
Journal of Internet Services
and Applications

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6
DOI 10.1186/s13174-017-0057-0

RESEARCH Open Access

A context-aware framework for dynamic
composition of process fragments in the
internet of services
Antonio Bucchiarone* , Annapaola Marconi, Marco Pistore and Heorhi Raik

Abstract

In the last decade, many approaches to automated service composition have been proposed. However, most of
them do not fully exploit the opportunities offered by the Internet of Services (IoS). In this article, we focus on the
dynamicity of the execution environment, that is, any change occurring at run-time that might affect the system, such
as changes in service availability, service behavior, or characteristics of the execution context. We indicate that any
IoS-based application strongly requires a composition framework that supports for the automation of all the phases of
the composition life cycle, from requirements derivation, to synthesis, deployment and execution. Our solution to this
ambitious problem is an AI planning-based composition framework that features abstract composition requirements
and context-awareness. In the proposed approach most human-dependent tasks can be accomplished at design
time and the few human intervention required at run time do not affect the system execution. To demonstrate our
approach in action and evaluate it, we exploit the ASTRO-CAptEvo framework, simulating the operation of a fully
automated IoS-based car logistics scenario in the Bremerhaven harbor.

Keywords: Internet of services, Dynamic service composition, Process fragment, Context-aware, AI planning

1 Introduction
Service composition is one of the cornerstone technolo-
gies within service-oriented computing. It consists in
reusing existing services as building blocks for new ser-
vices (applications) with higher-level functionality. Ser-
vice composition allows for extremely rapid software
development and high re-usability of development results.
Despite all the advantages service composition brings to

software engineers, when performed manually, it is still a
very complex, time-consuming and error-prone task. The
point is that composition requirements and service speci-
fications usually contain numerous easy-to-miss technical
details that have to be properly reflected in the compo-
sition. This becomes critical when composition has to be
exploited in complex and dynamic application domains,
requiring frequent revision of providers (i.e., component
services), changes in existing offered functionalities (i.e.
component services behavior), and adjustment of business
policies and objectives (i.e., composition requirements).

*Correspondence: bucchiarone@fbk.eu
Fondazione Bruno Kessler, Via Sommarive, 18, 38123 Trento, Italy

This is the case for IoS-based application domains, where
the execution environment is so dynamic, that service
composition is considered to be a kind of every-minute
routine activity.
We canmention at least two important examples of such

IoS-based domains. The first one are pervasive systems,
which are mobile systems operating in close connection
with their context. Once service composition is exploited
in this setting, it has to be flexibly and quickly adapted
to the rapidly changing environment. For instance, let us
imagine there is a car that has to regularly perform some
activity implemented through composition of surround-
ing near-field communication services (e.g., car parking
assisted by various parking services). Depending on the
current surrounding environment (i.e., on the set of avail-
able services and on the context state) the solution compo-
sition, though targeting conceptually the same objective,
will always be different. If the procedure is repeated fre-
quently at different locations, we have to produce new
compositions again and again. Another example are user-
centric systems, whose operation evolves around the needs
and constraints of a specific user. For instance, it could

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-017-0057-0&domain=pdf
http://orcid.org/0000-0003-1154-1382
mailto: bucchiarone@fbk.eu
http://creativecommons.org/licenses/by/4.0/

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 2 of 23

be a mobile application that allows the user to inte-
grate (compose) multiple mobile services (local phone
services, Internet services, near-field communication ser-
vices, etc..) and execute them consistently. In this case,
the choice of services and composition objectives are
determined by user’s environment and personal prefer-
ences/constraints/goals.
It is quite clear that predefined solutions are not going

to work in these IoS-based systems. Indeed, each compo-
sition heavily depends on the run-time parameters of the
execution environment, namely, current execution con-
text, set of available services, concrete user’s needs, etc.
Since these parameters are not predictable at design time
(sometimes we may not even know which services will be
available at the time of composition), it is impossible to
produce reliable solutions a priori. In order to address this
problem we need a dynamic composition framework that
would automate the whole service composition life-cycle,
from requirements derivation, to composition generation,
to deployment and execution [1, 2].
Another important aspect that directly follows from

system dynamicity is context-aware composition and exe-
cution. Services are often closely connected to the context
in which they are executed (e.g., a parking web service exe-
cution may depend on the type of a car to be parked, on
space availability, weather, etc.). In turn, the context tends
to be volatile, i.e. exogenous events may change the con-
text state and thus affect composition execution. In this
setting, to be able to produce compositions that are con-
sistent with the surrounding context it is important to
have a context-aware service model that reflects contex-
tual characteristics of services. This information has to be
taken into account in service composition, thus enabling
more robust solutions. It is worth to notice that the prob-
lem of context-awareness of service composition has not
yet received enough attention from the scientific com-
munity and only very few works are currently available
on the topic [3–5]. Many existing approaches to service
composition suffer from over simplification, both for what
concerns the service model (e.g., services are often con-
sidered as atomic synchronous operations) and compo-
sition requirements (e.g., requirements languages do not
reflect real-world composition needs). As a result, these
solutions can only be applied to very limited set of com-
position problems. At the same time, a few approaches
demonstrate more maturity in addressing these aspects.
In this article, for the first time, we present a com-

prehensive framework, and its implementation, for auto-
mated service composition that is specifically designed to
be used in dynamic execution environments and allows
for context-aware service composition and execution.
In very general terms, the idea consists in organizing

the composition life cycle in a such a way that most
human activities can be accomplished at design time.

As a consequence, run-time composition management,
from the derivation of composition requirements to the
composition synthesis to the deployment of executable
processes, is completely automated. Moreover, when-
ever human involvement is required at run-time (e.g.,
plugging-in a new service into the system), the change
is automatically dealt by the framework, without affect-
ing the system execution. In addition to that, our com-
position framework features explicit context model that
is used to express various contextual characteristics of
services. Later, these characteristics can be taken into
account in automated reasoning so that context-aware ser-
vice compositions are produced. The approach exploits
AI planning techniques that can deal with realistic service
models (asynchronous, stateful and nondeterministic ser-
vices) and allows for rich control- and data-flow require-
ments1. This makes it powerful enough to be used in real
service-based systems, including those mentioned above.
The demonstration is given also by its usage, as a core
component, in different previous works to support the
incremental refinement and adaptation of context-aware
service based systems [6–8].
In the article, as composable components we use process

fragments (or simply fragments). Fragments [9] are a way
to represent reusable process knowledge in service com-
positions and encode elementary subprocesses that can be
used as constructing blocks for more complex processes.
Process fragments are also a very effective mean to model
stateful and asynchronous services [10].
The rest of the article is structured as follows. In

Section 2, we present the Car Logistics scenario used
as a reference throughout the article and explain the
challenges it poses to service composition. In Section 3,
we present our composition framework, formally defin-
ing all the concepts and models used for context-aware
dynamic service composition and show how the compo-
sition problem is solved through AI planning techniques.
The experimental validation of the approach can be found
in Section 4 where we have used the implementation of
the Car Logistics scenario to demonstrate our approach
in action and evaluate its performance and scalability.
Finally, we conclude the article with related work survey
(Section 5) and conclusions (Section 7).

2 Motivating scenario and research challenges
In this Section we introduce the car logistics scenario that
helps understanding the problemwe want to solve and the
research challenges that it poses.

2.1 Car logistics scenario
The motivating scenario (later referred to as Car Logis-
tics Scenario or CLS) is inspired by the operation of the
seaport of Bremerhaven (Bremen, Germany) [11]. Every
year this port receives around 2 million cars transported

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 3 of 23

by ships in order to further deliver them to retailers. The
delivery process for each car (see Fig. 1) includes a number
of steps to be accomplished. Cars arrive by ship and each
ship is able to approach and leave a gate interacting with
the landing manager, which is in charge of coordinating
and controlling the landing procedure for all the ships in
the port. Then cars are unloaded and unpacked at one of
the terminals. Once a car is unpacked, it has to be moved
to one of the storage areas: the chosen area depends on the
car type/brand and on the availability of parking spaces;
different storage areas have different parking procedures
that need to be followed. The car remains at the storage
area until it is ordered by a retailer. Once a car stored is
ordered, it continues its way towards the delivery. In par-
ticular, the car is treated at dedicated treatment areas (e.
g., washing, painting, equipment) according to the details
of the order and the car brand/model. When a car is ready
to be delivered it is moved to the assigned delivery gate,
where it is loaded onto a truck and eventually delivered to
the retailer. It is important that every step in the chain is
customizable according to the car brand, model, retailer
requirements, etc. This means different cars may utilize
different procedures to accomplish the same task.
These procedures are partially automated and exploit

digital services as well as sensors and smart manufac-
turing equipment [11]. We tried to move this scenario a
little further to fully capture the opportunities offered by
paradigms such as IoS and IoT, yet keeping its current
needs, regulations and practices. Our goal was to develop
a service-based system that supports the synergistic coop-
eration of the numerous actors (i. e., cars, ships, trucks,
treatment areas, parking facilities, drivers, etc.) allow-
ing them to follow their current procedures and business
policies. The CLS scenario presents several example of
dinamicity that we list in the following.

