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ABSTRACT 

This research investigates the influence of graphite’s granulometry on the dry sliding behavior 

of a copper-free friction material against pearlitic cast iron.  

Samples were designed and fabricated using three different types of commercial natural 

graphite. A sample without graphite was also considered as a reference. Tests were carried 

out with a pin-on-disc tribometer at room temperature (RT), at 400°C, and at RT after the high 

temperature tests.  

The results show that both the shape and size of the graphite particles influence the 

coefficient of friction and the specific wear rate. The friction material featuring a lower particle 

size and equiaxed grains of natural graphite exhibits a better behavior, as compared to 

coarser graphite with plate-like grains. The results were obtained comparing specific 

characteristics (i.e., morphology and chemical composition) of the friction layers formed on 

each friction material under the different testing conditions. 

 

  



1.INTRODUCTION 

An important research topic regarding brake pads for passenger cars is related to recent regulations 

aiming at reducing the use of copper. Indeed, the U.S. legislation currently requires copper to be 

reduced down to 0.5% by 2025 [1]. Nevertheless, copper has important properties, such as high 

thermal conductivity and the ability to stabilize the friction coefficient, that are beneficial to the brake 

pad performances [2][3]. Therefore, in view of the ban of copper, potential alternatives able to 

counterbalance its replacement need to be investigated.  

Organic friction materials used to produce automotive brake pads are made of several constituents [4].  

The friction material components, often more than 20, are classified according to their main role as: 

reinforcements, binders, fillers and friction additives [5][6]. The friction additives can be classified into 

two further types: lubricant and abrasive. Lubricants are friction coefficient stabilizer and help 

regulating the generation of the friction layer, therefore contributing to wear reduction. A smooth 

sliding behavior, i.e. the stabilization of the friction coefficient, is essential for good brake 

performances. In these regards, various metal sulfides and graphite are commonly used in the brake 

pad formulations [7].  

Among these, graphite is regarded as one of the strategic constituents in the development of copper-

free formulations for different reasons [8]. First, its high thermal conductivity, between 350 and 250 

WK−1m−1, i.e., is close to the thermal conductivity of copper, although, copper is far less sensitive to 

temperature than graphite [9]. Moreover, studies on the contact area performed by Österle et al. [10], 

suggest that soft inclusions, like graphite in the friction layer, as well as copper, result in the 

stabilization of the friction coefficient, and induce a smoother sliding behavior. 

Several studies on graphite are reported in the literature for copper-based friction materials 

[11][12][13], in which graphite is one of the most important components. Different types of graphite are 

used as ingredients, either synthetic or natural, and with different grain morphologies [14]. Graphite is 

also widely studied in organic friction materials, mainly in those that also contain copper. 

In general, it can be stated that not every form of graphite is suitable to improve the friction material 

performances [15]. Synthetic graphite has been broadly studied, considering different aspects, 

including its influence on the sensitivity of friction coefficient and wear rate to braking pressure and 

sliding speed [16], and its noise emission contribution [17]. The studies, however, suggest more than a 

range of synthetic graphite particle size, both coarse and fine. Also thermal conductivity has been 

extensively investigated, as concerns especially treated graphite [18][19], to reach a satisfactory 

value. Concerning natural graphite, a few studies on its properties as a component in friction materials 

can be found in the literature, mostly in comparison with a synthetic counterpart. D.K. Kolluri et al. [20] 

studied the effect of fine particle granulometries on the thermal localization phenomenon in a 



composition involving also brass, finding that the particle size is the main parameter which influences 

the friction coefficient. However, wear rate was not taken into consideration for these materials.  

Although graphite is regarded as a possible replacement for copper, a few research studies only have 

been dedicated to study graphite in Cu-free formulations, and just a few of them investigated the 

influence of graphite on the relevant tribological properties (friction and wear) at different testing 

temperatures.  

