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We develop a three-dimensional nonlinear dynamic model in which the stock markets of two
countries are linked through the foreign exchange market. Connections are due to the trading
activity of heterogeneous speculators. Using analytical and numerical tools, we seek to explore
how the coupling of the markets may affect the emergence of bull and bear market dynamics.
The dimension of the model can be reduced by restricting investors’ trading activity, which
enables the dynamic analysis to be performed stepwise, from low-dimensional cases up to the
full three-dimensional model. In our paper we focus mainly on the dynamics of the one- and two-
dimensional cases, with numerical experiments and some analytical results, and also show that
the main features persist in the three-dimensional model.
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1. Introduction

Financial market models with heterogeneous interacting agents have proven to be quite
successful in the recent past. For instance, these nonlinear dynamical systems have the
potential to replicate some important stylized facts of financial markets—such as the
emergence of bubbles and crashes—quite well and thereby help us to understand what is
going on in these markets. For pioneering contributions and related further developments
see Day and Huang [1], Kirman [2], Chiarella [3], de Grauwe et al. [4], Huang and Day [5],
Lux [6, 7], Brock and Hommes [8], Chiarella and He [9, 10], Farmer and Joshi [11], Chiarella
et al. [12], Hommes et al. [13], among others. Very recent surveys of this topic are provided
by Hommes [14], LeBaron [15], Lux [16], Westerhoff [17], and Chiarella et al. [18].
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The seminal model of Day and Huang [1] reveals that nonlinear interactions between
technical and fundamental traders may lead to complex bull and bear market fluctuations. The
dynamics of this model, which is due to the iteration of a one-dimensional cubic map, may be
understood with the help of bifurcation analysis. A typical route to complex dynamics may,
for instance, first display a pitchfork bifurcation, followed by a cascade of period-doubling
bifurcations for each of two coexisting equilibria. As a result, cycles of various periods and
then chaotic dynamics may emerge within two different regions. The two chaotic areas may
eventually merge via a homoclinic bifurcation. If that is the case, we observe apparently
random switches between bull and bear markets.

In this paper we develop and explore a nonlinear model in which the stock markets
of two countries, say H(ome) and A(broad), are linked via and with the foreign exchange
market. So far, most of these models focus on one speculative market and not much is known
about the implications of market interactions. A few exceptions include Westerhoff [19],
Chiarella et al. [20] and Westerhoff and Dieci [21]. The reason for the markets’ coupling
is quite natural. Note first that stock market traders who invest abroad have to consider
potential exchange rate adjustments when they enter a speculative position. In addition, these
agents obviously need foreign currency to conduct their transactions. We assume that there
are two types of traders in the foreign exchange market. Fundamental traders believe that the
exchange rate converges toward its fundamental value, and even expect that the strength of
mean reversion increases with the mispricing. Although such trading behavior tends to have
a stabilizing impact on markets, it also brings nonlinearity into the model. Technical traders
optimistically (pessimistically) continue to submit buying (selling) orders when prices are
high (low), and thereby tend to destabilize the markets. In the absence of stock market traders
who invest abroad, the three markets evolve independently of each other. In particular, the
exchange rate is driven by a one-dimensional nonlinear law of motion, and complicated bull
and bear market dynamics, as observed in Day and Huang [1], may emerge.

To make matters as simple as possible, we assume that stock market traders only rely
on a (linear) fundamental trading rule. If we allow stock market traders from country A
to become active in country H, then the stock market H and the foreign exchange market
are linked and coevolve in a two-dimensional nonlinear dynamical system. Our model
turns into a three-dimensional dynamical system if stock market traders from country H
also invest in country A. The expansion of the trading activity of stock market speculators,
via the introduction of international connections, therefore results in a gradual increase of
the dimension of the dynamical system. As it turns out, the bull and bear dynamics which
originate in the foreign exchange market spill over into the stock markets. However, there is
now also a feedback from the stock markets to the foreign exchange market, which makes the
dynamics even more intricate.

A related model of interacting markets with a similar nonlinear structure was recently
investigated by Dieci and Westerhoff [22] (in Dieci and Westerhoff [22], nonlinearity arises
due to agents switching among linear competing trading rules), who focus on the nature of
the (stabilizing or destabilizing) impact of international connections on the whole system,
both in terms of local stability of the fundamental equilibrium and with regard to the
amplitude of price fluctuations (in this respect, similar results on the steady-state properties
hold for the present model, too). The present paper is devoted to a quite different topic,
namely the dynamic analysis of the global (homoclinic) bifurcations that mark the transition
from a situation with multiple equilibria to one with chaotic dynamics across bull and
bear market regions, similar to that highlighted by Day and Huang [1]. As a matter of
fact, not much is known about such kind of dynamics in high-dimensional systems, nor
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about the appropriate methodology to understand their global behavior. For this reason,
the dynamic analysis of our model is carried out stepwise, by introducing different levels
of interaction between markets, rendering it possible to highlight similarities and differences
in the structure of the aforementioned global bifurcations across dynamical systems of
increasing dimension.

The two-dimensional and the full three-dimensional cases of the present model can
thus be regarded as generalizations of the one-dimensional model by Day and Huang
[1]. This allows us to discover and analyze the typical bull and bear dynamics in a higher
dimensional context, by naturally extending the approach and techniques adopted for the
one-dimensional case. Our findings and methodology may also prove to be useful for
researchers of different areas interested in homoclinic bifurcations for dynamical systems of
dimensions larger than one.

Let us describe in greater detail the key dynamic features of the model. As is well
known, the typical bull and bear dynamics that emerge from the Day and Huang [1] model is
basically due to a sequence of local and global bifurcations involving multiple coexisting
equilibria, in particular homoclinic bifurcations of repelling steady states. Such bifurcations
(as well as the global structure of the basins of attraction) are closely related to the
noninvertibility of the one-dimensional cubic map used by Day and Huang [1], and to the
role played by the so-called critical points (local extrema). Such kind of dynamics has been
studied in depth for one-dimensional maps arising from a range of economic applications
(see, e.g., Dieci et al. [23], He and Westerhoff [24]), often leading to analytical results. The
same dynamic phenomena characterize the dynamics of the independent foreign exchange
market in the one-dimensional subcase of our model. By introducing foreign traders in one of
the stock markets, the level of integration increases, and stock price H turns out to coevolve
with the exchange rate, in a two-dimensional dynamical system. At this stage, the goal of our
analysis is thus to show the existence of similar dynamic scenarios and global bifurcations,
and to understand their mechanisms in a two-dimensional context, via a mixture of analytical
and numerical tools. Some relevant differences with the 1D case are due to the fact that
certain symmetry properties are lost once interactions are introduced. However, the basic
mechanisms behind the onset of the typical bull and bear scenario are preserved, and are still
given by homoclinic bifurcations of unstable (saddle) equilibria, now revealed numerically and
graphically via contacts between different kinds of invariant sets. Following Mira et al. [25]
we call contact bifurcation any contact between two closed invariant sets of different kinds.
A contact bifurcation may have several different dynamic effects, depending on the nature of
the invariant sets. We recall that a homoclinic bifurcation of a cycle appears due to a contact
between the stable and unstable set of an unstable cycle, followed by transverse intersections
(i.e., followed by the existence of points which belong both to the stable and to the unstable
set). The existence of a homoclinic trajectory leads to the existence of an invariant set on which
the map is purely chaotic. There is not a unique homoclinic bifurcation, as also when a cycle
is already homoclinic, further contacts and crossing can occur, leading to new homoclinic
trajectories, and thus to new sets with chaotic behaviors. Moreover, since the dynamics is still
represented by a noninvertible map of the plane, the tool of the critical curves will prove to be
useful in fully understanding the global dynamics, including the disconnected and complex
structures of the basins of attraction.

Finally, the three-dimensional case, obtained by removing any restriction on trading
activities across different countries, can be understood, via numerical experiments, due to
the knowledge of the dynamics occurring in the one- and two-dimensional cases. We will see
that the global bifurcations due to contacts between different invariant sets are still present,
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leading to dynamics which are the natural extension to a three-dimensional space of those
occurring also in the two-dimensional one.

