viscoelastic material;

2. The Petri dish exerts a drag force on the matrix.

3. Possibly cells move because of haptotaxis or chemotaxis;

The following state variables are considered:

• The density n of endothelial cells;

• The density ρ of extracellular matrix (ECM);

• The displacement u of extracellular matrix from its original position.

All the mathematical models inspired by the seminal paper of Murray and coworkers can be
written in the following form

∂n

∂t
+∇ · J = Γ, (16)

∂ρ

∂t
+∇ · (ρw) , = −∆ (17)

−∇ ·Tn −∇ ·Tρ = F, (18)

where w := du
dt is the ECM velocity, J is the cellular flux, Γ refers to the (possible) generation and

death of cells, ∆ is the (possible) digestion of ECM by the cells, Tn is called “cell traction stress”
and Tρ is the stress in the deformed ECM. Finally, F is the force due to the interaction between
the ECM and the Petri-dish.

Equations (16) and (17) are mass balance equations. In principle, cells might duplicate or die
during the process and ECM is degraded and produced by the cells. However, as already stated
in the previous section in the time needed for the pattern to form both cell duplication/apoptosis
and ECM production/degradation can be neglected, so that in most cases (16) and (17) write as
conservation equations. Only Manoussaki (2004) introduces a growth term on the r.h.s. of (16)
but then neglects it in the stability analysis and in the simulation. Conversely, Tranqui and Traqui
(2000) consider ECM degradation claiming that it plays a role in the formation of lacunae. The
last equation is a force balance equation for the whole system, the mixture of cells and matrigel.
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The term Tn accounts for the forces internal to the system due to the cell traction, Tρ accounts
for the elastic response of the matrix.

For quick reference in the following we refer to Equations (16–18) as “elasto-mechanical model”.
Entering more in detail, four types of contributions can be identified in the cellular flux J

• A passive motion due to the attachment of the cells on the moving ECM, Jw = nw;

• A strain dependent motion Jd = −∇ · [D (I + dev(E))n], where

dev(E) = E− trE

2
I (19)

and E = 1
2

(
∇u+∇uT

)
is the strain tensor and tr E = Exx + Eyy;

• A haptotactic motion along the adhesive ECM density gradients Jρ = kn∇ρ;

• A chemotactic motion along the gradients of a specific chemical factor c, Jc = χn∇c.

The first two contributions are always present, while haptotaxis is considered in Tranqui and
Traqui (2000) and Namy et al. (2004) and chemotaxis in Manoussaki (2004).

The cell traction stress is always taken to be isotropic through a density dependent function,
i.e. Tn = Σn(n)I where I is the identity tensor. Murray and coworkers (Manoussaki et al. (1996),
Murray et al. (1998), Manoussaki (2004), and also Murray and Swanson (1999), Murray (2003))
propose the following form

Σ(n) = τ
n

1 + αn2
, (20)

which grows linearly for low cell densities and, after reaching a maximum at n = 1/
√
α, goes to

zero for large densities, corresponding to what the Authors call a saturation effect due to the fact
that at high densities not all cells are able to pull. There is then an upper limit to the pulling
force possible.

Tranqui and Traqui (2000) and Namy et al. (2004) propose

Σ(n) = τ̂ ρn (N − n) , (21)

which has a similar behaviour for small densities with a maximum at n = N/2, but becomes
negative for n > N corresponding to “cell pushing” at high densities. That is, while (20) is always
an attractive force, (21) leads to cell repulsion at sufficiently high cell density. The role of the
repulsion is similar to the pressure term in the PEC models.

Though deformations are not small, ECM is usually described as a linear Voigt-Kelvin material

TV K =
E

1 + ν

(
E +

ν

1− 2ν
tr(E)I

)
+ µ1

∂E

∂t
+ µ2

∂tr(E)

∂t
I, (22)

where I is the identity matrix, ν is the Poisson ratio, E is the Young modulus, µ1 and µ2 are the
shear and bulk viscosities. Kowalczyk et al. (2004) treated the ECM as a standard linear solid
which satisfies the constitutive equation

Λ
∂Tρ

∂t
+ Tρ =

E

1 + ν

(
E +

ν

1− 2ν
tr(E)I

)
+ µ1

∂E

∂t
+ µ2

∂tr(E)

∂t
I. (23)