The present research used a pin-on-disc tribometer to correlate specific test conditions, including the 

temperature of the disc, to fundamental tribological mechanisms in Cu-free base formulations, each 

one of them prepared by adding to a reference masterbatch a given concentration of different types of 

natural graphite, featuring different particle size and morphology. The tribological performances of the 

novel formulations were comparatively investigated on a pin-on-disc (PoD) tribometer. Notoriously, 

this set up cannot replicate real brake system action, for which specific types of experimental 

equipment, e.g., dyno-bench tests, are available. However, PoD can comparatively investigate in a 

timely manner the influence that specific composition and test conditions have on the material 

performances. Tests were performed at room temperature (RT) and 400°C. Concerning RT, the tests 

were conducted also on the sample already tested at 400°C. This was meant to investigate the 

recovery capability of the diverse friction materials. Microscopy observations and elemental analyses 

were conducted on the friction layer that builds upon the worn pin's surface, to obtain a solid 

interpretation of the tribological results. 

 

2. MATERIALS AND METHODS 

2.1 MATERIALS 

A masterbatch of a low-metallic friction material not containing graphite was used as a reference for 

this study. The composition of the material, measured by energy dispersive X-ray spectroscopy 

(EDXS), is shown in Table 1 . The main components can be classified according to standard 

categories as: reinforcing fibers (steel fibers); friction additives (aluminum oxide, tin sulfide, 

magnesium oxide, zinc oxide, coke); fillers (vermiculite, calcium carbonate); binder (phenolic resin). 

Fig. 1  shows an SEM micrograph, in which some of main constituents of the reference friction material 

are labelled.  

Table 1.  Elemental composition of the masterbatch used as reference. Carbon not quantified. 

Element  Fe O Zn Mg Al  S Sn Ca Si Cr 

wt% 26.0 36.2 1.4 12.2 8.1 3.9 6.6 1.2 1.4 3.0 

 



 
Fig.1  SEM micrograph of the reference masterbatch with indication of some of the main constituents. 

Three different types of natural graphite, featuring a diverse particle size, were selected. In Fig. 2  the 

scanning electron microscopy (SEM) micrographs with the morphology of these three types of 

graphite are shown. The graphite # 1 is a flake graphite with the particle size in the 300 – 425 µm range. 

The graphite # 2 has a flake morphology, with the grain size below 100 µm. The graphite # 3 is a fine 

granular graphite with particle size below 40 µm. The main features of the selected graphite are 

summarized in Table 2. 

 
Fig. 2  SEM micrographs of the natural graphite (1, 2, 3) with different particle size.  

Table 2.  Specifications of the three types of natural graphite (1, 2, 3). d90 indicates that 90% of the sample is 
above/below the specified value. 

 Supplier Content of C Graphite grade Particle size, d 90 (µµµµm) 

1 Imerys 94-97% Flake > 300 

2 AMG 94-96% Small flake  ˂ 100  

3 AMG 96-98% Very fine grinding ˂ 40 

 



The powder mixtures were prepared by adding 9 wt% of graphite to the reference masterbatch, mixer-

milled for 20 minutes using a Turbula shaker-mixer. The concentration of graphite is representative of 

concentrations used in other studies on friction material, with a particular focus on graphite [21][17]. In 

Table 3  the formulations of the prepared mixes and their designations are displayed. The materials 

were codenamed Ref. (the reference masterbatch without graphite), N1 (the mixture with the addition 

of natural flake graphite #1), N2 (the mixture with the addition of natural flake graphite #2) and N3 (the 

mixture with the addition of natural granular graphite #3). 

Table 3.  Composition (wt%) and designation of the friction material samples.  

Designation  Masterbatch  Graphite 1  Graphite 2  Graphite 3  

Ref. 100 wt% - - - 

N1 91 wt% 9 wt% - - 

N2 91 wt% - 9 wt% - 

N3 91 wt% - - 9 wt% 

 

Each tribological test specimen was prepared by pressing roughly 2 g of powder mix in a mold of a 

hot-pressing apparatus with a pressure of 17 MPa. In this way, cylindrical pins with a diameter of 10 

mm and a height of 10 mm were obtained. The samples were cured for 15 min at 150°C, and 

successively post-cured in an oven for 7h at 200°C in air.  