• Customization. The system should consider the
customization of each car procedure. It means that
different brands and models of cars in a similar but
customizable way according to the specific order and
context (e.g., facility in which they are treated).

• Openness. The system should be able to easily
integrate new actors and services at run-time. This

happens, for example, when new car models, having
specific requirements and procedures, is handled at
the seaport, when a new truck/ship company comes
into play, as well as whenever there is a new
functionality provided by the sensors and
machineries used in the different port facilities.

• Flexibility. The system needs to flexibly deal with
changes in the procedures and business policies of all
the actors such as ships (e.g., changes in approaching
procedure), trucks (e.g., changes in delivery
procedure), port facilities (e.g., update in a parking
service or in a certain procedure supported by a
machinery in a treatment facility).

• Context-awareness. The system needs to deal with
situations where contextual changes invalidate some
choices made before. For example, if a car books a
space at some storage area and upon arrival realizes
that the facility is not available, it needs to rearrange
the things so that it can be stored at a different facility.

2.2 Research challenges
In the previous section, we gave an example of a sys-
tem where dynamic composition techniques are strongly
required. As a result, it is hardly affordable to involve
human experts to participate in resolving composition
problems on-line. This essentially means that all the com-
position steps, from abstract requirements’ specification,
to service discovery and composition, to service deploy-
ment, must be automated.
This challenge is hardly coped with by the existing com-

position techniques. In general, every automated com-
position engine follows the scheme shown in Fig. 2. As
input, it takes specifications of software components and
composition requirements and, as output, it produces an
executable process.
The major problem of most existing composition tools

is that they assume that the set of services to be com-
posed is always known to the designer at the moment
of specifying composition requirements. Consequently, it
is assumed that composition requirements may include
implementation-specific details of services that they are
supposed to be used with. As such, requirements become
linked to particular service implementation and cannot

Fig. 1 Process chain of the car logistics scenario. Delivery process of a car with its steps to be accomplished

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 4 of 23

Fig. 2 State of the art on automated behavior-oriented composition framework. General scheme for automated service composition engine

further be used with conceptually similar services that are
implemented differently (e.g., when we would like to use
a new ticket booking service in place of the one for which
the requirements were originally created). In dynamic sys-
tems this causes an important problem: while the list of
available service is dynamic and can only be discovered
at run time, the composition requirements are fixed at
design time. Consequently, we need to understand how
to create a composition architecture that allows design-
time requirements to be consistently used with an arbitrary
set of services discovered at run time with no human
intervention (Challenge 1).
Another problem concerns context-awareness. In sev-

eral cases, process execution is tightly connected to the
context. When numerous services are available, it is crit-
ical to select correct services and produce a composition
that is valid for the given context model and for the current
state of this model (Challenge 2).

Finally, we need to recall that composable components
may be quite complex and may feature 1) statefulness
(complex protocol), 2) non-determinism and 3) asyn-
chronous communication. As a result, the composition
architecture has to rely on a service model that reflects
these properties of real services (Challenge 3).

3 Dynamic service composition framework
In this section we present our framework for modeling
dynamic context-aware systems such as the CLS scenario
described in Section 2.

3.1 Systemmodel
The system operation is modeled through a set of entities
(e.g., cars, ships, storage managers, etc..), each specify-
ing its behavior through a process, as depicted in Fig. 3.
Unlike traditional system specifications, where processes
are static descriptions of the expected run-time operation,

Fig. 3 System Model and Fragments Composition Examples. System operation models

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 5 of 23

our approach allows to define dynamic processes that are
refined at run time according to the features offered by the
system.
Processes are designed in Adaptable Pervasive Flows

Language, (APFL) [12, 13], an extension of traditional
workflow languages (e.g., BPEL [14]2), which makes them
suitable for adaptation and execution in dynamic environ-
ments. Unlike traditional processes, where their behaviors
are completely specified, our approach allows the partial
specification through abstract activities that can be spe-
cialized at run-time according to the services offered by
the other entites in the system.
Abstract activities (e.g., Store of the Car entity process

in Fig. 3) corresponds to tasks that are hard to imple-
ment at design time, since they strongly depend on the
concrete run-time state (context configuration, availabil-
ity of services provided by other entities etc.). In our
approach, each abstract activity is dynamically replaced
(refined) with a fragment composition realizing the corre-
sponding task. As a result, a design-time specification of a
process can be quite abstract, with many concrete details
being refined only at run time, when the actual execution
context is clear.
In addition to the classical workflow language con-

structs (e.g., input, output, data manipulation activities,
complex control flow constructs), APFL adds the possibil-
ity to relate the process execution to the system context
by annotating activities with preconditions and effects.
Preconditions constrain the activity execution to specific
context configurations, and in our framework are used
to catch violations in the expected behavior and trigger
run-time adaptation.
The underline idea is that entities can join the system

dynamically, publish their functionalities through a set
of process fragments that can be used by other entities
to interoperate, discover fragments offered by the other
entities, and use them to automatically refine their own
processes.
For instance, within the CLS, whenever a car must be

stored, it discovers the fragments provided by the Storage
Manager and by the associated Storage Area (A, B, or C in
Fig. 3). These fragments model the harbor-specific proce-
dures and regulations that the car should execute for the
storing. Different fragments may be provided by the stor-
age manager and by the different storage areas to be used
by certain types of car.
In our framework, we use a unified model for both frag-

ments and fragment-based processes, and uniformly use
the term of fragment for both of them. We model frag-
ments as labelled transition systems (LTS) (as depicted in
Figs. 5 and 6) where transitions are labelled with two dif-
ferent types of actions : controllable and uncontrollable.
Controllable actions are used to model process activities
that can be triggered by the process itself (e. g., variable

assignment, message send). Uncontrollable actions model
activities whose execution depends on external actors
(e. g., message receive, event notification). The distinction
between controllable and uncontrollable actions is cru-
cial for proper handling of the asynchronicity of fragment
behaviour in composition. Here and later in the text we
denote with ‘!’ and ‘?’ controllable and uncontrollable frag-
ment actions respectively. The fragment LTS is formally
defined as follows:

Definition 1 (Fragment) A fragment is a deterministic
state transition system f = 〈S, s0, I,O,R〉, where

• S is the set of states and s0 ⊆ S is the initial state;
• I and O are sets of controllable and uncontrollable

actions such that I ∩ O = ∅;
• R ⊆ S × {I ∪ O} × S is a transition relation.

Another important feature of the proposed framework
is the possibility of leaving the handling of extraordi-
nary/improbable situations to run time instead of ana-
lyzing all the extraordinary situations at design time and
embedding the corresponding recovery activities in the
process. This kind of modeling extremely simplifies the
specification of processes that have to operate in dynamic
environments, since the developer does not need to think
about and specify all the possible alternatives to deal
with specific situations (e.g., context changes, availabil-
ity of functionalities, improbable events). These dynamic
features offered by the framework rely on a shared con-
text model, describing the operational environment of the
system. The context is defined through a set of context
properties, each describing a particular aspect of the sys-
tem domain (e.g., current location of a car, status of a
car, availability of a storage area). A context property may
evolve as an effect of the execution of a fragment activity,
which corresponds to the normal behavior of the domain
(e.g., current location of car is storage area A), but also as
a result of exogenous changes (e.g., car status is damaged,
storage area unavailable).
The aim of context properties is to model those aspects

of the context that are relevant for dynamic fragments’
composition. Their intent is not to provide a comprehen-
sive and detailed representation of the properties and state
of the execution environment. Rather, they are an abstrac-
tion of the context, capturing only key domain concepts
(e.g., car, ship, storage area) and their evolution. These
information are used to reason on how fragments execu-
tion (preconditions/effects) is related to and affects the
context state.
Context property behaviour is described by a labelled

transition system that contains all possible states of the
context property and transitions between them3. Each
transition is labeled with a context event. Formally:

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 6 of 23

Definition 2 (Context Property) A context property is a
state transition system p = 〈L, l0,E,T〉, where:

• L is a set of context states and l0 ∈ L is the initial state;
• E is a set of context property events;
• T ⊆ L × E × L is a transition relation.

Examples of context properties (of a car) are shown in
Fig. 4. It includes a complex Location property reflect-
ing current car location and, two of progress tracking
properties (RegistrationProgress, StoringProgress).
Considering a context model containing more than one

context property, we require that such context proper-
ties feature mutually disjoint sets of context events, so
that evolutions of different context properties within the
same context do not correlate explicitly. Formally, context
is defined as follows:

Definition 3 (Context) A context is a set of context prop-
erties C = {p1, p2, . . . , pn} such that if pi = 〈

Li, l0i,Ei,Ti
〉

for all i ∈ [1, n] then for any two constituent context prop-
erties pi, pj ∈ C sets of events do not intersect (i.e., Ei∩Ej =
∅). The set of all context states is defined as LC =

n∏

i=1
Li

and the initial context state is l0C = (
l01, l02, . . . , l0n

)
. We

also denote a set of all context events as EC =
n⋃

i=1
Ei.