On the other hand, Traqui and coworkers (Tranqui and Traqui (2000) and Namy et al. (2004))
also considered long-range effects related to the fibrous nature of the extracellular matrix

T = TVK + TL , with TL = − E

1 + ν

(
β1∇2E +

ν

1− 2ν
β2∇2tr(E) I

)
. (24)

The possibility of the existence of such a contribution was also mentioned in Murray and Swanson
(1999).
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Finally, the anchoring force F is either modelled as an elastic force

F = − ŝ
ρ
u , (25)

(Tranqui and Traqui (2000) and Namy et al. (2004)), or as a viscous drag force

F = − s
ρ
w , or F = − s

h
w . (26)

The lenght h is the substratum thickness at rest (Holmes and Sleeman (2000), Manoussaki et al.
(1996), Murray et al. (1998), Murray and Swanson (1999), Murray (2003), Manoussaki (2004))
and is related to the ECM density through ρ = ρ̂h, because the ECM volumetric density ρ̂ (i.e.
mass/mm3) does not change.

Kowalczyk et al. (2004) considered a general dependence on the matrix density

F = − s

f(ρ)
w . (27)

Taking the above assumptions into account the model (16-18) can be rewritten as

∂n

∂t
+∇ · (nw) = ∇ · ∇ · [D(E)n]−∇ · Jch + Γ , (28)

∂ρ

∂t
+∇ · (ρw) = −∆ , (29)

∇Σn(n)−∇ ·Tρ = F , (30)

where Jch = Jc + Jh. Tables 1 and 2 summarize the forms of the terms used in the different
papers.

[Table 1 about here.]

[Table 2 about here.]

Sometimes the mass balance equation (29) for the ECM is substituted with an equation re-
lating the density ρ with the dilatation. This is obtained joining the mass balance equation in
Lagrangian coordinates (ρ0 = ρ det(I +∇u)) and the z-component of the stress balance. Slightly
differents formula can be found in the literature, due to the approximation and the definition of
trE introduced. For instance, following Namy et al. (2004) one has

ρ = ρ0

(
1− ν

1− ν tr(E)

)
. (31)

and one can relate the thickness of the layer to the density of the gel through

h = h0

(
1− 3ν

1− 2ν
+

ν

1− ν
ρ

ρ0

)
(32)

On the other hand, having in mind the application of the mechanical model to angiogenesis,
Holmes and Sleeman (2000) replace Eq.(29) with the reaction diffusion equation

∂ρ

∂t
= Dρ∇2ρ+

ερn

B + ρ
− ηρn− λρ , (33)

which also considers the production and digestion of ECM by the endothelial cells.
The chemotactic effects introduced by Holmes and Sleeman (2000) and Manoussaki (2004) call

for an equation describing the evolution of the concentration of Tumour Angiogenic Factors (TAF)

∂c

∂t
= D∇2c− Qcn

Nn + c
+ αn . (34)

As the simulations relative to both models aims at the description of angiogenesis, rather than
vasculogenesis TAF production is exogenous. For instance in Holmes and Sleeman (2000) it is
produced at the border of the domain where a non growing tumour is assumed to be.
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4.1 Linear stability analysis

Most of the papers mentioned above perform a linear stability analysis of the solution of the
elastomechanical model corresponding to the uniform distribution

n = n0, ρ = ρ0, u = 0. (35)

In our opinion, this analysis refers more properly to the formation of lacunae starting from a
confluent distribution of cells, rather than phenomena involving a moderate density of aggregating
cells. In fact, when seeding few cells the initial configuration is far from being a uniform distribution
(Namy et al. (2004)). Of course, from a mathematical viewpoint it is always possible to start
with a uniform density, but this is not the initial condition of most experiments dealing with
vasculogenesis described in Section 2.

According to the linear stability analysis of the elastomechanical model (Manoussaki et al.
(1996) and Manoussaki(2004)), instability occurs if n0 < 1/

√
α and

τ

E
>

[
1− ν

(1 + ν)(1− 2ν)
+
sD0

Eh0

]
1

n0

(1 + αn2
0)2

1− αn2
0

, (36)

The result is also independent on whether the model includes a mass balance equation for the
ECM, like for instance in Manoussaki et al. (1996), or an equation like (31), as in Murray et al.
(1998).

Therefore, for a given density of cells instability (and pattern formation) occurs only if the
traction forces are sufficiently high or if the substratum is not too stiff.