The density of the pins, evaluated as the mass of each pin divided by its volume, was 2.29 ± 0.06 

g/cm3 for the Ref. and 2.18 ± 0.04 g/cm3 for the pins with graphite (N1, N2, N3).  

Discs made of pearlitic grey cast iron with a diameter of 60 mm and 6 mm in height, with the hardness 

of 235 HV10 were used as counterface for the tribological tests. 

 

2.2 EXPERIMENTAL PROCEDURE 

The friction and wear properties of the samples were firstly characterized running room temperature 

(RT) PoD tests. The tribometer used for the tests, equipped with a heating system for the disc, was 

manufactured by Ducom Instruments. 

The sliding velocity was 1.5 m/s and the nominal contact pressure was 1 MPa in all cases. These 

conditions, used in previous investigations, are intended to obtain mild wear sliding conditions [22][23]. 

The duration of each test was 90 min. and before each test a 30 min. run-in period was performed. 

Four tests were conducted for each sample at room temperature.  

High temperature tests at 400°C (HT) were carried out using an induction heating apparatus to heat 

up the disc. A closed loop feedback control system kept the temperature constant throughout the test, 

using an infrared high temperature sensor. It is important to note that the HT tests were started after 



the disc temperature reached 400°C. During the heating-up of the disc the pin was lifted, and 

repositioned only once everything was ready to start the test, including a stable temperature. The 

duration of these tests was 60 min. only, instead of 90 min., because of the more demanding 

conditions.  

The HT tests were then followed by further room temperature tests, still on the same specimens: 

RT_after HT test. Two test runs were conducted for the evaluation of the specific wear rate. For this 

purpose, each pin had to be removed from the testing equipment when passing from the HT to the 

RT_after HT test, since its weight had to be measured at the beginning and at the end of each test. 

Two more tests were conducted for a more reliable observation of the evolution of the friction 

coefficient. In this latter case, the pin was not removed from the test rig for the whole duration of the 

test sequence.  

The friction coefficient was continuously recorded using a load cell. The wear rate was assessed by 

weighting the test sample before and after each run with an analytical balance having a 10-4 g 

sensitivity. The wear of the pin was estimated using the specific wear coefficient (Ka), given by: 

 

Ka = V / Fn s                                 Eq.(1) 

 

where V [m3] is the measured wear volume, calculated using the bulk density; Fn [N] is the applied 

load; s [m] is the sliding distance. 

The worn surface of the pins was observed with a JEOL IT300 scanning electron microscope, 

equipped with an EDXS system. The pins were observed both in section and planar view. Cross 

sections have been prepared by cutting the samples, embedded in epoxy resin, along longitudinal to 

the sliding direction, in order to evaluate the thickness and the compactness of the friction layer. The 

planar view of the pin surface, carried out prior to mounting the samples in resin for the cross-sectional 

observations, were mainly focussed on measuring the extension of the friction layer and to evaluate 

the composition of the primary and secondary plateaus.   

 

3.RESULTS  

3.1 FRICTION AND WEAR BEHAVIOUR 

Fig. 3  shows the evolution of the friction coefficient (µ) during the PoD tests at room temperature (RT). 

After an initial run-in stage with a duration of approximately 2500 s, all samples reached a steady-

state, whose relevant mean friction coefficients are listed in Table 4 . The two samples having smaller 

graphite grains, namely N2 and N3, show an evident decrease in µ with respect to the reference 

material (Ref.), having a coefficient of friction similar to that of the N1 material.  



The experimental specific wear coefficients (Ka) are also summarized in Table 4 and displayed for a 

better comparison in Fig. 4 . The Ref. and N1 materials show higher Ka values than N2 and N3, and 

also larger scatters, as evidenced by the standard deviation bars. Material N3 displays the lowest 

wear rate and steady-state friction coefficient. 

 
Fig. 3  Coefficient of friction recorded during the pin-on-disc tests at RT. Samples: Ref. and materials with the 
addition of natural graphite N1, N2 and N3. 