In order to be able to succinctly specify groups of con-
text states we use context formulas which are disjunctions
of conjunctions over states of context properties:

Definition 4 (Context Formula) Let C={p1, p2, . . . , pn}
be a context such that pk = 〈

Lk , l0k ,Ek ,Tk
〉
for all k ∈ [1, n].

A state formula for C is a propositional formula
∨

i

∧

j
lij,

where lij ∈
n⋃

k=1
Lk and for any two constituent context

properties pi, pj ∈ C sets of states do not intersect (i.e.,
Li ∩ Lj = ∅).

The space of all context formulas of contextC is denoted
as RC .
In order tomake fragments context-aware, we introduce

context annotations of actions in fragments. Annotations
intensively exploit the notion of context formulas, and can
be of three types:

• action precondition is a context formula indicating in
which context states action execution is allowed (e.g.,
P1 in Fig. 5);

• action effect is a set of context events that are
triggered as a result of action execution (e.g., E1in
Fig. 5);

Fig. 4 Context properties of a car. Example of context properties of a car in the CLS scenario

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 7 of 23

Fig. 5 Fragment annotations. Example of fragment annotations (goals, preconditions and effects)

• action goal is a context formula specifying the
condition that must hold after the action is executed
(e.g., G1, G2 and G3 in Fig. 5).

Any process action can be annotated with a precondi-
tion. Since both effects and goals express the contextual
intention of an action, we explicitly require that an action
can be annotated either with a goal (if it is an abstract
activity) or with an effect (for all other activities). Formally,
fragment annotation is defined as follows:

Definition 5 (Fragment Annotation) Let f =〈S,s0, I,O,R〉
be a fragment and let C be a context. An annotation of
fragment f over context C is a tuple ω = 〈P,E,G〉, where:

• P : {I ∪ O} → RC is the precondition labeling
function;

• E : {I ∪ O} → EC is the effect labeling function.
• Any action effect E(a) may contain no more than one

event per context property; For any context property
p = 〈L, l0,E,T〉 ∈ C the following holds:

 ∃e1, e2 ∈ E(a) : e1, e2 ∈ E.

• If E(a)
= ∅ then G(a) = ∅ (i.e., an action can be
annotated either with a goal or with an effect);

• G : {I ∪ O} → RC is the goal labeling function, such
that G(a)
= ∅ only if E(a) = ∅ (i.e., an action can be
annotated either with a goal or with an effect).

In Fig. 5 we show two fragments (e.g., BookStorageA and
StoreToA), both provided by Storage Area A entity. The
examples include all types of annotations. The annota-
tions, in turn, are related to the context property exam-
ples in Fig. 4. For instance, BookStorageA includes
two activities (request and reply). The request activity
is annotated with a precondition that guards that ticket
booking is executed only in the absence of a ticket. The
effect of the reply activity indicates that this fragment
eventually brings a ticket object to state A, thus pro-
viding ticket booking. StoreToA fragment specifies the

storing procedure for storage area A. This includes three
abstract activities annotated with goals in terms of context
model.
In the following we present the synopsis of our APFL

language with annotations and the details of how an
annotated APFL process can be transformed into an anno-
tated LTS as defined in Def. 5. Since both fragments and
processes are defined in the same language, the trans-
lations below are valid for both of them. In Fig. 6 the
translation for basic activities is shown. Specifically, SEND
and CONCRETE are represented with a single control-
lable transition, while RECEIVE is a single uncontrollable
transition.
ABSTRACT activities are way more complex since at the

moment of creating a new process they are not refined to a
concrete process and the only thing we know about them
is their abstract goals. We treat an abstract activity as a
"black box" that performs a task as defined by its goal. In
this regard, an abstract activity combines the properties of
controllable and uncontrollable actions. On the one hand,
the initiation of an abstract activity is controllable (within
a process we can decide if to execute it and when). On the
other hand, it is not possible to predict a priori the ter-
minal context configuration. In LTS, such behaviour can
be modeled as a controllable action followed by a num-
ber of uncontrollable actions corresponding to all possible
terminal context states. We actually reduce the number of
terminal states to the number of conjunctive clauses in the
goal formula4.

3.2 Fragment composition model
The central idea of our framework for fragment composi-
tion can be captured from Fig. 7. The explicit model of the
execution context in the center of the figure, is a collection
of context properties.
In our approach, the context model is specifically used

to reason on how a certain objective can be achieved
through fragment execution, rather than for process mod-
eling purposes.

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 8 of 23

Fig. 6 Translation of basic APFL activities into LTSs. Synopsis of our APFL language with annotations and the details of how an annotated APFL
process can be transformed into an annotated LTS

To link fragments to context properties, we annotate
the former with context-related information (as Defined
in Def. 5 and depicted in Fig. 8). In this way, we explicitly
connect the execution of fragment activities to states and
transitions of context properties. In particular, a fragment
activity may be annotated with effect and precondition.
The effect shows which events this activity triggers once
executed, while the precondition shows in which contex-
tual states the execution of the activity is allowed.
Moreover, every abstract activity has a goal associated.

Such goal specifies a context state(s) to be reached as
a result of activity refinement and execution (e.g., if the
StorageTicket is initially in state no, the goal of BookA
activity in Fig. 3 may be to have this context property in
state A).

One of the most important aspects of our approach is
that composition requirements are expressed over context
model, and not over fragments as done in most exist-
ing composition techniques. The core idea of our frag-
ment composition model is that while fragment execution
is closely related to context evolution, the modelling of
the latter is solely determined by the application domain
and does not depend on particular fragment implemen-
tations. As such, by expressing composition requirements
on the level of the context model on the one side, and
by annotating fragments with context information on the
other side, we create a composition framework in which
composition requirements, though detached from fragment
implementations, can always be automatically grounded
on them.

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 9 of 23

Fig. 7 Fragment composition model. Elements and their relations of the fragment composition approach proposed

The ability to specify composition requirements on
context properties makes it possible to efficiently use
our approach in extremely dynamic environments, where
both the set of available fragments and the execution con-
text are constantly changing. At design time, the require-
ments are defined only conceptually (with no adherence
to any particular set of fragments). Despite we do not
know a priori the set of fragment, through annotation-
based grounding, the conceptual requirements can always
be restated for the actual (dynamically discovered) set of
fragments. As such, we automate one of the most criti-
cal steps in service composition: run-time derivation of
composition requirements.
It is worth to notice that in this way it becomes much

easier to introduce new fragments to a scenario at run
time: it is enough that new fragments are properly anno-
tated, while it is not necessary to change the contextmodel

nor composition requirements5. As we will show in the
next Section, once context properties and composition
requirements are specified and component fragments are
properly annotated, the whole set of specifications can be
converted into a planning problem which is then resolved
using planning algorithms. The obtained plan encodes a
process that, if executed from the current context state,
brings the system to one of the goal context configura-
tions. The plan is further translated into an executable
APFL process.

3.3 Fragment composition via planning
The overview of our fragment composition approach
is given in Fig. 9. The composition engine accepts as
input a context C represented by context properties
p1, p2, . . . , pm, a set of fragments F+ = {

f +
1 , f +

2 , . . . , f +
n

}

annotated over C (together C and F+ form a context-

Fig. 8 Fragment annotation of car repair fragment. Example of fragment and context property link in the Fragment Composition Model

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 10 of 23

Fig. 9 Fragment composition approach. Overview of our fragment composition approach

aware system � = 〈F+,C〉) and composition require-
ments ρ expressed as a context formula over C. The
output is an executor �E that is a consistent solution
executor for � and ρ.
The focus of this article is to extensively present the ser-

vice composition approach under the assumption that the
set of eligible fragments for a specific composition prob-
lem has been already identified at the time of the compo-
sition. The selection of relevant fragments but also their
reuse in similar composition problems is a very relevant
aspect to make the composition approach more scalable.