The other interesting feature to examine is how the stability character of the solution depends
on the density of cells. If one neglects saturation in the elasto-mechanical models by Murray et al.
(1998), Manoussaki et al. (1996), Murray and Swanson (1999), Murray (2003), and Manoussaki
(2004), i.e. α = 0, or, equivalently, Tc = τnI, one has instability if

n0 >

[
1− ν

(1 + ν)(1− 2ν)
+
sD0

Eh0

]
E

τ
, (37)

that is, it is necessary to have a sufficiently high number of cells to trigger the formation of patters,
otherwise the uniform distribution is stable.

The physical explanation of the phenomenon is then the following: cells pulls on the ECM. If
the cell traction succeeds in overcoming the restoring mechanical force of the ECM and the force
due to the attachment to the dish, and if there is a sufficiently high number of cells, then cells
in higher density regions start pulling the cells in the lower density regions towards them, giving
rise to an autocatalytic process. At the end there are areas without cells and areas with high
concentration of cells.

However, at very high densities one expects the uniform distribution of cells to be stable. From
the modelling point of view this is obtained including saturation (e.g., α 6= 0 in (20)). In fact, in
this case, the instability region is the one above a curve with two asymptotes, the axis and the
value of n0 for which Σn has a maximum (see Fig. 12). In particular, if one has values of τ/E
below the maximum, then no patterns form for any value of the density.

[Figure 12 about here.]

Actually, as discussed in Kowalczyk et al. (2004), the exact form of the function Σn(n) is not
really important in the stability analysis for a given cell density n0. What matters is the value of
its derivative at n0, i.e. dΣn

dn (n0). In this respect, the choice of the function Σn strongly affects
the stability curve in Fig. 12.

The models by Tranqui and Traqui (2000) and Namy et al. (2004) instead predict instability
if

n0 <

(
k − 2k − 1

2 + D
hρ0

)
N ,
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and

τ

E
>

1

ρ0n0

1−ν
(1+ν)(1−2ν) + 2

√
s

ρ0E(1+ν)

√
β1 + ν

1−2νβ2

3
2N − n0 + hρ0

D (N − 2n0)
, (38)

where k = 3/2 in Namy et al. (2004) and k = 1 in Tranqui and Traqui (2000).
The mechanisms triggering pattern formation in the models including haptotaxis is somewhat

different. In particular haptotaxis has a destabilising effect. If haptotaxis is large enough compared
to diffusion, the combination of cell motion and cell traction forces may start an autocatalytic
process which is strong enough to overcome the viscoelastic resistance of the ECM.

On the other hand both the restoring force and the material long-range parameters have a
stabilizing effect. Looking at the dependence of the stability from the cell density, patterns form
only in the area above a curve which has two asyntotes in one has graphs similar to Fig. 12 with
the asyntotes in n0 = 0 and

n0 =

(
k − 2k − 1

1 + D
hρ0

)
N , (39)

(Tranqui and Traqui (2000), Namy et al. (2004)).
From (39) it is clear that the stress-free value N (see (21)) strongly affects the threshold value

for which lacunae appear.
In particular, for large enough cell density no pattern forms. Morphogenesis occurs for an

intermediate range of cell densities and do not form again for very low densities. Unfortunately, in
the experiments there is no transition to a stable distribution of cells for low densities (see Fig. 5).

In fact, as Tranqui and Traqui (2000) themselves observe, “linear stability analysis is no longer
valid out of a steady state neighborhood” and for very small densities the uniform distribution
can not be achieved in experiments to start with.

Entering more in details on the importance of the presence of the diffusion terms in the model,
Manoussaki et al. (1996) observed that “Anisotropy is not necessary for pattern to form” and
Murray et al. (1998) and Namy et al. (2004) that the amplitude of the strain field within the
ECM is too weak to influence qualitatively the tubulogenesis process, so that even diffusion is not
fundamental. In fact, Murray (2003) states that “One of the initially surprising and important
finding is that random motility of cells was not necessary for the formation of patterns. Networks
would still form provided that the seeding density was sufficiently large.” Also the effect of the
viscoelastic characteristics of the ECM seem to play a minor role.