Table 4.  Pin-on-disc tests at RT: values of friction coefficient calculated in the steady-state (µss)  and the specific 
wear coefficient (Ka).  

Sample  µµµµss Ka  [m
2/N] 

Rif. 0.62 ± 0.02 (7.2 ± 0.8) *10 -14   

N1 0.58 ± 0.01 (5.7 ± 1.2) *10 -14 

N2 0.56 ± 0.01 (4.8 ± 0.3) *10 -14 

N3 0.52 ± 0.02 (4.2 ± 0.2) *10 -14  

 
 



 

Fig. 4  Mean values of the specific wear coefficient (Ka) calculated for the pin-on-disc tests at RT. Samples Ref. 
(NO Graphite), N1, N2, and N3.  

The evolution of the friction coefficient of the Ref. sample at 400°C and during the subsequent 

RT_after HT test is displayed in the graphs in Fig. 5 . The friction coefficient curve exhibits different 

stages. At the beginning, it increases up to a peak value and then decreases. Successively, it starts 

increasing again up to a second peak, and then progressively decreases down to the steady-state 

value (the obtainment of a steady-state after approximately 3000 s of sliding was observed also during 

longer tests, not reported herewith). This particular behaviour was observed in all the friction materials 

prepared for the present study.  

After cooling the disc down to RT, the PoD test was restarted to check how the HT test had influenced 

the friction and wear behaviour of these materials (Fig. 5b ). In this case, quite a long run-in stage was 

observed, with a continuous raise in the friction coefficient, again followed by steady-state conditions 

which were reached close to the end of the test. The experimental values of the friction coefficient 

once the steady-state was achieved, are indicated in Table 5 . 

These combined tribological tests, involving a high temperature followed by a room temperature run, 

resulted particularly useful to evaluate variations in the µ value induced by the high temperature 

conditions, as compared to the values measured with the tests conducted at RT. To calculate the 

percent variation of the steady-state friction coefficient, between the values obtained at HT and the RT 

values (RT), and between these values obtained, still at RT, but after the test at HT (RT_after HT), the 

following equations have been used: 
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The change of µ (%µHT and %µRT_afterHT) are also included in Table 5 . The comparative graphs in Fig. 6  

show how the graphite influences these changes in the friction coefficients. All tested materials show a 

similar reduction in µ after the test at HT. The largest decrease, 22%, was found with the N1 sample.  

The situation is different for the RT tests carried out after the HT tests. The Ref. sample actually 

recovers its µ (%µRT_afterHT= 2%), whereas all other samples exhibit an incomplete recovery of the 

friction coefficient. Among these samples, N3 exhibits the best recovery (%µRT_afterHT = -8%), whereas 

the worst behavior is displayed by N2 (%µRT_afterHT = -19%). 

The specific wear coefficient calculated for all the tested pins is shown in Fig. 7 . Ref. material exhibits 

an increase in wear rate passing from RT tests to HT tests and to the RT tests after HT tests. The 

materials with graphite also exhibit an increase in wear rate passing from RT tests to HT tests; 

whereas a reduction was observed in the RT tests conducted after HT tests. In general, materials 

containing graphite show lower values of Ka with respect to the Ref. material, except for material N1 at 

RT and HT. The material N3 has the best wear performance for all the tested conditions.  

 
Fig. 5  Sample Ref. - Evolution of the friction coefficient with time during the tests at high temperature (a), 
followed by the test at RT (b), RT_after HT.  

Table 5.  Friction coefficient values of pins Ref., N1, N2, N3 tested under the following different conditions: high 
temperature 400°C (HT) and RT after the test at HT (RT_after HT). The changes of friction calculated with the 
equations indicated in the main text are also reported (%µHT and %µRT_afterHT).  