Our implementation includes this optimization compo-
nent and the complete formalization has been already
presented in [8]. In it, we have defined a way to reduce
the complexity of a planning problem (for a specific com-
position) by minimizing the search space according to
the specific execution context, and reusing solutions (i.e.,
selected fragments) by learning from past executions. To
select the relevant fragments in a specific context, QoS-
aware service selection approaches as [15] can be also
used. Another important aspect to highlight is that the
composition approach proposed can be used not only

Fig. 10 (Backward) Planning Algorithm. Algorithm for strong planning in asynchronous domain

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 11 of 23

to reach a specific goal of a certain abstract activity but
also to repair or recompose broken service compositions
[16, 17], as a reaction to context changes (i.e., precondition
violations or service unavailability).
The very general idea of the approach consists in build-

ing a planning domain �CF , that together with goal ρ

form a planing problem.While, the resolution of a specific
planning problem is carried out by an existing algorithm
planning [18], the novel part of this article is the defini-
tion and the formalization of a composition problem that
takes into account the system context at a specific exe-
cution time. To make it possible, the execution domain
�F is built as asynchronous product of fragments F+.
We assume that fragments within a single context-aware
system have uncorrelated actions, i.e., such fragments
have mutually disjoint sets of actions. In order to encode
all possible parallel executions of fragments for some
context-aware system we introduce the notion of execu-
tion domain, which is a parallel (asynchronous) product of
fragments:

Definition 6 (Execution Domain) Let f1 = 〈S1, s01, I1,
O1,R1〉 and f2 = 〈

S2, s02, I2,O2,R2
〉
be two observable state

transition systems such that (I1 ∪ O1) ∩ (I2 ∪ O2) = ∅.
An execution domain �F for fragments F = {f1, f2} is an
asynchronous product of two fragments:

�F =
〈
S1 × S2,

(
s01, s02

)
, I1 ∪ I2,O1 ∪ O2,RF

〉

where:
(
(s1, s2), a,

(
s′1, s2

)) ∈ RF , if
(
s1, a, s′1

) ∈ R1(
(s1, s2), a,

(
s1, s′2

)) ∈ RF , if
(
s2, a, s′2

) ∈ R2

RF = {R1||R2}

Using fragment annotations (ω1,ω2, . . . ,ωn) extracted
by A-EXTRACTOR, context properties are grounded on
fragment actions by GROUNDER so that the grounded
context properties �p1 ,�p2 , . . . ,�pm are produced.
The grounding procedure, consists in replacing event-

labeled transitions in context properties with action-
labeled transition, which allows us to reflect the impact of
fragment actions on the property state. Additionally, we
use transition guards to reflect the executability of actions.
As a result, the grounded context property features the
same set of states as the orginal context property, but has
different transition relation:

Definition 7 (Grounded Context Property) Let � =
〈F+,C〉 be a context-aware system and let RC be a space
of context formulas of context C. A grounded context prop-
erty for context property p = 〈L, l0,E,T〉 is a tuple �p =
〈L, l0,AF ,Tg〉, where:

• L is a set of states and l0 ∈ L is the initial state;
• AF is a set of all fragment actions of fragments F+;
• Tg ⊆ L×RC ×AF ×L is a guarded transition relation.

The grounding procedure consists in defining a
grounded context property �p on top of a context prop-
erty p. While the sets of states in p and �p are the same,
in �p the event-based transitions of p are replaced with
action-based transitions as indicated by annotations. For
each transition of p labelled with event e and for each
action a whose effect contains e, we define a transition
in �p with the same initial and final state and labelled
with a. For each goal-labeled action aabs, if an action goal
(which is a conjunctive clause) requires that this property
has to be in a particular state l (i.e., a proposition corre-
sponding to l appears in the conjunctive clause expressing
the goal of aabs), for every state in �p we add a transi-
tion that starts in this state, terminates in l and is labelled
with aabs. Finally, for each action aless that has no impact
on the property and for each state in �p we define a tran-
sition that starts and finishes in this state and is labelled
with aless. As such, we reflect the impact of all actions
with respect to context property p. In order to take into
account action preconditions, for each transitionwe intro-
duce the guard, which is a precondition formula of its
labelling action. A transition guard must be interpreted as
a condition on the state of the whole context for which the
transition is enabled. Formally:

Definition 8 (Grounding) Let � = 〈F+,C〉 be a
context-aware system. A grounding of a context property
p = 〈L, l0,E,T〉 ∈ C is a grounded context property
�p = 〈L, l0,AF ,Tg〉 such that for every action a ∈ AF:

1. if ∃e ∈ E(a) : e ∈ E then for every transition
(l, e, l′) ∈ T there exists transition (l,P(a), a, l′) ∈ Tg ;

2. if state lg ∈ L appears in conjunctive clause G(a)
then for every state l ∈ T there exists transition
(l,P(a), a, lg) ∈ Tg ;

3. if E(a) = ∅∧G(a) = ∅ or (E(a)
= ∅)∧(E(a)∩E = ∅)

or (G(a)
= ∅) ∧ (
 ∃lg ∈ L : lg ∈ G(a)) then for every
state l ∈ L there exists a transition (l,P(a), a, l) ∈ Tg ;

4. no other states and transitions belong to �p.

Since action effect contains no more than one event per
context property, and since a goal conjunctive clause can-
not contain more than one state per context property, the
grounded context property is a deterministic LTS (only
one transition with the same label is possible from each
state).
In order to reflect the impact and executabilty of

fragment actions with respect to the whole context we
introduce the notion of grounded context, which is a syn-
chronous product of all constituent grounded context

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 12 of 23

properties. We remark that the guards in the synchronous
product can be removed. Indeed, for any guarded transi-
tion we can unambiguously figure out if the initial state
of a transition satisfies the guard. Consequently, if the ini-
tial state satisfies the guard it is always ’unlocked’ and
we can replace it with the unguarded transition with the
same properties, and if the initial state does not satisfy the
guard it is always ‘locked’ and can be removed from the
transition relation. Formally:

Definition 9 (Grounded Context) Let � = 〈F+,C〉 be
a context-aware system with context C = {p1, p2, . . . , pn}
and let �p1 ,�p2 , . . . ,�pn be the respective grounded con-
text properties such that �pi = 〈

Li, l0i,AF ,Ti
〉
for all

i ∈ [1, n]. Grounded context for � is an LTS �C =〈
LC , l0C ,AF ,TC

〉
which is defined as follows:

�C = 〈
L1 × . . . × Ln,

{
l01, . . . l0n

}
,AF ,TC

〉

where:
(
(l1, . . . , ln), a,

(
l′1, . . . l′n

)) ∈ TC , (1)
if

(
li,P(a), a, l′i

) ∈ Ti for all i ∈ [1, n] (2)
and (l1, . . . , ln) |= P(a) (3)

In turn, the context-aware execution domain can be
constructed as a synchronous product of grounded con-
text and execution domain.
Composition requirements ρ are compliant with the

context-aware execution domain. By directly applying the
planning algorithm to planning domain �CF and planning
goal ρ, we obtain the plan that is a consistent solution
executor for a composition problem of � and ρ. More-
over, if such plan is not found, then a consistent solution
executor for a given composition problem does not exist.

3.3.1 Algorithm
For our convenience in this section we will omit
the indices and denote the domain as follows: D =
〈S, s0, I,O,R〉. The initial state of D becomes the initial
state of the planning problem I = s0, and the goal states
are all states of the domain that satisfy ρ, that is G = {s ∈
S : s |= ρ}. As such, we obtain a conventional planning
problem {D, I,G}.
Once a planning problem is obtained, a consistent solu-

tion executor is derived by the algorithm for strong plan-
ning in asynchronous domain presented in [18]. In the
following, we briefly recap the description of this algo-
rithm and definitions of theorems proving its termination,
correctness and completeness.
The routine for searching a consistent solution executor

is presented in Fig. 10. In this routine, we assume that the
domain D is globally available, while we explicitly pass its
initial states I and goal states G. The algorithm is a great-
est fixed point iteration that incrementally constructs a

state-action table SA, which indicates which action has to
be executed in certain state of D in order to reach a goal
state. As such, SA encodes all transitions of the domain
that can potentially be presented in the consistent solution
executor. SA is initially empty and grows at each iteration
by adding state-actions which unconditionally lead to the
states that are already covered by SA or goal states (i.e.,
states STATESOF(SA) ∪ G). The termination of the algo-
rithm is caused by either the situation when 1) no new
states are included in the next iteration or 2) the current
state-action table already contains all initial states I, which
actually means that the solution for the initial states is
already found.
The algorithm is defined such that it explicitly deals with

the constraints imposed by a consistent solution execu-
tor. This logic is essentially realized by the key primitives
STRONGPREIMAGE and PRUNESTATES.
STRONGPREIMAGE is the basis of the backward search.