Thus, at least from the viewpoint of linear stability, but probably also from the viewpoint of
numerical simulation, the minimal model describing traction-induced vasculogenesis might be

∂n

∂t
+∇ · (nw) = 0, (40)

τ∇Σ(n)− E

1 + ν
∇ ·
(

E +
ν

1− 2ν
tr(E)I

)
= F, (41)

where the anchoring force can be either represented as an elastic restoring force or as a viscous
drag. In the case of a drag force the dimensionless form of the equations above write

∂ñ

∂t̃
+∇ · (ñw̃) = 0 (42)

∇Σ̃(ñ)−∇ ·
(

E +
ν

1− 2ν
tr(E)I

)
= −w̃ (43)

with characteristic length and time scales

L =
τn0(1 + ν)

E
and T =

sτn0(1 + ν)2

E2ρ0
. (44)
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In the case of an elastic drag force the minimal model rewrites

∂ñ

∂t̃
+∇ · (ñw̃) = 0 (45)

τ̃∇Σ̃(ñ)−∇ ·
(

E +
ν

1− 2ν
tr(E)I

)
= −s̃ũ (46)

where

s̃ =
sτn0(1 + ν)2

E2ρ0
. (47)

4.2 Simulations

From the simulations presented and discussed in the literature it appears that the formation of
patterns for the mechanical models starts with the formation of regions with less cells sorrounded
by regions with more cells. The latter get thinner, while the former enlarge forming lacunae. In
some cases the lacunae touch each other forming polygons with cells concentrated on the sides of
the polygons. The evolution is always dynamical and the patterns do not reach a steady state,
but continue growing (Manoussaki (2004)). Some lacunae grow larger and other close in, in a
sphincter-like manner. Murray et al. (1998) also observes that for very low stiffness or very high
traction, the pulling force of the cells is so strong that clusters rather that knots linked by cords
form.

The main difference between the models using an elastic restoring force and those using a
drag force modelling the anchorage of the ECM to the bottom of the Petri dish, is that in the
former case one has the formation of polygon-like structures resembling the network formation at
moderate densities of cells (Manoussaki et al. (1996), Murray et al. (1998), Murray and Swanson
(1999), Murray (2003)), in the latter case one has the formation of holes resembling more closely
the formation of lacunae (Namy et al. (2004)).

Murray et al. (1998), Murray (2003), and Namy et al. (2004) also give a simulation of the
ramp experiment performed by Vernon et al. (1992). From the identification of the characteristic
time of the minimal model, the following mechanism may be argued. Increasing the thickness
(i.e. density) of the gel, decreases the characteristic time of the pattern formation (see (44) and
(47)). So, in thicker regions the enlargements of the polygons occurs faster than in the thinner
regions. This may explain the formation of larger polygons where the matrix is thicker. In
addition, considering the stability condition, actually one could even have a transition to values
of gel densities for which the uniform distribution is stable

The paper by Manoussaki (2004) mainly focuses on the numerical methods used for integrating
the system of PDEs, which needs for instance to preserve mass, and on the result of the simulation.
The first simulation (similarly to Manoussaki et al. (1996)) shows the formation of a vascular
network for a density of cells of 100 cells/mm2. The resulting patchwork size is close to 500 µm. A
second simulation shows (always for 100 cells/mm2) that if cell traction is too small, cell addense
toward the centre with large lacunae forming near the boundary of the domain and no network
formation. For higher values of cell traction a network forms in the central region of a typical size
of 300 µm. The different size seems to be related with an increase in the shear and bulk viscosity,
or with a different temporal snapshot of the simulation.

The parameter values measured in the experiments or estimated for the simulations are given in
Table 3. However, their strong variability points out the need of further measures to be performed
on the experimental set-ups and of identifying standard materials and procedures. In fact, the
simulations performed in the literature can not do without merging the data evaluated from
different materials and experiments.

[Table 3 about here.]

As already stated the papers by Holmes and Sleeman (2000) and Manoussaki (2004) extend
the mechanical model considering the chemical interaction between cells and sources of angiogenic
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stimuli, so that their model is used to simulate the phenomenon of angiogenesis. For instance, sim-
ulations focusing on the effect of cell traction on externally induced angiogenesis show a narrowing
of the capillary sprout.