 µsteady-state  Variation  of friction  coefficient  (%) 

Samples  HT (400°C) RT_after HT  %µµµµHT %µµµµRT_afterHT 

Ref. 0.51 0.63 - 18 % + 2 % 

N1 0.45 0.51 - 22 % - 12 % 

N2 0.45 0.45 - 19 % - 19 % 

N3 0.43 0.48 - 17 % - 8 % 



 

 
Fig. 6  Change in the friction coefficients, µHT (%) and µRT_afterHT (%), as a function of the composition of the 
investigated materials. 

 
Fig. 7  Specific wear coefficient, Ka (m2/N), calculated for the samples tested at room temperature (RT), high 
temperature (HT, 400°C) and RT after the test at HT (RT_after HT). 



3.2 ANALYSIS OF WORN SURFACES 

In Fig. 8  the cross-section views for PoD samples tested at RT are displayed. The arrows help to 

identify the secondary plateaus on the pins surface, that result from the compaction of wear debris 

piling up at the primary plateaus, according to a very well established mechanism [6][22].  

The secondary plateaus in the Ref. sample are made by coarse and weakly compacted particles.  

The N1 sample is similar to Ref. concerning the plateau’s thickness (around 30 µm) and grain size of 

the wear particles, which look more compacted than in the Ref. sample. A different situation has been 

found on the surface of the N2 and N3 samples, both being characterized by the presence of quite 

dense and compacted secondary plateaus, well anchored to the pin surface.  

 
Fig. 8  Cross-section of the worn pins after the pin-on-disc tests at RT. The arrows indicate the secondary 
plateaus.  



The planar views of the worn pins tested at RT are shown in Fig. 9 . The Ref. sample features a large 

area covered with wear debris, but just small portions of its surface (II), near the primary plateaus (I), 

are well compacted. 

This observation is coherent with the cross-section images in Fig. 8 . On the N1 sample surface, the 

secondary plateaus are definitely wider, but they are also characterised by several cracks. On the 

surface of N2 sample, the plateaus are smaller and more regularly distributed even if some cracks are 

present in this case too. The secondary plateaus on the N3 sample are even smaller but without 

fractures: this indicates good compaction of the constituents and better mechanical properties of the 

resulting plateaus (Fig. 9). 

 
Fig. 9  Planar view of the worn pins after the pin-on-disc tests at RT. In the observations are visible for all the 
samples (Ref., N1, N2, N3) the primary plateaus (I), mainly made by steel fibers, and the secondary plateaus (II). 

In Table 6 a summary of the main features of the secondary plateaus are given, as obtained from the 

SEM observations of the cross-section and planar views of the samples tested at RT, i.e. average 

thickness, compaction degree, extension and presence of cracks. 



 

 

Table 6.  Main features of the secondary plateaus of the samples Ref., N1, N2, N3 at RT. 

Material  Average thickness  
(µµµµm) 

Compaction 
degree 

Extension Presence of 
cracks 

Ref. 30 low low no 

N1 35 medium large yes 

N2 40 good medium yes 

N3 20 good medium no 

 

Table 7  provides the compositional results of the EDXS analyses carried out on the secondary 

plateaus (regions II in Fig. 9 ). The majority element is iron, which comes both from the disc and pin. 

This element is present in the friction layer mainly in the form of mixed oxides [25][26][27]. The 

concentrations of the other elements in the secondary plateaus, coming mainly from the wearing out of 

the pin, are not so different from one sample to another. Particular attention was paid to the relative 

content of carbon in the plateaus of the different samples. The Ref. and N1 samples have the same 

content, 7.0 wt%. Whereas the concentration of C increases in the plateaus of N2 and N3 samples, 

reaching the values of 8.2 wt% and 9.3 wt%, respectively.  

Table 7.  EDXS analyses on the secondary plateaus of the samples Ref., N1, N2, N3 tested at RT. 
Concentrations in wt.%. 