For a subset S of states of�CF , STRONGPREIMAGE returns
a set of state-action pairs {〈s, a〉} that encode all transitions
of �CF that immediately lead to S. It takes into account
that uncontrollable actions can be neither controlled nor
predicted. So the function guarantees that ones a state-
action 〈s, a〉 is included in the table, states of S can always
be reached from s despite non-determinism.
The primitive is defined as follows:

STRONGPREIMAGE(S) =
{〈s, a〉 : (a ∈ I) ∧ (∃(s, a, s′) ∈ R : s′ ∈ S)∧ (4)

(
 ∃(s, a′, s′′) ∈ R) : a ∈ O)}
⋃

(5)

{(s, a) : (a ∈ O) ∧ (∃(s, a, s′) ∈ R : s′ ∈ S)∧ (6)

∀(s, a′, s′′) ∈ R : (a′ ∈ O) → (s′′ ∈ S))} . (7)

In order to properly reflect the requirements imposed
by the definition of consistent solution executor, control-
lable and uncontrollable actions are treated differently. For
example, when we include controllable state-action, not
only do we check that it leads to the states that are already
in the state-action table but also make sure that uncon-
trollable actions are not available from the same state.
Similarly, the way we treat uncontrollable actions guar-
antees that none of the uncontrollable actions originating
from the same state are disregarded. Consequently, the
strong pre-imaging function significantly contributes to
the satisfaction of condition 1 (executor is runnable) of of
consistent solution executor.We remark that this planning
algorithm is significantly different from the conventional
strong planning algorithms (e.g., [19]) that treat all the
actions of the planning domain uniformly.
PRUNESTATES function is responsible for removing

from the current pre-image all the state for which the

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 13 of 23

solution is already available (i.e., those that are already
included in the state-action table). It is defined as follows:

PRUNESTATES(γ , S) = {〈s, a〉 ∈ γ : s
∈ S}.

We remark that the purpose of the pruning goes beyond
avoiding the duplication of the same state-actions in the
resulting table. The pruning ensures that for each state no
more than one controllable state-action is included which
closely relates to condition 1 of consistent solution execu-
tor. It also guarantees that the state-action table does not
contain loops (conditions 3). Another property of the
pruning that has nothing to do with the definition of con-
sistent solution executor is that only the shortest solution
from any state appears in the state-action table.
The resulting state-action table (a collection of state-

action pairs) shows how the resulting executable process
should behave in different states. Uncontrollable state-
actions indicate which uncontrollable actions have to be
expected in the respective state. Similarly, controllable
state-actions indicate which controllable action has to
be executed from the respective state. The consistent
solution executor �SA can be directly derived from the
state-action table using forward analysis.
For the given algorithms the following theorems can be

proved (the respective proofs can be found in [18]).

Theorem 1 (Termination) Let D = 〈S, s0, I,O,R〉 be a
context-aware execution domain, let I = s0 be its initial

state and let G ⊆ S be a set of goal states. The execution of
PLAN(I,G) on D terminates.

Theorem 2 (Correctness and Completeness) If
PLAN(I,G) returns state-action table SA, then �SA is a
consistent solution executor for the respective composition
problem. If PLAN(I,G) returns FAIL, then no consistent
solution executor to the respective composition problem
exists.

3.4 Framework implementation
The framework introduced in the previous sections has
been implemented and is part of an extended version6 of
the ASTRO-CAptEvo framework [20, 21]. Its architecture
is depicted in Fig. 11 and is composed by three lay-
ers, namely the Presentation, Execution and Adaptation
layers.
The Adaptation layer is where the composition

approach proposed in this paper has been implemented.
The operation in this layer is regulated by the Adap-
tation Manager. It is notified about the need to refine
an abstract activity with its respective goal, together
with the information on the current context. All these
information are passed to the Domain Builder. The
Domain Builder builds an initial version of the com-
position problem, which is made of a context model, a
set of available annotated fragments, the current con-
text configuration (current states of context properties),
and a set of goal context configurations. The Domain

Fig. 11 ASTRO-CAptEvo Architecture. Layered Architecture of the ASTRO-CAptEvo Framework

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 14 of 23

Builder extracts all necessary specification from the
repository of Domain Models. Taking into account the
current context and the composition goal, the Domain
Builder simplifies the context model by pruning all
unreachable configurations and removing all fragments
that are useless for the goal specified (see [8] for details on
this pruning step). Thanks to this optimization phase, the
size of the planning domain is reduced and the computa-
tion time for the planning phase is significantly reduced.
The Translator translates a composition problem into a

planning problem such that it can be resolved by the Plan-
ner. It is also responsible for interpreting the results of the
Planner. The back translation transforms a plan obtained
into an executable process. Finally, the executable pro-
cess is sent to the Demo Controller that injects it into the
current process instance. All these steps are implemented
in our framework and are graphically represented in the
sequence diagram depicted in Fig. 12.
The Execution layer is in charge of 1) simulating the

application domain, 2) executing process instances, 3)
detecting when to call the Adaptation Layer to realize
fragments composition, and 4) refining a process instance
according to the solution received from the Adaptation
layer.
The Entity Manager manages all active entities within

the scenario (e.g., ships, cars, tracks, storage managers,
etc.) and it simulates their behaviour. When the Entity
Manager creates a new entity (either within the initializa-
tion phase, or in response to a user command), it deploys
the entity process to the Process Engine, it adds the cor-
responding context properties to the context model in
the Context Manager and it puts all the entity-related
specifications (such as fragment models and the context
property diagrams provided by the entity) to the Domain

Models Repository. When the entity “exits” the scenario,
contrary actions are performed. In between, the Entity
Manager simulates the entity behaviour, which is syn-
chronized with the execution of the entity process, and
updates the Context Manager and the Scenario Viewer
with the current status. Finally, the Entity Manager pro-
cesses all the user commands bringing changes to the
domain (e.g., creation of new ships and orders, damage of
a car, unavailability of fragments, etc..).
The Context Manager stores the system context (i.e.,

a set of context properties of all active entities) and it
constantly synchronizes its current configuration with the
application domain bymonitoring the simulation going on
in the Entity Manager.
The Process Engine executes the entity processes and

suspends them every time that an abstract activity is
reached and need to be refined. When it happens, the
need is reported to the Demo Controller.
The Demo Controller aggregates all the data that is

needed by the Adaptation layer to manage an abstract
activity refinement (i.e., composition). This includes the
current context provided by the Context Manager and
the description of the need (process instance affected, its
execution status, type of need) provided by the Process
Engine. After the data is sent to the Adaptation layer and
the solution is returned back, the Demo Controller adapts
the process instance.
Finally, the adapted process instance is redeployed and

restarted by the Process Engine.
The Presentation layer provides a detailed live view

of the simulation taking place in the Execution layer.
It also gives some control over the simulation and lets
the user affect the application domain to model different
situations.

Fig. 12 ASTRO-CAptEvo: Fragments Composition approach. Sequence diagram that shows the dynamic part of the fragments composition
approach

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 15 of 23

In particular, The Scenario Viewer provides a graphical
representation of the application domain through a map
containing all the facilities (landing gates, storage areas,
roads etc.) and showing all the entities of the domain (cars,
ships, managers, etc.) in action (see Fig. 13).
For each active entity, the System Viewer gives access to

1) the list of provided fragments and 2) the list of process
instances. In turn, each process instance can be examined
in a Process Viewer window (Fig. 14). Here the user can
find:

• the process context information including all context
properties and their current values;

• the process model with the execution progress;
• the execution history including all the applied

compositions;

If the user is interested in how a certain abstract activity
has been refined, the Composition Inspector (Fig. 15 pro-
vides full report from composition goals and fragments
selection, to the details of the planning phase (planning
domain, a resulting process, etc.).
The User Commands are used to control the simula-

tion running in the Execution layer and bring changes
to the running scenario. The user can affect the sce-
nario by triggering exogenous events (e.g., unavailability
of entities and fragments) and creating new entities. To

replicate the usage of the framework, in other applica-
tion domains it is enough to: (1) define all the scenario
models (entities, processes, fragments and context prop-
erties) that will be saved in theDomainModels repository;
(2) define a configuration file that includes the specifi-
cation of which types of entity must be instantiated and
executed at simulation time. While all the other compo-
nents of Fig. 11 can be executed without domain-specific
extensions, the Scenario Viewer must be implemented
from scratch, since it should provide a graphical represen-
tation of the application domain (e.g., as the harbour map
in the Car Logistics).

4 Experiments and results
To demonstrate our approach in action and evaluate its
performance and scalability, we have used the implemen-
tation presented in Section 3.4 to model and run the
Car Logistics scenario introduced in Section 2. In the
following sections we present the outcome of the set of
experiments done.