The structure of the paper is as follows. In Section 2 we derive the dynamic model,
by describing the behavior of the two stock markets (Sections 2.1 and 2.2, resp.) and the
foreign exchange market (Section 2.3). In Section 3 we perform a full dynamic analysis of
the one-dimensional case. In Section 4 we consider the two-dimensional case. In particular in
Section 4.1 we focus on the conditions for the local asymptotic stability of the fundamental
steady state and on the onset of a situation of bistability. We also show how, by increasing a
relevant parameter, bistability turns into coexistence of two periodic or chaotic attractors.
In Section 4.2 we describe in detail the sequence of homoclinic bifurcations that lead to
the existence of a unique attractor covering two previously disjoint regions of the phase
space, and to the associated bull and bear dynamics. In Section 5 we will consider the full
three-dimensional model. In this case the analytical results are quite poor, but we can study
the dynamics by numerical experiments, which show how the same kind of local and
global bifurcations observed in the lower dimensional cases also occur in higher dimension,
leading to similar results for the state variables of the model. Section 6 concludes this paper.
Mathematical details are contained in four appendices.

2. The Model

This section is devoted to the description of the three-dimensional discrete-time dynamic
model of internationally connected markets, which will then be analyzed in the lower dimen-
sional subcases before exploring some of its properties in the full three-dimensional model.

We consider two stock markets which are linked via and with the foreign exchange
market. The foreign exchange market is modeled in the sense of Day and Huang [1]; that is,
we consider nonlinear interactions between technical traders (or chartists) and fundamental
traders (or fundamentalists). The fraction of technical and fundamental traders is fixed,
but fundamentalists rely on a nonlinear trading rule. The stock markets are denoted by
the superscript H(ome) and A(broad). For the sake of simplicity, we assume that only
fundamental traders are active in the stock markets, with fixed proportions and linear trading
rules. Two kinds of connections exist among the markets: first, stock market traders who trade
abroad base their demand on both expected stock price movements and expected exchange
rate movements. Second, in order to conduct their business they generate transactions of
foreign currencies and consequent exchange rate adjustments. In each market, the price
adjustment process is simply modeled by a linear price impact function. The latter may be
interpreted as the stylized behavior of risk-neutral market makers, who stand ready to absorb
the imbalances between buyers and sellers and then adjust prices in the direction of the excess
demand.

In the following subsections we describe each market in detail.

2.1. The Stock Market in Country H

Let us start with a description of the stock market in country H. According to the assumed
price impact function, the stock price in country H (PH) at time step t + 1 is quoted as

PHt+1 = PHt + aH
(
DHH
F,t +DHA

F,t

)
, (2.1)
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where aH is a positive price adjustment parameter and DHH
F,t , DHA

F,t reflect the orders placed
by fundamental traders from countries H and A investing in country H, respectively. For
instance, if buying orders exceed selling orders, prices go up.

The orders placed by fundamental traders from country H are given by

DHH
F,t = bH

(
FH − PHt

)
, (2.2)

where bH is a positive reaction parameter and FH is the fundamental value of stock H.
Fundamentalists seek to profit from mean reversion. Hence, these traders submit buying
orders when the market is undervalued (and vice versa).

Fundamental traders from abroad may benefit from a price correction in the stock
market and in the foreign exchange market. Denote the fundamental value of the exchange
rate by FS and the exchange rate by S, then their orders can be written as

DHA
F,t = cH

[(
FH − PHt

)
+ γH

(
FS − St

)]
, (2.3)

where cH ≥ 0, γH > 0. Suppose, for instance, that both the stock market and the foreign
exchange market are undervalued. Then the foreign fundamentalists take a larger buying
position than the national fundamentalists (assuming equal reaction parameters). However,
if the foreign exchange market is overvalued, they become more cautious (and may even
enter a selling position).

2.2. The Stock Market in Country A

Let us now turn to the stock market in country A. We have a set of equations similar to those
for stock market H. The new stock price (PA) at time t + 1 is set as follows:

PAt+1 = PAt + aA
(
DAA
F,t +DAH

F,t

)
, (2.4)

with aA > 0. The orders placed by the fundamentalists from country A investing in stock
market A amount to

DAA
F,t = bA

(
FA − PAt

)
, (2.5)

where bA > 0 and FA is the fundamental price of stock A. The orders placed by
fundamentalists from country H investing in stock market A are given as

DAH
F,t = cA

[(
FA − PAt

)
+ γA

(
1
FS
− 1
St

)]
, (2.6)

where cA ≥ 0, γA > 0. Note that the latter group takes the reciprocal values of the exchange
rate and its fundamental value into account.
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2.3. The Foreign Exchange Market

Let us now consider the dynamics of the exchange rate (S), here defined as the price of
one unit of currency H in terms of currency A. The exchange rate adjustment in the foreign
exchange market is proportional to the excess demand for currency H. The excess demand,
in turn, depends not only on the stock traders who are active abroad, but also on foreign
exchange speculators. The latter group of agents consists of technical and fundamental
traders. The exchange rate for period t + 1 is

St+1 = St + d

(
PHt D

HA
F,t −

PAt
St
DAH
F,t +DS

C,t +D
S
F,t

)
, (2.7)

where d is a positive price adjustment parameter. Note that the stock orders placed by
the stock traders are given in real units, so that these traders’ demand for currency is the
product of stock orders times stock prices. In particular, PAt D

AH
F,t is the demand for currency

A generated by investors from country H trading in stock market A, resulting in a demand
for currency H (of the opposite sign), given by −(PAt /St)DAH

F,t .
The orders submitted by technical and fundamental speculators in the foreign

exchange market are denoted by DS
C,t and DS

F,t, respectively. Following Day and Huang [1],
the orders placed by chartists are formalized as

DS
C,t = e

(
St − FS

)
. (2.8)

Since e is a positive reaction parameter, (2.8) implies that chartists believe in the persistence
of bull or bear markets. For instance, if the exchange rate is above its fundamental value, the
chartists are optimistic and continue buying foreign currency.

Fundamentalists seek to exploit misalignments using a nonlinear trading rule

DS
F,t = f

(
FS − St

)3
, (2.9)

where f is a positive reaction parameter. As long as the exchange rate is close to its
fundamental value, fundamentalists are relatively cautious. But the larger the mispricing,
the more aggressive they become. Day and Huang [1] argue that such behavior is justified by
increasing profit opportunities. Both the potential for and the likelihood of mean reversion
are expected to increase with the mispricing.

3. The 1D Case

The complete dynamic model is given by (2.1) (combined with (2.2) and (2.3)), (2.4) (with
(2.5) and (2.6)), and (2.7) (with (2.8) and (2.9)), and is represented by a 3D nonlinear
dynamical system. In the most simple situation, stock market traders are not allowed to trade
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abroad; that is, cH = cA = 0. In this case, stock prices are independent of each other and of the
exchange rate. The structure of the system is as follows:

PHt+1 = GH
(
PHt

)
,

PAt+1 = GA
(
PAt

)
,

St+1 = GS(St),

(3.1)

which is made up of three independent equations, the first two of which are linear, while the
third is cubic. It is easy to check that the two linear systems admit the respective fundamental
prices as unique steady states, which are globally stable, provided that reaction parameters
are not too large, namely, aHbH < 2, aAbA < 2. The third equation, expressed in deviations
from fundamental value, x = (S − FS), becomes

xt+1 = φ(xt) = xt(1 + de) − dfx3
t , (3.2)

and the equilibrium condition φ(x) = x for the exchange rate is the following:

x
(
e − fx2

)
= 0, (3.3)

which always gives three equilibria for any positive value of parameters e and f . The
exchange rate dynamics produced by the third equation is similar to that described in the
model by Day and Huang [1]. In our setting, the fundamental steady state; that is, the origin
O (x = 0), is always unstable (φ′(0) = 1 + de > 1), while the symmetric steady states
x− := −

√
e/f and x+ :=

√
e/f are both stable for de < 1. In the following, the chartist demand

coefficient, e, will be chosen as the bifurcation parameter.
Map (3.2) is symmetric with respect to the origin (φ(x) = −φ(−x)), so that the

bifurcations of the symmetric fixed points and cycles occur at the same value of e. The
map is bimodal: it has a local minimum at xm−1 = −

√
(1 + de)/3df , at which the function

assumes a value xm0 = −2(1 + de)/3
√
(1 + de)/3df ; and by symmetry, a local maximum at

xM−1 = +
√
(1 + de)/3df , at which the function assumes a value xM0 = 2(1+de)/3

√
(1 + de)/3df

(we use the notation xmi+1 := φ(xmi ) and xMi+1 := φ(xMi )). This allows us to obtain two symmetric
absorbing intervals bounded by the critical values and their images:

I− =
[
xm0 , x

m
1

]
and I+ =

[
xM1 , xM0

]
. (3.4)

The set of initial conditions generating bounded trajectories is the interval whose borders
are the points of an unstable 2-cycle (α−, α+) (see Figure 1(a)). By taking an initial condition
(i.c. henceforth) below α− or above α+, the exchange rate diverges, while in the other cases it
converges to one of the attractors located in the absorbing intervals. The immediate basin of
attraction of the positive fixed point x+ is bounded by the fundamental steady state and by its
positive rank-1 preimage, B+0 :=]O,O+

−1[. The immediate basin is not the only interval whose
points generate trajectories converging to the positive steady steate. In fact, B+0 has a preimage
formed by negative values, B+−1, which has a preimage B+−2 inside interval ]O+

−1, α+[ . The
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Figure 1: Stable non-fundamental steady states. (a) and its enlargement (b) are obtained using the
following set of parameters: d = 0.35, e = 2.687, and f = 0.7.
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Figure 2: Basins of attraction. In (a) the immediate basin of the steady state x+ and its rank-1 and rank-
2 preimages are represented in blue. In (b) an enlargement of the interval between O−1

+ and α+ with the
alternance of intervals belonging to the basin of attraction of x+ (in blue) and x− (in green) are shown. The
parameters are as in Figure 1.

latter, in turn, has a preimage in the negative values, and so on (Figure 2(a)), thus forming
an infinite sequence of intervals, which are all part of the basin of attraction of x+ and that
accumulate at the points of the unstable 2-cycle (α−, α+). Such intervals alternate on the real
line with the intervals belonging to the basin of x−, determined in a similar way. The borders
of the intervals are given by the preimages of the fundamental steady state (Figure 2(b)). The
union of the infinitely many intervals is the basin of attraction of x+:

B+ := B+0
⋃
B+−1

⋃
B+−2

⋃
..., (3.5)

and an analogous (and symmetric) explanation holds for the basin of the negative steady
state, B−.
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Figure 3: Periodic and chaotic attractors. In (a) a stable 2-cycle is obtained using the same set of parameters
of Figure 1 except for e = 3.483. In (b) the chaotic attractor is obtained with e = 3.7436.
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f2(xt)

2 4

4

2

xt

Figure 4: Homoclinic bifurcation of x+. The two chaotic intervals around x+ merge into a unique chaotic
interval for e � 3.89. The remaining parameters are as in Figure 3.

For de > 1, steady states x− and x+ become unstable via flip-bifurcation (as φ′(x+) =
φ′(x−) = 1−2de = −1 for de = 1). By increasing the value of e, the dynamics show a cascade of
flip bifurcations, finally leading to chaos (Figure 3). In these cases, B+ and B− are the basins of
attraction of the periodic cycles or the chaotic intervals located in I+ and I−, respectively. For
e � 3.89, the chaotic intervals included in I+ merge into a unique chaotic interval (Figure 4).
The same happens for the chaotic intervals in I−, for the symmetry properties of the map. This
is a remarkable global bifurcation, namely, a homoclinic bifurcation ofx− (and symmetrically
x+), occurring when the third iterate of the critical point merges with the unstable fixed point.
Before this bifurcation, the asymptotic dynamics can only consist of cycles of even periods,
whereas cycles of odd periods will appear after it. Moreover, this is the first parameter value
at which the dynamics is chaotic on one interval (in the sense of chaos of full measure on an
interval).
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f(xt)

−4 O 4

4

xM1 = xm1

−4α−

xm0

α+
xM0

xt

Figure 5: Homoclinic bifurcation of O. The two chaotic intervals around x+ and around x− merge into a
unique chaotic interval for e � 4.5659 . The remaining parameters are as in Figure 4.

x

−4.2

0

4.2

e

0 3.89 4.57 5.75 6

Figure 6: Bifurcation diagram versus parameter e for the one-dimensional model, under the basic
parameter setting: d = 0.35 and f = 0.7. The homoclinic bifurcation of the two symmetric fixed points
occurs at e � 3.89, the reunion of the two disjoint intervals, homoclinic bifurcation of the origin, at
e � 4.5659, while the final bifurcation occurs at e = ef � 5.75.

Figures 3 and 4, which are restricted to the upper right branch of the map, describe the
dynamics and the structure of the attractors around the steady state x+. To understand the
global dynamics, we must consider the other portion, too. The global structure of the basins
is similar to that described above (Figure 2) for the case of coexisting stable steady states; that
is, each basin consists of infinitely many intervals with the unstable two-cycle (α−, α+) as the
limit set. Thus taking the i.c. on the right or the left of the origin is not a sufficient condition
for convergence to the attractor on that side. For the points close to the two-cycle (α−, α+) in
particular it is almost impossible to say whether there will be convergence to the attractor on
the right or on the left. However, the two attractors (and their basins) will merge together for
higher values of the parameter e. A further rise in the value of e takes xm1 and xM1 increasingly
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closer to the fundamental steady state, and increasingly closer to each other. As long as xm1 < 0
and xM1 > 0, the two absorbing intervals are still separated, but at e = (3

√
3/2 − 1)(1/d) , xm1

and xM1 merge in x = 0. Each trajectory starting from interval ]xm0 , x
M
0 [ now covers the whole

interval I− ∪ I+ = [xm0 , x
M
0 ] (homoclinic bifurcation of O). The basin of the enlarged invariant

interval I− ∪ I+ is the whole interval B :=]α−, α+[ (Figure 5).
Put differently, the two disjoint symmetric attractors exist as long as each unimodal

part of the map behaves as the standard logistic map, xt+1 = fμ(xt) = μxt(1 − xt),
for 3 < μ < 4. The global bifurcation occurring in the logistic map at μ = 4 (first
homoclinic bifurcation of the origin O) followed by diverging trajectories, is replaced here
by a homoclinic bifurcation leading to the reunion of the two chaotic attractors. This is better
illustrated in the bifurcation diagram in Figure 6. An i.c. in the immediate basin on the right
tends to the attractor on the positive side (in red in Figure 6), while an i.c. in the immediate
basin on the left tends to the attractor on the negative side (in blue in Figure 6). At the
homoclinic bifurcation of the origin we observe their reunion: there is a unique attractor (in
green in Figure 6) and any point belonging to interval B :=]α−, α+[ tends toward it.

This kind of dynamics persists as long as the chaotic interval is inside the repelling
two cycle; that is, [xm0 , x

M
0 ] ⊂]α−, α+[. It is clear that the lastor final bifurcation here occurs at a

value e = ef , at which xm0 = α− (and clearly also xM0 = α+), that is

−2(1 + de)
3

√
1 + de

3df
= α−(e) ,

2(1 + de)
3

√
1 + de

3df
= α+(e) (3.6)

In Appendix A we show that xM0 (e) tends to infinity faster than α+(e) so that a finite
value of e exists, say ef , leading to the final bifurcation (3.6). As for the logistic map, after
this final bifurcation the generic trajectory is divergent (and thus the model is no longer
meaningful). However, an invariant chaotic set inside interval [xm0 , x

M
0 ] still exists for any

larger value of e: a so-called chaotic repellor, which represents the only surviving bounded
invariant set. Summarizing, we have proven the following.

Proposition 3.1. The bimodal map in (3.2) is symmetric with respect to the origin, with a
local maximum point at xM−1 = +

√
(1 + de)/3df and local maximum value xM0 = (2(1 +

de))/3
√
(1 + de)/3df . An unstable fixed point in the origin always exists. A positive fixed point

x+ =
√
e/f is locally asymptotically stable for de < 1. A flip bifurcation of x+ occurs at de = 1.

The attracting set on the half-line x > 0 is included in the absorbing interval I+ = [xM1 , xM0 ] for
0 < e < (3

√
3/2 − 1)(1/d), disjoint from the symmetric one, on the half-line x < 0, and the basins

of the two disjoint invariant sets consist of infinitely many intervals, having the unstable 2-cycle with
periodic points ( α−, α+) as limit set. At e = (3

√
3/2−1)(1/d) the homoclinic bifurcation of the origin

occurs, and for (3
√

3/2 − 1)(1/d) < e < ef the dynamics are bounded in the interval [xm0 , x
M
0 ]. For

e > ef the generic trajectory is divergent.