 Ref. N1 N2 N3 

Fe 61.2 62.0 58.5 55.2 

O 18.1 17.7 19.4 20.1 

C 7.0 7.0 8.2 9.3 

Zn 3.4 3.3 3.7 3.4 

Sn 2.0 2.0 2.1 2.0 

Mg 2.0 1.6 1.8 2.2 

Al 1.9 1.8 1.7 2.3 

S 1.8 1.9 1.8 1.9 

Si 1.3 1.3 1.3 2.1 

Cr 0.7 0.8 0.8 0.8 

Ca 0.6 0.6 0.7 0.7 

 

In Fig. 10,  the top view of the friction layer that formed on the surface of the Ref. material after the HT 

test is shown. This observation is representative of all the materials tested at 400°C, exhibiting a 

similar behavior. The friction layers are made of wear debris that are not compacted to form stable 

secondary plateaus, like those observed at RT (Fig. 9).  



 

Fig. 10  Planar view of the Ref. material after the pin-on-disc tests carried out at 400°C (HT condition). 

 

Fig. 11  shows SEM micrographs of the planar views of the friction layers present on the worn pins 

after the tests carried out in the RT_after HT condition. The materials with the addition of graphite (N1, 

N2, N3) display a similar surface morphology as those tested at RT. The pin surface still features 

regions with well-compacted layers of debris, together with other regions in which debris are not 

compacted. The secondary plateaus of the Ref. sample appear smaller than in the samples with 

graphite. 

In Table 8  the EDXS analyses carried out on the secondary plateaus of the samples tested at 

RT_after HT are summarized. Also, in this test condition, the main elements detected for all the 

samples are Fe, O, C and Zn. 

 

 



 
Fig. 11  SEM observations of pins surface after the pin-on-disc tests carried out at RT_after HT. Materials: Ref., 
N1, N2, N3. Primary (I) and secondary (II) plateaus are marked. 

Table 8.  EDXS analyses on the secondary plateaus of the samples Ref., N1, N2, N3 tested at RT_after HT. 
Concentrations in wt.%. 

 

 Ref. N1 N2 N3 

Fe 63.9 61.6 62.2 61.8 

O 17.3 17.7 18.7 18.1 

C 6.6 6.8 7.2 7.7 

Zn 2.7 2.9 2.5 3.3 

Sn 1.8 1.9 2.2 2.1 

Mg 1.5 2.4 1.6 1.5 

Al 1.9 2.2 1.4 1.6 

S 1.5 1.7 1.4 1.5 

Si 1.4 1.6 1.4 1.2 

Cr 0.6 0.6 0.5 0.5 

Ca 0.8 0.6 1.0 0.5 

 



Fig. 12  shows for the four samples the carbon content (wt%) in the secondary plateaus after the tests 

at RT_after HT. The black bars represent the values obtained with the sample tested at RT_after HT, 

while the white bars are for the tests conducted at RT. A general decrease in carbon concentration is 

observed in the secondary plateaus formed after the tests at high temperature (RT_after HT). Even in 

these tests the samples N2 and N3 have a higher concentration of carbon (7.2 wt% and 7.7 wt% 

respectively) compared to the samples Ref. and N1 (6.6 wt% and 6.8 wt% respectively). 

 

 
Fig. 12  Content of C (wt%) in the secondary plateaus after the tests at RT_after HT (black bars) compared to the 
RT tests (white bars). 

4. DISCUSSION 

In the present work we have investigated the role of graphite as concerns the tribological properties of 

brake friction materials. Natural graphite reduces the friction coefficient (µ), and, in particular, the 

friction coefficient decreases with the graphite particle size. The same trend was observed as 

concerns the wear coefficient (Ka): the samples with a finer graphite (N2, N3) showed Ka values lower 

than the reference material (Ref., no graphite) and also of the N1 sample, featuring larger, plate-like 

flakes of graphite. The relationship between friction coefficient and wear rate for the tested materials is 

illustrated in Fig. 13 . A second order polynomial function is fitting the experimental data adequately. 

The relevant fitting parameters are listed in Table 9 .  