4.1 Experimental evaluation
We ran the ASTRO-CAptEvo framework in continu-
ous mode for around an hour and collected information
on 1060 compositions performed within this time. The
run was performed on a Windows laptop with dual-core
2.8GHz CPUwith 8Gb of RAM (we remark, however, that

Fig. 13 Scenario Viewer. Scenario Viewer component of the ASTRO-CAptEvo framework

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 16 of 23

Fig. 14 Process Viewer. Process Viewer component of the ASTRO-CAptEvo framework

the planner implementation is single-threaded). For each
composition, we measured a number of indicators that
characterized the complexity of the problem and the tim-
ing. Then we tried to organize them into charts to make
conclusion about the applicability of the approach.
While conducting the measurements, we took into

account the general conclusion about the performance
of the planning algorithm given in [18]. In particular
the authors stated that “the performance of synthesis
appears to degrade sub-exponentially with the size of the
components; and in vast majority of cases, it degrades
polynomially with the number of components”.
However, when working with bigger domains the per-

formance may degrade to exponential. The most reason-
able explanation for that is based on the implementation
details of the BDD (binary decision diagram) library used:
big domains are much more memory demanding and
for them the garbage collection and data re-arrangement
mechanismsmay take considerable time to keep themem-
ory consumption within certain limits.
In the chart in Fig. 16 we show the dependency between

the number of fragments passed to the planner and the
time it takes to produce a plan (in logarithmic scale). It can
be seen that it shows exponential scalability. In general,
this result corresponds to that of [18]. The performance
degradation to exponential even for small numbers of
fragments (that was not present in [18]) can be explained
by the fact that, in addition to fragments, the plan-
ning domain in context-aware composition also contains

context-related LTSs. As a result, even for small num-
ber of fragments, the domain becomes relatively large and
results in exponential scalability.
Alternatively, we propose our own indicator of domain

complexity that is the total number of transitions in frag-
ments and context properties making up the domain:

Complexity = NumContextTrans + NumFragTrans.

We find this indicator more precise compared to the
number of fragments. It also allows us to see a more
fine-grained distribution of all composition problems with
respect to complexity. The performance scalability with
respect to composition complexity is represented by the
chart in Fig. 17. It can be observed that it generally cor-
responds to the chart in Fig. 16 and features exponential
growth. However, it makes sense to consider this chart
along with the complexity distribution of all composi-
tion problems analyzed in Fig. 17. It can be observed
that most composition cases reside in the region with low
or moderate complexity, while the cases with high com-
plexity are quite few. We remark that such distribution
also affects the precision of the scalability chart in the
region of high complexity (less experiments are carried
out there).
Consequently, from the charts in Fig. 17 we can derive

the following table showing the percentage of composition
cases that are resolved in no more than n seconds:

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 17 of 23

n, sec compositions resolved within n sec, %
0.1 19.07
1 91.12
3 96.51
10 99.62
30 100.00

From the table it can be observed that the vast major-
ity of adaptation-related compositions actually take less
than 10 seconds. This is the first evidence of practical
applicability of our composition technique: although
the performance of context-aware composition degrades
exponentially with growing complexity of a composition
problem, it is still enough to be used for the actual prob-
lem of process adaptation. This becomes especially true
when we notice that in many application domain there are
no severe restrictions on the performance of composition

related tasks. For example, in the CLS scenario, the typical
life cycle of a car may have duration up to several weeks
and usually it is affordable for a user-centric system to take
up to half a minute to produce a solution.
The last important observation is that for each

particular composition problem we build a planning
domain that includes only the information that is relevant
for this problem, namely: 1) the subset of context prop-
erties that are relevant for entities under consideration,
which is normally a small portion of the overall context of
the scenario and 2) the subset of all fragments that may
be useful within the current composition problem, which
is, again, only a small portion of all fragments currently
available in the system. The idea of fragments and con-
text pre-selection is quite natural: if the system resolves a
problem for a particular car it needs only the part of con-
text that are relevant for this car (and not for dozens of
other cars and ships in the system), and fragments that

Fig. 15 Composition Inspector. Composition Inspector component of the ASTRO-CAptEvo framework

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 18 of 23

Fig. 16 Dependency between performance and number of fragments composed. Dependency between the number of fragments passed to the
planner and the time it takes to produce a plan

Fig. 17 Complexity distribution and performance scalability. The performance scalability with respect to composition complexity

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 19 of 23

are relevant for car only (e.g., it does not make sense to
consider a fragment for ship landing). We expect this pre-
selection to allow us to preserve the same average size of
the planning problem even for much larger (with respect
to the number of entities) domains. Indeed, if within the
scenario we operate thousands of cars instead of dozens,
the complexity of an average composition problem for
a particular car would not grow and remain the same:
the proper selection will always come up with more or
less the same amount of relevant fragments and context.
The increase in the amount of cars in the harbour does
not functionally affect the way a car procedure should be
planned and executed. As such, we expect our approach
to be easily scalable in this regard.

5 Related work
In last years, different approaches have been proposed for
the modeling of services in a suitable way for making effi-
cient dynamic service composition. From the scenario and
the challenges discussed in this paper, a specific need has
emerged: being able to define services in such a way that
they can dynamically be specialized to the context, when
this is discovered or when it changes. Where the context
is characterized by the state of the execution environ-
ment and by the available services at a specific time and
location.
An approach targeting this problem is presented by Hull

et al. [22] in their work about Business Artifacts. It con-
sists in the definition of a formal/theoretical framework
for defining conceptual entities, the artifacts, related to
the execution of services whose operations influence the
entities evolution, as they move through the business’s
operations. However, this approachmostly focuses on ser-
vice modeling aspects and does not deal with dynamic
service composition. Yu et al. propose MoDAR [23], an
approach on how to design dynamically adaptive service-
based systems. Essentially they propose a method to
simplify business processes by using rules to abstract their
complex structure and to capture their variable behavior.
However, in dynamic context, revising rules to manage
frequent and unpredictable changes might turn out to be
very expensive and complex. In [24], the authors tackle
the problem of unpredictable execution of service-based
applications. In particular, they focused on how to evolve a
running service composition and propose a way for mod-
eling artifacts corresponding to composite services that
can change at runtime. However, software engineer inter-
vention is needed to manipulate the runtime model of
services. Moreover, the adaptation and application logics
are mixed making the model not very flexible. In [25] the
authors present DAMASCo, a framework managing the
discovery, composition, adaptation andmonitoring of ser-
vices in a context-aware fashion by taking into account
semantic information rather than only the syntactic one.

Since they address the problem of making the reuse of
software entities more agile and easy to model, they focus
especially on the adaptation of pre-existing software enti-
ties that are used during the developing of service-based
applications. Also the approach presented in [26] focuses
on the need of explicitly manage the context in the compo-
sition of web services, to address the problem of semantic
heterogeneities between services. The authors present a
context-based mediation approach that allows services
both to share a common meaning of exchanged data and
to automatically resolve conflicts related to the semantic
of the data, by using context-based annotations which
offer an optimized handling of the data flow. It would
be interesting to use the approaches [25, 26] in the
management of the composition of fragments coming
from the different entities and the definition of the data
flow between them. In [27] the concepts of goals and
plans are introduced in the business processes model-
ing with the purpose of extending the standard BPMN to
make the BPM more flexible and responsive to change.
However, even if plans are selected and executed at run-
time, they are defined at design time together with the
relations with the goals they can satisfy. Göser et al.
[28] is a framework for, among other things, the man-
agement of the integration of services in the business
processes implementation’s process to speed the imple-
mentation and deployment phases. Services’ integration
is realized in a plug-and-play manner in which activities
are selected from a repository and then dropped into a
process. However, as regards the runtime adaptation of
processes, in this approach only ad-hoc modifications are
managed.
Hermosillo et al. [29] is a framework that combines

complex event processing and dynamic business process
adaptation, which allows to respond to the needs of the
rapidity changing environment, and its adaptation lan-
guage called SBPL, and extension to BPEL which adds
flexibility to business processes. As in the previous frame-
work, only ad-hoc adaptation processes are defined ad
design-time together with the definition of specific adap-
tation points for the business process and the events that
will trigger that adaptation.
In the context of Future Internet [30], some frame-

works have been proposed to deploy and execute adapt-
able, QoS-aware service compositions. In [31], authors
present an engine for the execution of service compo-
sitions based on a unified model. The unified model
allows to execute service compositions that are specified
by use of different languages with different underly-
ing modeling paradigms, e.g. imperative and declarative
service compositions by the same engine. Furthermore,
the unified model and the presented engine enables the
unification of the execution of service orchestrations
and the enactment of service choreographies. CHOReOS

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 20 of 23

project [32] proposes a dynamic development process,
and associated methods, tools and middleware, to sus-
tain the composition of services in the Future Internet.
It proposes a synthesis approach able to automatically
generate, out of a BPMN2 choreography specification,
the needed adaptation and coordination logic, and dis-
tribute it between the participants so to enforce the
choreography. Finally, in [16], authors propose service
composition repair as an alternative solution that goes
beyond the limits of service replacement while avoiding
recomposition.