From an economic point of view it is interesting to note that already the one-
dimensional nonlinear map for the foreign exchange market is able to generate endogenous
dynamics (i.e., excess volatility) and bubbles and crashes. For a more detailed economic
interpretation of this scenario see the related setup of Day and Huang [1]. An interesting
question is whether this kind of dynamic behavior may survive in a higher dimensional
context; for example, when the foreign exchange market is coupled with a stock market.
A first answer is provided in the following section.
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4. The 2D Case

In this section we analyze the case in which stock market traders from H are not allowed
to trade in A; that is, cA = 0, while stock market traders from A are allowed to trade in H,
cH > 0. In this case, stock market A decouples from the other two markets and is driven
by an independent linear equation PAt+1 = GA(PAt ) (whose dynamical properties were briefly
discussed in the previous section). We thus have an independent two-dimensional system
with the following structure:

PHt+1 = GH
(
PHt , St

)
,

St+1 = GS
(
PHt , St

)
.

(4.1)

System (4.1) expressed in deviations (although we work with deviations, in all the following
numerical experiments we have checked that original prices never become negative) from
fundamental values, x = (PH − FH) and y = (S − FS), is driven by the map T : R

2 → R
2

defined as follows:

T :

⎧
⎨
⎩
xt+1 = xt − aH

[(
bH + cH

)
xt + cHγHyt

]
,

yt+1 = yt − d
[
cH
(
xt + FH

)(
xt + γHyt

)
− eyt + fy3

t

]
.

(4.2)

4.1. Steady States and Multistability

With regard to system (4.2), the equilibrium conditions for the stock price in country H and
the exchange rate are given, respectively, by

x

[
f

(
qH
)3
x2 + bHx + bHFH − e

qH

]
= 0, (4.3)

y = − x

qH
, (4.4)

where qH := cHγH/(bH + cH). Apart from the fundamental steady state, say O, represented
by x = 0 and y = 0, two further equilibria (denoted as P1 and P2) may exist, provided that

e > eSN :=
−
(
bH
)2(

qH
)4

4f
+ bHFHqH. (4.5)

For e = eSN , the unique additional solution to (4.3) is given by x = (−bH(qH)3)/2f < 0, which
means that when e increases beyond the bifurcation value eSN , the newborn non-fundamental
steady states are initially characterized by x < 0 (equilibrium price H below fundamental)
and y > 0 (equilibrium exchange rate above fundamental).

Three steady states therefore coexist when the reaction parameter e (which measures
chartists’ belief in the persistence of bull and bear markets) is large enough. Although this
scenario of multistability in the 2D model of interconnected markets is similar to that of the
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Figure 7: Change of stability in the two-dimensional case. Parameters are aH = 0.41, bH = 0.11, cH =
0.83, γH = 0.3, FH = 4.279, FS = 6.07, d = 0.35, and f = 0.7. In (a), at e = 0.124697, the attractors are
the fixed points P2 and O, their basins are bounded by the stable manifold of P1. In (b), at e = 2.22, the
attractors are P1 and P2, the border between basins B1 and B2 is the stable manifold of the fundamental
equilibrium O.

foreign exchange market in the 1D case, it should be remarked that a region of the parameter
space now exists such that the system admits a unique stable steady state. A similar result has
also emerged from the related model studied in Dieci and Westerhoff [22]. It was interpreted
there in terms of a possible stabilizing effect of market interactions when speculative trading
is not too strong.

In order to understand better which kind of bifurcations occur, Appendix B analyzes
the Jacobian matrix of system (4.2) evaluated at the fundamental steady state, and proves
that its eigenvalues are always real. Moreover, under the simplifying assumption that the
price adjustment parameters are not too large, one of the eigenvalues is smaller than one in
modulus, while the other becomes larger than 1 if the following condition is fulfilled:

e > eCS := bHFHqH, (4.6)

so that eCS represents the value of parameter e at which a change of stability occurs for the
fundamental steady state. Given that f > 0, it follows that eCS > eSN , and we can then fully
explain the bifurcation sequence leading to multiple steady states. By increasing parameter e,
at e = eSN a saddle-node bifurcation occurs and two new equilibria appear, P1 and P2 (a saddle
and an attracting node, resp.). We have thus proven the following

Proposition 4.1. The two dimensional map in (4.2) always has an equilibrium in the origin, which
is locally stable for e < eCS := bHFHqH . A pair of further equilibria appears via a saddle-node
bifurcation at e = eSN := (−(bH)2(qH)4)/4f + bHFHqH and, therefore, for eSN < e < eCS there is
coexistence of two stable equilibria. At e = eCS a transcritical bifurcation takes place.

As cannot have the explicit expressions of the new pair of equilibria, cannot perform
analytically their local stability analysis. Thus in the following we describe the results via
numerical simulations. Note that we keep parameters d and f fixed at the same values used
for the simulation in the one-dimensional case. For the sake of simplicity, we shall use the
same set of parameter values in the entire paper. With regard to this, it is worth mentioning
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Figure 8: Bifurcation diagrams (b.d. for short). In blue the b.d. corresponding to an initial condition close
to P1, whereas the b.d. in red is obtained with an initial condition close to P2. Panel (b) is a magnification
of a portion of the b.d. in (a), which emphasizes the values of parameter e at which the steady states lose
stability.

that for alternative parameter settings we have observed the same kind of dynamics and
bifurcations as described in what follows.

Of the two new equilibria, the stable one, which we call P2, is the one further from the
fundamental equilibrium. For values of parameter e in the range eSN < e < eCS were we have
coexistence of two stable equilibria, the fundamental O coexists with the equilibrium point
P2. The points of the phase plane either converge toO or to P2, and the two basins of attraction
are separated by the stable set of the saddle equilibrium point P1. An example is shown
in Figure 7(a), where we use the following parameter setting: aH = 0.41, bH = 0.11, cH =
0.83, γH = 0.3, FH = 4.279, FS = 6.07, d = 0.35, and f = 0.7.

At e = eCS the fixed point P1 merges with the fundamental one and then crosses it,
and the stability properties of the two steady states changes too (transcritical bifurcation).
It is worth noting that the range of values (eSN, eCS) of parameter e between the saddle-
node bifurcation and the transcritical bifurcation becomes increasingly smaller as f increases
(compare equations (4.5) and (4.6)). For values of parameter e > eCS and close to the
bifurcation, the fundamental equilibrium O is unstable while the two equilibria P1 and P2

are both stable. The stable set WS
O of the saddle O is the separator between the two basins

of attraction, B1 and B2, respectively, while the two branches of the unstable set Wu
O have

opposite behavior: one tends to attractor P1 while the other tends to attractor P2. An example
is shown in Figure 7(b).

As parameter e is further increased, both equilibria P1 and P2 become unstable via
a flip (or period doubling) bifurcation. Moreover, a cascade of flip bifurcations, leading to
chaos, will take place for both of them. However, unlike the results in the 1D model, the two
sequences of flip bifurcations are not synchronized, due to the asymmetry of the 2D map.
An example is shown in the bifurcation diagram of Figure 8. By fixing all parameters, except
for e, we can see that equilibrium P1 first undergoes a flip bifurcation at e = e1 and then
P2 at e = e2 > e1. In the narrow range e1 < e < e2 the points of the phase plane either
converge to the stable equilibrium P2 or to a stable 2-cycle born from the flip bifurcation of
P1 and close to it. The two basins B1, and B2 are always separated by the stable set WS

O of
the saddle fundamental equilibrium O, while the two branches of the unstable set Wu

O of the
fundamental equilibrium behave in an opposite manner: one tends to equilibrium P2 and
the other to the attractor born from P1. As parameter e increases, we observe several flip
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bifurcations associated with the two attractors, say A1 and A2, while their basins B1, and
B2 are always separated by the stable set of O. The two branches of the unstable set of O
still converge to the two different attractors until certain global bifurcations occur, as we will
describe below. Also the structure of the attractors and that of the two basins undergo global
bifurcations.