This trend can be interpreted by considering that the tribological characteristics of the friction materials 

are influenced by the morphology and chemistry of the friction layer that builds up at the interface 

between the sliding materials [6][28]. Friction is generated by the adhesive and abrasive interactions 



between the pin and the disc. The pin, as well as the disc, are possible sources of carbon. In the pin, 

many carbonaceous constituents are present, other than the deliberately added graphite, like: 

phenolic resin, coke, rubber and organic fibers. The presence of a relatively high concentration of 

graphite on the friction surface may contribute to the formation of a graphite-rich friction layer with 

dense and well compacted secondary plateaus, leading to a general improvement of the friction 

performances [29][30]. 

The graphite with smaller particle size enters the friction layer more easily and becomes more 

homogeneously distributed. This results in the reduction and stabilization of the friction coefficient. In 

agreement with this situation, the samples with a finer graphite, N2 and N3, displayed better 

compacted friction layers (Fig. 8), which, also for their graphite content, are responsible for the 

reduction in the adhesive interaction between the mating surfaces, resulting in a reduction in the wear 

rate Ka .  

 
Fig. 13  Relation between the coefficient of friction and the specific wear coefficient (Ka) for the samples: Ref., 
N1, N2, N3. 

Table 9.  Parameters of the equation (y = a + bx + cx2) used to fit the data in Fig.12.  

a b c Adj. R -Square  

7.27*10-13 -2.67*10-12 2.60*10-12 0.98 

 

In Fig. 14 a schematic representation of the evolution of the friction coefficient curves, typically 

observed for all the tested materials, under the different test conditions: RT, HT and HT_after HT are 

shown. 



 
Fig. 14  Schematic representation of the evolution of the friction coefficient for the tests: RT, HT and RT_after 
HT. The scheme describes the conditions of the surface of the pins during the tests. See the main text for a full 
description. 

In the tests conducted at RT, after approximately 2500 s run-in, the coefficient of friction reaches a 

steady state, determined by the formation of a friction layer, which stabilizes the contact between the 

pin and the disc.  

In the tests at HT, the friction coefficient is characterised by a peculiar behaviour, observed in all tests 

and shown by the relevant (HT) curve in Fig. 14 . Four main stages can be identified: 

(A) A friction layer, which formed during the RT test, is already present on the pin’s surface at the 

beginning of the HT test. However, since during the heating up, the disc and the pin are not in 

contact, at the beginning of the test a sort of running-in takes place anyway. It is related to the 

re-establishment of the full contact between the two mating surfaces. 

(B) The friction curve shows a drastic decrease in µ, due to the removal of the friction layer from 

the pin surface for the combined action of: adhesion forces and thermal softening of the friction 

material, that is not sustaining any longer the original surface layer. It has to be considered that 

during the test at 400°C, a thermal degradation of the phenolic resin occurs [31]. As clearly 

evidenced in a previous investigation [32], this reduces the capability of the underlaying friction 



material to sustain the friction layer adequately. Moreover, an abrasion contribution from the 

oxide forming on the disc surface is certainly contributing to removing the original friction layer 

from the pin surface.  

(C) Disc oxidation and wearing out of the pin surface determine a new raise in the friction 

coefficient, accompanied by the formation of a new friction layer, made of the debris coming 

from both mechanisms. A similar behaviour was observed by Vergne et al. [33], studying the 

high temperature dry sliding of two steels. Specific PoD tests were interrupted after different 

time intervals in order to define the contribution from the oxides on the evolution of the 

coefficient of friction, very similar to that displayed in Fig. 14 . 

(D)  Once a maximum value of the friction coefficient is achieved, another decrease is observed. 

The new reduction in the friction coefficient is due to the combined effect of: the friction 

material softening and its transfer onto the disc surface, as reported already in similar 

experiments [32]. This determines the progressive transition from a friction material-cast iron 

coupling towards a situation in which the friction layer on the pin surface is in sliding contact 

with the transfer layer on the disc. A steady condition is thus achieved, featuring the 

stabilization of µ at low values. As depicted by Fig. 10 .  