6 Discussion
We conclude this section with a discussion (summarized
in Table 1) in which we try to point out the advantages
of the proposed approach respect to related works. As
regards to the standard approaches of service composi-
tion, such as those of orchestration and choreography,
they have have some crucial limitations. A major prob-
lem of these approaches is that most of them are based
on the assumption that during the specification of com-
position requirements, the application designer knows the
services to be composed. Besides, some of them, such as
[14, 33], remain focused on the syntax level without con-
sidering the semantic aspects of composition, which are,
instead, necessary in context-based applications. Other
approaches like [31, 34–38], have introduced the manage-
ment of semantic knowledge in their models to drive the
services’ composition and interoperation but, despite this,
they do not allow processes to be specialized at runtime,
through dynamic service composition. Cubo and Pimentel
[25], Mrissa et al. [26], Greenwood [27] allow for very
efficient management of service compositions at runtime,
while [16, 32] supports composition evolution through
adaptation to possible changes in the discovered services.
The adaptation strategies applied in these approaches in
some cases are defined at design-time or are strongly

related to a prescribed coordination model (i.e., BPMN2
model in [32] does not open to runtime and context-aware
refinements).
The approach proposed in this paper, instead, offers a

lightweight-model, with respect to the existing languages
for service composition. It is more flexible and able to
define both orchestrations and choreographies thanks
to its dynamic collaboration among entities. Moreover,
the model explicitly handles the context by managing
the dynamicity of services, which can enter or leave the
system in any moment, with a flexible connection
strategy between entities that exploit the publish-subscribe
paradigm. Unlike specifications of traditional systems,
where the behaviors are static descriptions of the expected
run-time operation, our approach allows the application
to define dynamic behaviors. This is realized thanks to the
usage of abstract activities representing opening points
in the definition of processes, which allow services being
refined when the context is known or discovered. The
bottom-up approach for the activities’ refinement allows
fragments, once they are selected for the composition,
to climb the entities’s relations to be embedded in the
running process. Besides, the composition is defined at
runtime, so that exactly the currently available services
are considered for the composition. This feature, on the
one hand enables a smooth exploitation of proximity ser-
vices, and on the other handmakes the impact of run-time
changes to services (modification of behavior, entrance or
exit of services from the system) transparent to the system
execution.

7 Conclusion
In this article, we presented a service composition frame-
work that overcomes many limitations of the existing
approaches. Our approach uses an AI planning algorithm
as a reasoning mechanism, and can be used to solve com-
position problems of real-world complexity in dynamic

Table 1 Service composition approaches comparison

Approaches Customization and
context-awareness

Openness Flexibility

Our approach Runtime service composition in a
dynamic context

Transparent handling of new
services available at runtime

Structural changes in services
functionalities and services
unavailability

[22–29] Context-aware selection of services
using semantic information, or
context events to identify
adaptation situations

Not addressed Adaptation plans defined at
design-time together with the
relations with the goals they can
satisfy or predefined adaptation
points.

[14, 33] Not addressed Syntax level service selection and
composition at design-time

Not addressed

[16, 31, 32, 34–38], Semantic Knowledge to drive the
service composition

Design-time services selection,
binding and composition

Service Choreography evolution
through adaptation to possible
changes in the discovered services

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 21 of 23

and pervasive setting like Logistics [8] or Smart Urban
Mobility [7] domains.
The proposed framework uses an innovative service

model in which services are considered to be stateful,
non deterministic and asynchronous. The composition
requirements model is based on the idea of abstracting
composition requirements from implementation details
of services. This allows for deep automation of the com-
position process. Even though in the article we only
consider reachability goals as control-flow requirements,
we emphasize that our approach can be easily adapted
to use any advanced control-flow language used in plan-
ning (e.g., [39]). We also remark that our approach is
compatible with data-flow requirements technique intro-
duced in [40]. All this makes the new composition engine
applicable to a wide range of real service composition
problems.
Thanks to the abstraction of composition requirements

from implementation of components we organized the
composition life-cycle in such a way that almost all the
human time-demanding operations can be accomplished
at design time so that the composition run-time is fully
automated. Moreover, the availability of a tool with such
essential property brings new possibilities to composition
dependent systems.
We generally consider two main future steps in the

development of the ideas presented. One of them nat-
urally consists in adopting the advanced compatible
techniques for specifying complex control- and data-
flow requirements. Another one concerns conducting
experiments on using our approach in user-centric
systems.

Endnotes
1 In this article, we focus only on control-flow aspect of

composition. Data-flow aspect can be handled using the
technique presented in [40], which is compatible with the
formal framework introduced.

2Although the proposed approach works with processes
modeled using APFL, it can be also used extending other
process-based languages like BPMN [41] or CMMN [42].

3We remark that in order to avoid state explosion and
to keep a planning problem tractable, it is strictly required
that the number of states of each context property is finite
and reasonably small. One technique for dealing with con-
text properties with large or infinite number of states in
planning can be found in [43].

4 In this article, as context formulas we use reacha-
bility goals over context states (i. e., a goal consists in
achieving certain context states, known as goal states).
At the same time, we emphasize that used AI planning

techniques support for more sophisticated constructs
including procedural goals, reactive goals and goals with
preferences (more details can be found in [39]).

5 In our approach, the need to annotate newly cre-
ated fragments to integrate them into the running sys-
tem is the only human-dependent task that needs to be
accomplished at run time. We do not see it as a signifi-
cant limitation since 1) the annotation of new fragments
is normally far less urgent task than resolving an ongoing
failure and can hardly interrupt the normal operation of
the system, and 2) the annotation effort can be distributed
among multiple partners (each provider annotates its
fragments).

6 http://das.fbk.eu/astro-captevo

Abbreviations
APFL: Adaptable pervasive flows language (Section 4.1); BDD: Binary decision
diagram (Section 5.2); CLS: Car logistics scenario (Section 3.1); IoS: Internet of
services (Abstract); LTS: Labelled transition system (Section 3.1)

Availability of data andmaterials
The implementation of the ASTRO-CAptEvo framework is available at
http://das.fbk.eu/astro-captevo together with a video showing its live
demonstration.

Authors’ contributions
All authors are equal contributors. All authors read and approved the final
manuscript.

Authors’ information
Dr. Antonio Bucchiarone (PhD) is a senior researcher in the FBK-DAS research
unit of FBK. He received his PhD in Computer Science and Engineering, from
IMT of Lucca (Italy) in July 2008. His main research interests are: self-adaptive
(collective) systems, applied formal methods, run-time service composition
and adaptation, specification and verification of component-based systems,
dynamic software architectures. He has been actively involved in various
research projects in the context of self-adaptive systems.
Dr. Annapaola Marconi (PhD) is a senior researcher at FBK, where she directs
the FBK-DAS research unit. She received her PhD in Computer Science in 2008,
from the ICT International Doctoral School of the University of Trento. Her
research interests include distributed systems, collective adaptive systems,
and automated composition of service-based applications. She has been
actively involved in various local and European research projects in the area of
Smart Mobility.
Dr. Marco Pistore (PhD), is currently head of the FBK-SC unit. He received a PhD
in Computer Science from the University of Pisa (Italy) in 1998. He has an
h-index of 46 and more than 200 publications in international journals,
conferences, and symposia. He has 12 years of experience in the management
of research teams and projects: he has been responsible of research groups
and project teams (up to more than 30 persons); he has been scientific
coordinator and partner coordinator of regional, national and EU research and
innovation projects; he has been responsible of technology transfer projects
with National and International companies.
Dr. Heorhi Raik (PhD), is a junior researcher at FBK. He received his PhD in
Computer Science in 2012, from the ICT International Doctoral School of the
University of Trento, with a thesis titled: “Service Composition in Dynamic
Environments: From Theory to Practice”. His research interests include service
composition, dynamic process adaptation, user-centric services, AI planning,
collective adaptive systems.

Competing interests
The authors declare that they have no competing interests.

http://das.fbk.eu/astro-captevo

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 22 of 23

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 27 October 2016 Accepted: 28 April 2017

References
1. Autili M, Tivoli M, Goldman A (2016) Thematic series on service

composition for the future internet. J Internet Serv Appl 7(1):3–134
2. Issarny V, Georgantas N, Hachem S, Zarras A, Vassiliadist P, Autili M,

Gerosa MA, Hamida AB (2011) Service-oriented middleware for the
future internet: state of the art and research directions. J Internet Serv
Appl 2(1):23–45

3. Zhou J, Gilman E, Palola J, Riekki J, Ylianttila M, Sun JZ (2011)
Context-aware pervasive service composition and its implementation.
Pers Ubiquit Comput 15(3):291–303

4. Tari K, Amirat Y, Chibani A, Yachir A, Mellouk A (2010) Context-aware
dynamic service composition in ubiquitous environment. In: Proceedings
of IEEE International Conference on Communications, ICC 2010. IEEE,
Cape Town. pp 1–6

5. Truong HL, Dustdar S (2009) A survey on context-aware web service
systems. IJWIS 5(1):5–31

6. Bucchiarone A, de Sanctis M, Marconi A, Pistore M, Traverso P (2015)
Design for adaptation of distributed service-based systems. In:
Service-Oriented Computing - 13th International Conference, ICSOC
2015, November 16-19, 2015, Proceedings. Springer, Goa. pp 383–393

7. Bucchiarone A, de Sanctis M, Marconi A, Pistore M, Traverso P (2016)
Incremental composition for adaptive by-design service based systems.
In: IEEE International Conference on Web Services, ICWS 2016, June 27 -
July 2, 2016. IEEE, San Francisco. pp 236–243