Although the two attractors A1 and A2 are not steady states, the long-run dynamics
of the system still takes place in the same regions as that represented in Figure 7(b). In fact,
the asymptotic states are either in region y < 0, x > 0, denoted as the bear region (when
orbits converge to A1) or in region y > 0, x < 0, denoted as the bull region (when orbits
converge toA2). In the bear (bull) region, the exchange rate is below (above) its fundamental
value, whereas stock price H is above (below) the fundamental value. An example is shown
in Figure 9(a), where two 4-cycles coexist, while in Figure 9(b) two chaotic attractors coexist,
both formed by two separate chaotic areas. However, the structure of the basins of attraction
B1 and B2 becomes much more complicated. They are disconnected, which is a consequence
of the noninvertibility of the map. More precisely, for noninvertible maps the phase plane
may be subdivided into regions of points having the same number of rank-1 preimages. These
regions are separated by the critical curve LC, also shown in Figure 9 together with the locus
LC−1, where LC = T(LC−1) (see Appendix C). When the parameter e changes, a portion of
a basin of attraction may cross some arc of curve LC, thus entering inside a region with a
higher number of preimages. This contact bifurcation causes the appearance of disconnected
portions of the basin of attraction. An example is given by portion H of basin B1 of attractor
A1 (located near P1), which is shown to exist in Figure 9(b) but not yet in Figure 9(a). The
creation of this disconnected region is due to the small portion H ′ of basin B1 which has
moved in Figure 9(b) to the left of LC (see arrow in Figure 9(b)), thus entering a region of the
phase space whose points have a higher number of preimages. Two new rank-1 preimages of
H ′, appearing on opposite sides of LC−1, create the disconnected portion of basin labelled H.

4.2. Global Bifurcations

The previous subsection has shown how, under increasing values of parameter e, the two
attractors (first equilibria P1 and P2 thenA1 andA2) undergo a sequence of flip bifurcations
which is not synchronized, leading the system to chaotic dynamics. The sequence of flip
bifurcations can also be observed in Figure 10. From Figure 10 the existence of different
intervals for parameter e can be noted, such that the dynamics in the phase plane are
qualitatively the same within each range. Such intervals are denoted as A, B, C, D, and E. The
borders between two adjacent intervals are associated with homoclinic bifurcations involving
one or two of the three equilibria, and will be described in the present subsection.

4.2.1. First Homoclinic Bifurcation of P1 and P2

As stated above, for a wide interval of values of e, we observe two coexisting attractors
Ai, i = 1, 2, each consisting of two parts. The dynamics on each attractor alternately jumps
from one to the other side of the stable set WS

Pi
of the saddle Pi. The first global bifurcation

occurring to the chaotic area is caused by the contact between the two parts constituting
the chaotic attractor Ai and the stable manifold WS

Pi
, leading to a one-piece chaotic area Ai.

This corresponds to the first homoclinic bifurcation of the saddle equilibria Pi. This bifurcation
is the two-dimensional analogue of that occurring in the 1D case, described in Section 3,
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Figure 9: Basins of attraction. Basin B1 of the attractor located around P1 is in pink, whereas basin B2,
whose points lead to the attractor around P2, is in orange. In (a), for e = 3.43, attractorsA1 andA2 are two
coexisting 4-cycles. In (b), for e = 3.56, the attractors are two coexisting two-piece chaotic attractors.
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Figure 10: Bifurcation diagrams. The b.d. in (a) corresponds to an initial condition close to P1, whereas the
b.d. in (b) assumes an initial condition close to P2. The green portion of the diagrams is the same for any
initial condition (except for those leading to divergent trajectories).

Figure 4. The latter was due to a contact between a critical point on the boundary of the chaotic
interval and the unstable steady state. Here we have a contact between arcs of critical curves,
which constitute the boundary of the chaotic attractor (see Mira et al. [25]), and the stable
set of the saddle. From Figure 10 we can see that such global bifurcations also occur in an
asynchronous manner: at e = e1

(AB) we first observe it for P1, and it then occurs for P2 at
e = e2

(AB) > e
1
(AB). In Figure 11(a), which shows the homoclinic bifurcation of P1, the value of

e is approximately e1
(AB)

∼= 3.6. Just after this global bifurcation, for e > e1
(AB) but still close to

the bifurcation value, attractorA1 is a one-piece chaotic area. An interesting feature related to
this homoclinic bifurcation is that the boundary of the chaotic attractor is no longer made up
of only segments of critical curves, but includes both portions of critical curves and portions
of the unstable manifold Wu

P1
of saddle point P1 (a so-called mixed-type boundary,as described

in Mira et al. [25]). This is highlighted in Figure 11(b). Clearly, the same kind of bifurcation
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Figure 11: First homoclinic bifurcation of P1. (a) shows the contact between the two pieces of attractorA1
and the stable set Ws

P1
, at the bifurcation value e = e1

(AB) = 3.6. (b) portrays the one-piece chaotic area A1

after the bifurcation, at e = 3.65, whose boundary is made up of pieces of both critical lines (denoted as
LC) and unstable manifold (Wu

P1
).

occurs at e = e2
(AB), involving the stable set WS

P2
of saddle equilibrium point P2 and leading to

a one-piece chaotic areaA2.

4.2.2. Second Homoclinic Bifurcation of P1 and P2, and Homoclinic Bifurcation of O

For e > e2
(AB), the two chaotic areas include the saddle equilibria Pi on their border. These

saddle points only have homoclinic points on one branch of their stable set: the one which
is inside the chaotic area. A second homoclinic bifurcation of the equilibria Pi will occur at
higher values of e, involving the other side of the stable set of saddles Pi, and leading to
two other global bifurcations, whose effects are even more dramatic with respect to the first
one. As expected, the two bifurcations do not occur simultaneously. Instead, as we shall see,
each of these secondary homoclinic bifurcations of saddles Pi is simultaneous to a homoclinic
bifurcation of the saddle equilibrium O, involving one and then the other side of its unstable
set, respectively. First the homoclinic bifurcation of P1 occurs, at e = e1

(BC), leading to the
“disappearance” of the chaotic attractor A1 (and leaving A2 as the unique attracting set).
Then the homoclinic bifurcation of P2 occurs, at e = e2

(CD) > e
1
(BC), leading to the “explosion”

of the chaotic attractorA2. Let us describe this sequence in our example.
By increasing parameter e, for e > e2

(AB) the chaotic attractors become increasingly
larger, until one of them has a contact with the frontier between its basin of attraction and that
of the coexisting attractor. The first contact occurs at e = e1

(BC) (� 4.198), involving equilibrium
point P1, which is shown in Figure 12(a). We can see that tongues of basin B2 have reached
the boundary of chaotic area A1, and are accumulating along the branch of stable set WS

P1
.

This means that the unstable set Wu
P1
(on the frontier of the chaotic areaA1) and the stable set

WS
P1
(whose points are accumulating on the frontier of basin B1) are at the second homoclinic

tangency of P1 (which will be followed by transverse crossing). In the meantime, we can
see that tongues of chaotic area A1 (whose boundary consists of limit points of the unstable
set Wu

O of the fundamental equilibrium) have reached the boundary of the basin and have
contacts with the stable set of the origin,WS

O. We are therefore at the first homoclinic tangency
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Figure 12: One-side homoclinic bifurcation of O. (a) shows the situation at the bifurcation value e � 4.198,
while (b) portrays a situation just after the bifurcation, at e = 4.2.

of O (which will be followed by transverse crossing). This is not a surprising situation but
the standard mechanism, due to the fact that homoclinic points involve the whole stable set
WS

P1
external to the chaotic area, and this branch is related to the frontier. This means that,

besides the two homoclinic bifurcations occurring simultaneously at e = e1
(BC), heteroclinic

connections and heteroclinic loops between the two equilibria P1 and O also occur. The effect
of this bifurcation is “catastrophic:” the chaotic attractor A1 disappears, becoming a chaotic
repellor. For e = e1