5 Discussion

In our opinion the two classes of models considered in sections 3 and 4 provide complementary
description of in vitro vasculogenesis experiments. The PEC model succesfully describes the early,
migration dominated stages of network formation. Its basic assumption is that the mechanisms
of persistence and endogenous chemotaxis govern the size of the capillary structure through the
diffusion coefficient D and the chemoattractant half-life τ . The predicted average size of formed
network structures is ` ≈

√
Dτ , in good agreement with phenomenological observations in vivo

and measurements in vitro.
Numerical simulations of the PEC model also reproduce the percolative transition occurring

about nc ≈ 100 cell/mm2, which discriminate the situation in which a functional network is formed
and another in which it is not properly connected. In general this type of models better suit to
describe the situation in which a moderate number of cells is seeded on the substratum.

The elasto–mechanical models describe the phenomenon of pattern formation starting from
monolayer initial conditions. They describe the interaction with the substratum and a viscoelastic
regime which is not accessible by the PEC model.

In our opinion these phenomena become relevant also in experiments starting with few cells as
soon as the early migration stage ends (ameboid motion), the cells adhere more on the substratum
and an “embryonic” network structure is formed. On the biological side, migration and traction
can be considered as different programs that an individual cell is able to execute. One can argue
that the start of either program is dictated by the environment, e.g. by the fact that the cell
is isolated or among a closely packed group of other cells. So, different initial conditions can
put the system either in a “migrating” or in a “pulling” regime, thus explaining the different
phenomenologies that inspired the two types of models.

From the contents of the section describing the experimental facts it is evident that there are
experimental evidences that can be explained with the PEC model and not with the mechanical
models and viceversa. In particular, phenomena which depend on the type of substratum cannot
be described by PEC models and phenomena which depend on cell signaling cannot be described
by mechanical models. Of course, some features can be explained by both models.

It can be argued that a complete, realistic description of the diverse phases of in vitro vascu-
logenesis should consist in suitably connecting the migration regime described by the PEC model
and the successive viscoelastic regime described by the mechanical model or by some modification
of it. This aim has been pursued by Tosin et al. (2004).

Another issue that deserves attention is the formation of anisotropic structures in particular
in presence of more exogenous chemical factors. In fact, it is well known that in the human
body, vascular networks have different characteristics according to the tissue to irrorate. In view
of the applications to tissue mechanics it would be important to build capillary network with
similar characteristics. In this respect, it would be interesting to test the PEC model by adding
different chemical factors characterised by different physical properties and biological actions (e.g.
attraction and repulsion) in order to govern the type of structures to be obtained as an outcome
of the experiment (Lanza et at. (2004)).

With the same aim, if the thickness of the gel and its mechanical properties are found to be
important, then one could govern the formation of the network by suitably grooving the lower
surface of the dish having finer grids where the thickness is smaller and coarser grids where it is
thicker.
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Figure 1: The process of formation of vascular networks. The visual field covers a portion of
2 mm × 2 mm of Matrigel surface.
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Figure 2: Rose diagram under (a) normal and (b) saturated conditions. The motion is correlated
with the direction of the VEGF gradient in normal conditions and completely uncorrelated in
saturating conditions. A marked persistence in cell motion is evident both in normal and in
saturating conditions, though in the latter case the effect decreases. (c) Definition of the angles
φ and θ referring respectively to persistence and chemotaxis. The dashed arrows refer to the
local concentration gradient. (d) Trajectories of some cells. (e) Sample trajectory in the field of
chemoattractant. Again arrows indicate concentration gradients.
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Figure 3: Mean values of chord lengths of network structures obtained varying initial cell densities
and with cell samples taken from four different experiments.
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Figure 4: Dependence of chord length from VEGF effective diffusivity (adapted from Ruhrberg et
al. (2002)).

26



(a) n0 = 62.5 (b) n0 = 125

(c) n0 = 250 (d) n0 = 500

Figure 5: Dependence of the types of structures formed varying the density of seeded cells.
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Figure 6: Formation of lacunae and capillary networks at different fibrin concentrations, 0.5, 2
and 4 mg/mL (adapted from Tranqui and Tracqui (2000)).
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(a) t = 0 (b) t = 3h

(c) t = 6h

Figure 7: (a-c) Simulation of the initial development of vascular networks.
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Figure 8: Dependence of the specific network structure on the initial conditions.
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Figure 9: Dependence of the network characteristic size on ` = 100, 200, 300µm.
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(a) n0 = 62.5 (b) n0 = 125