The influence of graphite particle size at high temperatures was evaluated with the Eq.2. The 

decrease in the friction coefficient observed after the HT tests (%µHT) showed no significant differences 

among all samples. It can be concluded that graphite does not significantly influence the behaviour at 

high temperature. Its role of solid lubricant and friction coefficient stabilizer is jeopardized at high 

temperature by oxidation phenomena, considering that flash temperatures reached at the contacting 

asperities of the pin-disc mating surfaces may very easily overcome 400°C [34]. Graphite and other 

constituent are quickly removed as worn debris [35], and indeed all the samples tested at HT show a 

drastic increase in the specific wear coefficient (Ka). 

In the tests at RT after the high-temperature tests (Fig. 14, RT_after_HT) a friction layer, which formed 

during the HT tests, is already present on the pin surface. Since it is discontinuously distributed on the 

pin surface (Fig. 10), a run-in is necessary before reaching the steady state in the new test conditions.   

The Eq.3 gives an indication of the recovery attitude of the tribological properties  by the different 

materials after the HT tests [36]. Lower values of the friction coefficient with respect to the initial tests 

at RT were detected in all the samples with graphite additions. The best behaviour in terms of friction 

coefficient recovery, is observed in the N3 sample, and this is due to the finer size of added graphite, 

which makes it easier for the particles to enter the friction layer. In this way, graphite together with 

other constituents of the friction layer, restore surface conditions similar to those attained at the end of 

the initial RT tests. In this recovery process, it should be considered that the organic components of 

the friction material (pin), more sensitive to temperature, degraded and were partially emitted from the 



tribological system as gaseous products. This reduced their contribution to the growth of the friction 

layer, and in particular, of the secondary plateaus during the RT_after HT tests. The reduction of 

carbon concentration is confirmed by the pin-pointed EDXS analyses, carried out on the secondary 

plateaus (Fig. 12 ).  

The Ref. material displayed the higher specific wear coefficient (see Fig. 7 ) and, at the same time, the 

better friction coefficient recovery. The relevant scenario emerging from these data is that a rapid 

restoration of the pin’s pristine surface is favoured by the faster wearing out of friction layer, initially 

present on the pin surface and produced by the HT tests. 

 

5.CONCLUSIONS and FUTURE PERSPECTIVES 

The effect of natural graphite with different particle size was investigated in a Cu-free friction material 

using a PoD test rig. The study regarded in the first place the tribological behavior and the formation of 

the friction layers during the tribological tests on these new materials against pearlitic cast iron. The 

main results can be summarized as follows: 

• The particle size of graphite impacts considerably on the friction, wear properties and friction 

layer formation. 

• In the RT test, the larger is the particle size, the larger is the friction coefficient and wear rate. 

• The best behavior was observed in the N3 sample, with graphite particle size ˂ 40 µm; in this 

case the friction coefficient is comparable to the one of the N2 sample (graphite grain size ˂ 

100 µm), but with an improvement in the wear performances.  

• Graphite particle size ˂ 100 µm render the friction layer more compact and the secondary 

plateaus more stable, since richer in carbon. 

• All tested materials exhibit a reduced percentage of recovery of the friction coefficient after HT 

tests (400°C), which is apparently not affected by the additions of graphite. 

• The material without graphite (Ref.) retains the better friction-recovery (%) behavior; this is 

ascribed to a faster wear rate, resulting in a fast restoration of the initial pin’s surface 

conditions. 

Two further main investigations on natural graphite are planned to complete the picture.  

The first will deal with the estimation of an optimal concentration of graphite. The second research 

theme concerns the way in which graphite (possibly in different concentrations) affects the particulate 

matter emissions from the friction materials. Nowadays, this is indeed a major issue in the 

development of novel friction materials. 

Eventually, it would be extremely interesting to perform full dynamometer tests in order to understand 

the role of graphite particle size on NVH performance of the Cu-free formulations. 
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Highlights 

 

 

• Graphite’s granulometry in a copper-free friction material was investigated. 

• The new formulations were characterized running pin-on-disc tests. 

• Shape and size of the graphite particles influence the tribological properties. 

• Fine graphite particle size renders the friction layer more compact and stable. 
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