(BC), the unique attractor A2 is left (see Figure 12(b)). For values of e not
far from this bifurcation, convergence to the unique attractor may be very slow. This is due
to the existence of the chaotic repellor (in the same region previously covered by chaotic
area A1) and before convergence the system may exhibit a kind of chaotic behavior along
the ”ghost” of the old chaotic attractor A1 (sometimes it takes about 100 000 time periods
before convergence to the new chaotic area A2 can be observed). We remark that, starting
from initial conditions close to P2, converging to A2, we cannot detect any differences in
the dynamic behavior before and after this bifurcation, because the latter involves only the
other attractor A1. This is clearly a global bifurcation of basin of attraction B2. In fact, at
this bifurcation, the previous two basins merge into a unique one (see Figure 12(b)); that is,
basin B2 becomes much wider and its frontier separates the points of the phase plane having
bounded trajectories from those generating divergent trajectories (basin B∞). However, it
is worth noting that the numerically obtained picture of basin B2 also includes all of the
repelling cycles existing in the chaotic repellor, as well as its stable set. Namely, the colored
area representing B2 in Figure 12(b) also contains the unstable equilibria O and P1 with
their stable sets, as well as infinitely many other cycles, all belonging to an invariant set
characterized by chaotic dynamics which, however, has measure zero in the phase plane, so
that it is not detectable in practice from the iterated points. The existence of a strange repellor,
besides affecting the chaotic transient, as observed above, also causes another remarkable
homoclinic bifurcation involving the chaotic areaA2. In fact, as e increases, we approach the
second homoclinic bifurcation of saddle P2, which is located on the boundary of the chaotic
attractor. This bifurcation involves the branch of the stable set external to the chaotic area,
and at the same time it also represents the second homoclinic bifurcation of the fundamental
equilibriumO. The parameter bifurcation value is e = e2

(CD), at which chaotic areaA2 becomes
tangent to the left-hand side of the stable set Ws

O of the fundamental equilibrium O (as can be



Discrete Dynamics in Nature and Society 19

y

x

O

P2

P1

−4

0

3.5

−2.5 0 2.5

(a)

y

x

P2

P1

−4

0

3.8

−2.5 0 2.5

(b)

Pr
ic

e
H

(d
ev

ia
ti

on
fr

om
fu

nd
am

en
ta

l)

−1.5

−1

−0.5
0

0.5

1

1.5

Time

200 250 300 350 400

(c)

E
xc

ha
ng

e
ra

te
(d

ev
ia

ti
on

fr
om

fu
nd

am
en

ta
l)

−6

−4

−2

0

2

4

6

Time

200 250 300 350 400

(d)

Figure 13: Homoclinic bifurcation of O and final bifurcation. In (a), we take e = 4.3, while in (b) e = 4.893.
The points that will be involved in the contact between the strange attractor and the basin boundary can
easily be guessed. In (c) and (d) we represent the dynamics of the state variables x and y in the time
domain, switching between bull and bear markets, for e = 4.75.

argued from Figure 13(a), at a value of e just after the bifurcation). Again, though not visible
from the figure, this occurs simultaneously to the homoclinic bifurcation involving the stable
set Ws

P2
and the unstable set Wu

P2
, and is also related to the heteroclinic connections between

the fixed point P2 and the fundamental steady state O. The appearance of such homoclinic
orbits is revealed from the dynamic effect occurring at the bifurcation. This results in a sudden
increase of the chaotic area, which now also covers that of the chaotic repellor (which is
included in the wider chaotic area).

The asymmetry of the map implies that the contacts between the chaotic attractors
and the stable manifold of O do not occur at the same time. In our example, for values
of e such that e1

(BC) < e < e2
(CD), the asymptotic dynamics of the exchange rate usually

take place above the fundamental value, while the asymptotic values of stock price H are
lower than the fundamental price. This dynamic behavior changes drastically at the global
bifurcation occurring at e = e2

(CD), leading to an explosion of the chaotic area. In general, for
e < e2

(CD) the asympotic behavior is approximately on one side of the fundamental. Apart
from initial conditions taken in B∞, the asymptotic dynamics occur (approximately) either in
the bear region (the second quadrant, x > 0, y < 0) or in the bull region (the fourth quadrant
x < 0, y > 0) (there may indeed be some points of the attractors located in the first or third
quadrants). In contrast, for values of parameter e larger than e2

(CD), the asymptotic dynamics
take place across both quadrants, and switches from one to the other at unpredictable points
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Figure 14: Homoclinic bifurcation of O and final bifurcation. In (a), the value of e is 4.893 , while in (b)
e = 5.05.

in time. After the bifurcation, but for e close enough to the bifurcation value, almost all
realizations will be on the fourth quadrant (see Figure 13(a)), and only rare transitions to the
area previously occupied by the chaotic repellor are observed. When e is sufficiently large, the
number of iterations on each region and the number of switches becomes more frequent and
totally unpredictable, so that the density of points in the two regions is the same on average
(see Figure 13(b)). But differently, both regions become relevant to the dynamics in the time
domain. Figures 13(c), 13(d) represent time paths of state variables x and y, obtained with a
value of parameter e larger than its second homoclinic bifurcation value e2

(CD).
We remark that in the interval of values of e where a unique attractor exists (that is, for

e > e2
(CD)), before the last homoclinic bifurcation (final bifurcation) described in what follows,

several other periodic windows may arise, each related to a local bifurcation causing the
appearance, in pairs, of a cycle saddle and a node, followed by a cascade of local and global
bifurcations similar to those described earlier for the fixed points. Two periodic windows
related to cycles of period 3 are clearly visible in the bifurcation diagram of Figure 10.
However, as e increases, the dominant dynamics is chaotic behavior across the whole area.

From an economic perspective our findings imply that the famous bull and bear
market dynamics first described by Day and Huang [1]— and also observed in the previous
section—may indeed survive an extension to a higher dimensional context. However, price
fluctuations may become even more intricate since now there is an additional (irregular)
feedback from the stock market to the foreign exchange market. In addition, we see that an
otherwise stable stock market may display complex endogenous dynamics when coupled
with an unstable foreign exchange market.

4.2.3. Final Bifurcation

So far, we have observed several homoclinic bifurcations involving the chaotic area. It is
worth noting that the homoclinic bifurcations occurring at e = e1

(AB) and e = e2
(AB) are also

called interior crises in Grebogi et al. [26]. The reason for this is clearly related to their dynamic
effect, while the bifurcations occurring at e = e1

(BC) and e = e2
(CD) are also called exterior crises,

again in relation to their dynamic effect. Now let us describe the so-called final bifurcation,
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Figure 15: Bifurcation diagram of the dynamic behavior of x as a function of the parameter e, in the three-
dimensional model, at the other parameter values given in the text (Section 5). Pitchfork bifurcation of the
fundamental O at ep � 0.122. Flip bifurcation of P1 at ef1 � 2.348, flip bifurcation of P2 at ef2 � 2.457. First
homoclinic bifurcation of P1eh1 � 3.565, first homoclinic bifurcation of P2 at eh2 � 3.6. Global bifurcation
causing the disappearance of the chaotic set with P1 at eg1 � 4.215, global bifurcation causing the explosion
to a wide chaotic set at eg2 � 4.323. Final bifurcation at ef � 5.06.

which is clearly an external crisis in the earlier characterization, as it leads to the destruction
of the chaotic area. As seen above (see Figure 13(b)), at high values of e the one piece chaotic
attractor comes very close to the boundary of its basin of attraction, and a contact with that
boundary can easily be predicted. So far, the bifurcations have never involved the frontier of
basin B∞, which also includes a 2-cycle saddle, {C1, C2}, whose stable set gives the boundary
of the region of divergent trajectories. This cycle is shown in Figure 14(a). The same Figurere
also shows that the frontier ∂B∞ is approaching the unstable set of equilibrium point P1 (see
arrow in Figure 14(a)). The contacts between the frontier and the chaotic area occur at a value
of e = e(DE), very close to that used in Figure 14(a), and we can see from the same Figurere
that the contact points will appear both close to equilibrium P1 and to the 2-cycle {C1, C2}.
Thus, at e = e(DE), the first homoclinic bifurcation of the 2-cycle {C1, C2} occurs and at the
same time it is also heteroclinic bifurcation (or better, an heteroclinic connection) between P1

and the 2-cycle {C1, C2}. After that, for e > e(DE), the stable and unstable sets of the 2-cycle
{C1, C2} intersect, and intersections between the unstable set Wu

P1
and the stable set WS

C1,C2

also exist, and vice versa, between the stable set WS
P1

and the unstable set Wu
C1,C2

.
It follows that almost all initial conditions inside the previous basin B will generate

divergent trajectories, that is, the chaotic attractor turns into a chaotic repellor. This means
that for e > e(DE) the initial conditions which generate bounded trajectories are confined to a
set of zero Lebesgue measure, and for values of e close to the bifurcation we also have long
chaotic transients on the ”ghost” of the old attractor before observing divergent behavior. An
example of such a chaotic transient is shown in Figure 14(b).