(c) n0 = 250 (d) n0 = 500

Figure 10: Simulation of the dependence of the types of structures formed varying the density of
cells.
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Figure 11: (a-d) Cartoon relative to the percolative transition. (e) Density of the percolating
cluster (ρ(r) ≈ rD−2 where D is the fractal dimension) as a function of the radius for numerical
simulation and experimental data.
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Figure 12: Neutral stability curve. The asyntote on the right is obtained when Σ′(n0) = 0 for
Manoussaki et al. (1996), Murray et al. (1998), Murray and Swanson (1999), Murray (2003), and
Manoussaki (2004), and for the values given in (39) for Tranqui and Traqui (2000) and Namy et
al. (2004).
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Reference D Σn Tρ Fd ECM eq.

Manoussaki et al. (1996) E τn
1+αn2 VK − s

ρw (29)

Murray et al. (1998)
Murray and Swanson (1999)
Murray (2003)

E τn
1+αn2 VK − s

hw (31)

Manoussaki (2004) E τn
1+αn2 VK − s

hw (29)

Holmes and Sleeman (2000)
Levine et al. (2001) ??

E τn
1+αn2 VK − s

ρw (34)

Tranqui and Traqui (2000) D τ̂ρn(N−n) VKL − ŝ
ρu (29)

Namy et al. (2004) E τ̂ρn(N−n) VKL − ŝ
ρu (32)

Kowalczyk et al. (2004) D τΣ(n) SLS − ŝ
f(ρ)w (29)

Table 1: In the Table VK stands for Voigt-Kelvin, VKL for Voigt-Kelvin with long range effects,
SLS for standard linear solid, h refer to the thickness of the gel, E for “anisotropic pulling”
D = D(E), and D for “isotropic pulling” D = DI.
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Reference Jch Γ ∆

Manoussaki (2004) χ(c)n∇c γn 0
Tranqui and Traqui (2000) kn∇ρ 0 δnρ(N1 − n)
Namy et al. (2004) kn∇ρ 0 0

Holmes and Sleeman (2000) χ(c)n∇c+ kn∇ρ γ(c)n
(

1− n
N̂

)
− ερn
B+ρ + ηρn+ λρ

Table 2: Summary of the terms used in the mass balance equations. The other papers cited in
Table 1 do not include such terms.
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Parameter Range Ref

E
103 − 104 Pa
0.8− 2.7 Pa

Benkherourou et al. (2000)
Lee et al. (1994)

ν 0.15− 0.25
Scherer et al. (1991)
Shreiber et al. (2003)

µ1

105 − 108 Pa s

25 Pa s

Barocas et al. (1995)
Barocas and Tranquillo (1997)
Lee et al. (1994)

µ2 105 − 108 Pa s
(*) Murray et al. (1998)
(*) Holmes and Sleeman (2000)

β1, β2 10−4 − 10−3/cm2 (*) Tranqui and Tracqui (2000)

τ
0.15− 0.27 dyne/cell

5 · 10−3 dyne/cell

Kolodney and Wysolmerski (1992)
(*) Murray et al. (1998)
(*) Manoussaki (2004)

τ̂
10−9 − 10−5 Pa cm9/(g cell2)
10−3 dyne cm4/(mg cell)
0.015 dyne cm/cell

Ferrenq et al. (1997)
Tranquillo et al. (1992)
Shreiber et al. (2003)

D

10−9 − 10−6 cm2/s

2.6− 19.3 · 10−9cm2/s
0.7 · 10−12 cm2/s

Di Milla et al. (1992)
Barocas et al. (1995)
Hoying and Williams (1996)
(*) Manoussaki (2004)

k 10−8 − 10−5 cm5/(s g) Dickinson and Tranquillo (1993)

ρ0 0.5− 8 mg/cm3
Delvoye et al. (1991)
Vernon et al. (1992)
Vailhe et al. (1997)

N 200− 2000 cell/mm3 Ferrenq et al. (1997)
Tranqui and Tracqui (2000)

α
10−13/cell2

10−9/cell2
(*) Murray et al. (1998)
(*) Manoussaki (2004)

s
1010 dyne s/cm3

106 − 1011 dyne s/cm3
(*) Murray et al. (1998)
(*) Manoussaki (2004)

Table 3: Range of parameters relative to the elasto-mechanical as experimentally measured or
estimated (*) for the simulations
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