8. Bucchiarone A, Marconi A, Mezzina CA, Pistore M, Raik H (2013) On-the-fly
adaptation of dynamic service-based systems: Incrementality, reduction
and reuse. In: Service-Oriented Computing - 11th International
Conference, ICSOC 2013, December 2-5, 2013, Proceedings. Springer,
Berlin. pp 146–161

9. Eberle H, Unger T, Leymann F (2009) Process fragments. In: On the Move
to Meaningful Internet Systems: OTM 2009, Confederated International
Conferences, CoopIS, DOA, IS, and ODBASE 2009, Vilamoura, Portugal,
November 1-6, 2009, Proceedings, Part I. Springer. pp 398–405

10. Raik H (2012) Service Composition in Dynamic Environments: From
Theory to Practice. PhD Dissertation. Available at http://eprints-phd.
biblio.unitn.it/864/

11. Böse F, Piotrowski J (2009) Autonomously controlled storage
management in vehicle logistics applications of rfid and mobile
computing systems. Int J RT Technol Res Appl 1(1):57–76

12. Bucchiarone A, Lluch-Lafuente A, Marconi A, Pistore M (2009) A
formalisation of adaptable pervasive flows. In: Web Services and Formal
Methods, 6th International Workshop, WS-FM 2009, September 4-5, 2009,
Revised Selected Papers. Springer, Bologna. pp 61–75

13. Herrmann K, Rothermel K, Kortuem G, Dulay N (2008) Adaptable
pervasive flows - an emerging technology for pervasive adaptation. In:
Workshop on Pervasive Adaptation (PerAda)

14. Committee OWT (2007) Web services business process execution
language, version 2.0. Available at http://docs.oasis-open.org/wsbpel/2.
0/wsbpel-v2.0

15. Haddad JE, Manouvrier M, Rukoz M (2010) Tqos: Transactional and
qos-aware selection algorithm for automatic web service composition.
IEEE Trans Serv Comput 3(1):73–85

16. Yan Y, Poizat P, Zhao L (2010) Repair vs. recomposition for broken service
compositions. In: Service-Oriented Computing - 8th International
Conference, ICSOC 2010, ecember 7-10, 2010. Proceedings. Springer, San
Francisco. pp 152–166

17. Bucchiarone A, Marconi A, Pistore M, Raik H (2012) Dynamic adaptation of
fragment-based and context-aware business processes. In: 2012 IEEE 19th
International Conference on Web Services, June 24-29, 2012, Honolulu.
pp 33–41

18. Bertoli P, Pistore M, Traverso P (2010) Automated composition of web
services via planning in asynchronous domains. Artif Intell 174:316–361

19. Cimatti A, Pistore M, Roveri M, Traverso P (2003) Weak, strong, and strong
cyclic planning via symbolic model checking. Artif Intell 1-2:35–84

20. Bucchiarone A, Marconi A, Pistore M, Raik H (2012) Dynamic adaptation of
fragment-based and context-aware business processes. In: 2012 IEEE 19th
International Conference on Web Services, June 24-29, 2012. IEEE,
Honolulu. pp 33–41

21. Raik H, Bucchiarone A, Khurshid N, Marconi A, Pistore M (2012)
Astro-captevo: Dynamic context-aware adaptation for service-based
systems. In: Eighth IEEE World Congress on Services, SERVICES 2012, June
24-29, 2012, Honolulu. pp 385–392

22. Hull R, Damaggio E, De Masellis R, Fournier F, Gupta M, Heath III FT,
Hobson S, Linehan MH, Maradugu S, Nigam A, Sukaviriya PN, Vaculín R
(2011) Business artifacts with guard-stage-milestone lifecycles: managing
artifact interactions with conditions and events. In: Proceedings of the
Fifth ACM International Conference on Distributed Event-Based Systems,
DEBS 2011, July 11-15, 2011. ACM, New York. pp 51–62

23. Yu J, Sheng QZ, Swee JKY (2010) Model-driven development of adaptive
service-based systems with aspects and rules. In: WISE. Lecture Notes in
Computer Science, vol. 6488. pp 548–563

24. Hussein M, Han J, Yu Y, Colman A (2013) Enabling runtime evolution of
context-aware adaptive services. IEEE International Conference on
Services Computing

25. Cubo J, Pimentel E (2011) Damasco: A framework for the automatic
composition of component-based and service-oriented architectures. In:
Software Architecture - 5th European Conference, ECSA 2011, September
13-16, 2011. Proceedings. Springer, Essen. pp 388–404

26. Mrissa M, Ghedira C, Benslimane D, Maamar Z, Rosenberg F, Dustdar S
(2007) A context-based mediation approach to compose semantic web
services. ACM Trans Internet Techn 8(1)

27. Greenwood DAP (2008) Goal-oriented autonomic business process
modeling and execution: Engineering change management
demonstration. In: Business Process Management, 6th International
Conference, BPM 2008, September 2-4, 2008. Proceedings. Springer,
Milan. pp 390–393

28. Göser K, Jurisch M, Acker H, Kreher U, Lauer M, Rinderle S, Reichert M,
Dadam P (2007) Next-generation process management with ADEPT2. In:
Proceedings of the BPM Demonstration Program at the Fifth International
Conference on Business Process Management (BPM’07), 24-27
September 2007. Brisbane. Springer

29. Hermosillo G, Seinturier L, Duchien L (2010) Creating context-adaptive
business processes. In: Service-Oriented Computing - 8th International
Conference, ICSOC 2010, San Francisco, CA, USA, December 7-10, 2010.
Proceedings. pp 228–242

30. Autili M, Goldman A, Tivoli M (2015) IEEE services visionary track on
service composition for the future internet (SCFI 2015). In: 2015 IEEE
World Congress on Services, SERVICES 2015, June 27 - July 2, 2015. IEEE,
New York City. pp 327–328

31. Görlach K, Leymann F (2015) A flexible engine for the unified execution of
service compositions. In: 2015 IEEE Symposium on Service-Oriented
System Engineering, SOSE 2015, March 30 - April 3, 2015. San Francisco
Bay. IEEE. pp 133–142

32. Autili M, Inverardi P, Tivoli M (2014) CHOREOS: large scale choreographies
for the future internet. In: 2014 Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering,
CSMR-WCRE 2014, February 3-6, 2014. Antwerp. IEEE. pp 391–394

33. Kavantzas N, Burdett GRD (2004) Wscdl v1.0. Available at http://www.w3.
org/TR/2004/WD-ws-cdl-10-20040427/

34. BPML.org (2002) Business process modeling language (bpml). Available
at http://www.bpmi.org

35. Arkin A, Askary S, Fordin S, Jekeli W, Kawaguchi K, Orchard D, et al (2002)
Web service choreography interface (wsci). Available at http://www.w3.
org/TR/wsci

36. McGuinness DL, van Harmelen F (2004) Owl web ontology language
overview [online]. Available at http://www.w3.org/TR/owl-features/

37. McIlraith SA, Son T, Zeng H (2001) Semantic web services. IEEE Int Syst
16(2):46–53

38. WSMOWsmo working group. Available at http://www.wsmo.org
39. Traverso P, Pistore M (2004) Automated composition of semantic web

services into executable processes. In: International Semantic Web
Conference (ISWC). pp 380–394

40. Kazhamiakin R, Marconi A, Pistore M, Heorki R (2013) Data-flow
requirements for dynamic service composition. In: Proceedings of the
20th International Conference on Web Services. pp 243–250

http://eprints-phd.biblio.unitn.it/864/
http://eprints-phd.biblio.unitn.it/864/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
 http://www.bpmi.org
http://www.w3.org/TR/wsci
http://www.w3.org/TR/wsci
http://www.w3.org/TR/owl-features/
http://www.wsmo.org

Bucchiarone et al. Journal of Internet Services and Applications (2017) 8:6 Page 23 of 23

41. Group OM (2011) Business process model and notation - version 2.0.
Available at http://www.omg.org/spec/BPMN/2.0/

42. Group OM (2016) Case management model and notation (cmmn) -
version 1.1. Available at http://www.omg.org/spec/CMMN/1.1/

43. Pistore M, Marconi A, Bertoli P, Traverso P (2005) Automated composition
of web services by planning at the knowledge level. In: IJCAI-05,
Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, July 30 - August 5, 2005, Edinburgh. pp 1252–1259

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/CMMN/1.1/

	Abstract
	Keywords

	Introduction
	Motivating scenario and research challenges
	Car logistics scenario
	Research challenges

	Dynamic service composition framework
	System model
	Fragment composition model
	Fragment composition via planning
	Algorithm

	Framework implementation

	Experiments and results
	Experimental evaluation

	Related work
	Discussion
	Conclusion
	Abbreviations
	Availability of data and materials
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	References