5. Analysis of the 3D Model

In this section we deal with the complete three-dimensional model. Our analysis (mainly via
numerical simulations) will show that the dynamic phenomena highlighted in the previous
lower dimensional models also persist in the full model. In particular, we shall see that (as
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for the model in the previous section), the origin is always an equilibrium, and two more
equilibria appear as parameter e increases, leading to bistability. A sequence of local and
global bifurcations then determine the transition between different dynamic regimes, namely,
to more complex coexisting attractors, up to a global bifurcation which brings about a regime
of bull and bear market fluctuations, as we have seen both in the 1D and 2D model. Such
regime is characterized by apparently random switches of prices across different regions of
the phase space (even more details on this setting may be found in Tramontana et al. [27]).

In the full model, stock market traders from countries A and H are allowed to trade in
both markets; that is, cH > 0 and cA > 0. In this case, the two stock prices and the exchange
rate are all interdependent, and the model has the complete structure expressed by equations
(2.1), (2.4), (2.7). The system, formulated in deviations (although we work with deviations, in
all the following numerical experiments we have checked that original prices never become
negative) from fundamental values, x = (PH − FH), y = (S − FS) and z = (PA − FA), is
expressed by the map T : R

3 → R
3 in the following form:

T :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xt+1 = xt − aH
[(
bH + cH

)
xt + cHγHyt

]

yt+1 = yt − d
[
cH
(
xt + FH

)(
xt + γHyt

)]

−d
[
cA

zt + FA

yt + FS

(
γA

yt

FS
(
yt + FS

) − zt
)
− eyt + fy3

t

]

zt+1 = zt − aA
[(
bA + cA

)
zt − cAγA

yt

FS
(
yt + FS

)
]

(5.1)

The model is analytically not tractable. Apart from the fundamental fixed point, say O =
(0, 0, 0), whose existence can be immediately checked, we cannot solve explicitly for
the coordinates of further possible nonfundamental equilibria, nor can we obtain easily
interpretable analytical conditions for their existence. A brief discussion of the steady states
is provided as follows.

By imposing the fixed point condition to (5.1), we obtain the following system of
equations:

(
bH + cH

)
x + cHγHy = 0, (5.2)

cH
(
x + FH

)(
x + γHy

)
+ cA

z + FA

y + FS

(
γA

y

FS
(
y + FS

) − z
)
− ey + fy3 = 0, (5.3)

(
bA + cA

)
z − cAγA

y

FS
(
y + FS

) = 0. (5.4)

We observe from (5.2) and (5.4) that any steady state must belong to both the sets of
equations:

y = − x

qH
, z = qA

y(
y + FS

) , (5.5)
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where

qH :=
cHγH

bH + cH
, qA :=

cAγA(
bA + cA

)
FS

(5.6)

This implies that when the steady state exchange rate is above the fundamental value (y > 0),
steady state price A is then above the fundamental value (z > 0), whereas steady state price
H is below the fundamental value (x < 0), and vice versa. From now on, we will label the
region y > 0, z > 0, x < 0 as the bull region and region y < 0, z < 0, x > 0 as the bear region.

By substituting (5.5) into (5.3), we can express condition (5.3) in terms of the steady
state (deviation of) price H only, as follows:

x

[
f

(
qH
)3
x2 + bHx +

(
bHFH − e

qH

)
+M(x)

]
= 0, (5.7)

where

M(x) := bAqHqA
qHFSFA − x

(
qA + FA

)
(
qHFS − x

)3
. (5.8)

Therefore, besides the fundamental solution x = 0, further possible solutions are the roots
of the expression in square brackets in (5.7). When cA > 0 it becomes impossible to solve
equation (5.7) analytically (as it was for cA = 0). When cA is small enough, we may expect
a steady state structure qualitatively similar to that of the two-dimensional subcase cA = 0,
with two further steady states appearing simultaneously in the bull region, via saddle-node
bifurcation, and this will be confirmed by the numerical example given below.

We remark that the analytical investigation of the local stability properties of the
fundamental fixed point O = (0, 0, 0) is also a difficult task. The Jacobian matrix evaluated
at O is given by

J(O) :

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − aH
(
bH + cH

)
−aHcHγH 0

−dcHFH 1 − d
[
cHFHγH +

cAFAγA

(
FS
)3
− e
]

dcAFA

FS

0
aAcAγA

(
FS
)2

1 − aA
(
bA + cA

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (5.9)

and its eigenvalues cannot be found explicitly, nor can we write down tractable analytical
conditions for the eigenvalues to be smaller than one in modulus.

We will now study the local and global bifurcations via numerical investigation,
supported by our knowledge of the model behavior in the simplified, two-dimensional
case. Our base parameter selection is the following: aH = 0.41, bH = 0.11, cH = 0.83,
FH = 4.279, γH = 0.3, d = 0.35, f = 0.7, FS = 6.07 (which are the same parameters used
in the previous section, enabling a direct comparison), aA = 0.43, bA = 0.21, cA = 0.2,
γA = 0.36, and FA = 1.1. In order to compare the dynamics we have chosen a value of
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cA not so far from zero, and lower than cH . Bifurcations similar to those described below
are observed also with other parameter constellations. The numerical analysis performed
in Appendix D shows that O loses stability when one eigenvalue becomes equal to 1 at
ep � 0.122. This probably corresponds to a pitchfork bifurcation, because we observe the
simultaneous appearance of two further equilibria, which we denote as P1 (in the bear region)
and P2 (in the bull region). In Figure 15 we show the bifurcation diagrams of the state variable
x as a function of the parameter e. As we can see in Figure 15 the effect of the local bifurcation
of the fundamental steady state is qualitatively the same as for the two-dimensional subcase.
That is, there exist two nonfundamental equilibria, and depending on the initial conditions,
bounded trajectories are convergent either to one or to the other (whereas initial conditions
far from the equilibria here also give divergent trajectories, as expected). As the parameter
e increases we observe bifurcation sequences involving the two coexisting equilibria, and
then the two coexisting attractors. The structure of the observed bifurcations looks similar to
those observed in the two-dimensional model, albeit involving stable and unstable manifolds
in higher dimensions. Thus we confirm and strengthen almost all of the results of the two-
dimensional case, although via numerical simulations only. From Figure 15 we see that the
sequence of bifurcations are asynchronous, first a flip bifurcation of the equilibrium point P1

(in the bear region, Figure 15(a)) occurs, at ef1 � 2.348, while that of the equilibrium point
P2 (Figure 15(b)) occurs, at ef2 � 2.457. Then sequences of local and global bifurcations
give rise to two coexisting chaotic sets, with basins which are separated by the stable set
of the unstable fundamental equilibrium in the origin. The equilibrium point P1 becomes
homoclinic at eh1 � 3.565, while the first homoclinic bifurcation of P2 occurs, at eh2 � 3.6.
A global bifurcation causes the disappearance of the chaotic attractor associated with P1 at
eg1 � 4.215, after which we shall have a unique attractor. At first this unique attractor is
associated with the bull region around P2, and after a global bifurcation at eg2 � 4.323 we
have the explosion to a wide chaotic set, which covers the two regions previously disjoint,
and the dynamics become totally unpredictable. The states will jump in a chaotic way from
one region to the other, up to a final bifurcation (probably due to a contact with the basin of
divergent trajectories, which is now difficult to detect), at ef � 5.06.

Note that the emergence of endogenous bull and bear market dynamics implies that
the unstable foreign exchange market destabilizes both the home and the foreign stock
market. With respect to the two stock markets our model thus implies that financial market
liberalization in the sense of free capital movements may deteriorate market efficiency. In both
stock markets we observe an increase in price volatility and persistent deviations between
stock prices and their fundamental values. Of course, other effects related to financial market
liberalization may counter this result. In addition, we have seen that for some parameter
combinations the fixed point of the exchange rate may become stabilized in the presence of
market interactions.

6. Conclusion

We have considered a three-dimensional discrete-time dynamic model of internationally
connected financial markets, where two stock markets, populated by national and foreign
fundamental traders, interact with each other via the foreign exchange market. In the latter,
heterogeneous speculators are active, and their nonlinear trading rules are at the origin of
complicated endogenous fluctuations across all three markets, similar to the well-known bull
and bear market dynamics first observed by Day and Huang [1] in a stylized one-dimensional
model.
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The possibility to reduce the dimension of the dynamical system, via restrictions
imposed on the activity of foreign traders, results in simplified one- and two-dimensional
setups, whose analysis is simpler and helped in the understanding of those dynamic
phenomena occurring in the complete three-dimensional model. While the one-dimensional
case has the same qualitative dynamics of the Day and Huang [1] model, the two-
dimensional model represents a generalization of such dynamics to the case of two
interacting markets, which can be studied by properly extending the methods and concepts
used in the one-dimensional analysis. These include, in particular, the properties of
noninvertible maps and the theory of homoclinic bifurcations. The numerical and graphical
analysis becomes essential when switching from the one- to the two-dimensional case.
Nevertheless, a suitable mix of analytical and numerical techniques allows us to detect a
sequence of homoclinic bifurcations—analogous to those occurring in the one-dimensional
case—through which the model switches across increasingly complex scenarios, as a crucial
parameter is varied: from coexistence of two attractors in two distinct bull and bear areas,
to the sudden disappearance of one of them, up to chaotic behavior on a unique attractor,
with stock prices and exchange rates unpredictably switching among different regions of the
phase space. Then we have seen that also in the three-dimensional model the local and global
bifurcations, when considered as a function of the same parameter, follow a path strictly
related to those of the two-dimensional model. From the coexistence of two attractors in
two distinct bull and bear areas we see a transition to a wide chaotic set in which the jumps
between the two regions become unpredictable.

Appendices

A.

In this appendix we compare the behavior, as the parameter e increases, of the maximum
value xM0 (e) and that of the point α+(e) of the 2-cycle which bounds the basin of divergent
trajectories, showing that xM0 (e) increases faster than the point α+(e) so that the two values
become equal at a finite value of the parameter e (called ef).

From (3.2) let us consider

xt+1 = φ(xt) = xt
[
A − Bx2

t

]
, A = (1 + de) , B = df. (A.1)

The second iterate of the map is given as

xt+2 = xt
(
A − Bx2

t

)[
A − Bx2

t

(
A2 +

(
Bx2

t

)2
− 2ABx2

t

)]
(A.2)

Let us now look at the solutions of the equation xt+2 = xt, among which are the periodic points
of period-2 of the map φ. By defining ξ := Bx2

t we get a fourth-degree algebraic equation in ξ :

ξ4 − 3Aξ3 + 3A2ξ2 −
(
A +A3

)
ξ +
(
A2 − 1

)
= 0 (A.3)

whose roots are associated with the coordinates of the 2-cycle existing for x > 0, say ξ1 and ξ2,
with the fixed point in the positive half-line (for which we know that the root is ξ∗ = A − 1)
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and to the point ξ+ := B(α+)
2. From the relations between the coefficients of the polynomial

and its roots we have

ξ1ξ2ξ
∗ξ+ =

(
A2 − 1

)
(A.4)

so that

ξ1ξ2ξ+ = A + 1. (A.5)

We can thus conclude that the product ξ1ξ2ξ+ tends to∞ as fast as e, whereas we have xM0 (e) =
2(1 + de)/3

√
(1 + de)/3df , which tends to∞ as fast as e3/2.

B.

In this appendix we provide an analytical study of the eigenvalues of the Jacobian matrix
evaluated at the fundamental steady state.

The Jacobian matrix of system (4.2) is the following:

J
(
x, y
)

:

[
1 − aH

(
bH + cH

)
−aHcHγH

−dcH
(
2x + γHy + FH

)
1 − d

[
cHγH

(
x + FH

)
− e + 3fy2]

]
, (B.1)

which, at the fundamental steady state O, becomes

J = J(0, 0) =

[
1 − aH

(
bH + cH

)
−aHcHγH

−dcHFH 1 − d
(
cHγHFH − e

)
]
. (B.2)

The eigenvalues are the roots of the characteristic polynomial P(λ) = λ2 − tr(J)λ + det(J),
where tr(J) and det(J) are the trace and determinant of J , respectively. Simple computations
allow us to check that [tr(J)]2 − 4det(J) > 0, which rules out the possibility of complex
eigenvalues. In order to localize the (real) eigenvalues with respect to the interval [−1, 1], it is
convenient in this case to rewrite the characteristic equation in terms of the variable μ = 1−λ,
as follows:

μ2 − αμ + β = 0, (B.3)

where

α = 2 − tr(J) =
(
bH + cH

)(
aH + dqHFH

)
− de, (B.4)

β = det(J) − tr(J) + 1 = daH
(
bH + cH

)(
bHqHFH − e

)
, (B.5)
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so that stability requires that both solutions of (B.3), say

μ1 :=
α −
√
α2 − 4β

2
, μ2 :=

α +
√
α2 − 4β

2
, (B.6)

lie between 0 and 2. We simplify the analysis by introducing the additional requirement
(which is largely fulfilled in our numerical examples) that parameters d and aH are not too
large, namely,

(
bH + cH

)(
aH + dqHFH

)
< 2. (B.7)

Note that this implies α < 2 for any d, e > 0, as can be checked. Let us now consider the effect
of increasing parameter e. It is clear that for e < bHqHFH := eCS both α and β are also strictly
positive. Therefore, 0 < μ1 < μ2 < 2; that is, −1 < λ2 < λ1 < 1, where λ1 := 1 − μ1, λ2 := 1 − μ2.
In particular, for e = bHqHFH , we obtain β = 0 and therefore 0 = μ1 < μ2 < 2. This means
that λ1 = 1, while λ2 remains smaller than one in modulus. This corresponds to the loss of
stability of the fundamental steady state, through a transcritical bifurcation, as can be argued
from the numerical analysis performed in Section 4.

C.

In this appendix we provide the equation of the critical curve LC−1 of map T defined in (4.2).
Starting from the Jacobian matrix (B.1), we can obtain LC−1, which is defined as the set of
points satisfying det(J(x, y)) = 0. This equation can be reduced to the following form:

x = Ay2 + By + C, (C.1)

where

A =
−3f
[
1 − aH

(
bH + cH

)]

cHγH
[
1 − aH

(
bH + cH

)
+ 2aHcH

] ,

B =
−aHγHcH

1 − aH
(
bH + cH

)
+ 2aHcH

,

C =

[
1 − aH

(
bH + cH

)][
1 + d

(
e − cHγHFH

)]

dcHγH
[
1 − aH

(
bH + cH

)
+ 2aHcH

] − aHcHFH

1 − aH
(
bH + cH

)
+ 2aHcH

.

(C.2)

The image LC = T(LC−1) is a curve which separates the plane in regions whose points have
a different number of rank-1 preimages. Here we have the case that any point has at least
one rank-1 preimage, while those on one side of curve LC have three rank-1 preimages. The
points belonging to curve LC have two merging rank-1 preimages in a point belonging to
LC−1 and one more preimage (called extra preimage in Mira et al. [25]). An example of curves
LC−1 and LC is shown in Figure 9. As briefly explained in the text, such curves are responsible
for the global bifurcations occurring to the structure of the basins of attractions. Disconnected
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portions of the basins can only emerge in the case of noninvertible maps, and are associated
with contacts of the basin boundary with curve LC (interested readers are invited to consult
Mira et al. [25]).

D.

Given the parameters selection used in this work (that is, aH = 0.41, bH = 0.11, cH = 0.83,
FH = 4.279, γH = 0.3, d = 0.35, f = 0.7, FS = 6.07, aA = 0.43, bA = 0.21, cA = 0.2, γA =
0.36, FA = 1.1), from (5.9) the Jacobian matrix of the three dimensional map evaluated at the
fixed point O = (0, 0, 0) becomes

J(O) :

⎡
⎢⎢⎣

0.6146 −0.10209 0

−1.2430495 0.626961205 + 0.35e 0.012685

0 0.00084 0.08237

⎤
⎥⎥⎦ (D.1)

so that we look for the necessary and sufficient conditions for O to have all the eigenvalues
less than one in modulus, roots of the characteristic polynomial:

λ3 +A1λ
2 +A2λ +A3 = 0, (D.2)

where

A1 = −2.0653 − 0.35e

A2 = 1.2811 + 0.503405e

A3 = −0.2129 − 0.1772e.

(D.3)

Following Farebrother [28] the eigenvalues of the polynomial given earlier have to satisfy the
following conditions (equivalent conditions can be found in Gandolfo [29], Yury’s condition
in Elaydi [30] and Okuguchi and Irie [31] :

(i) 1 +A1 +A2 +A3 > 0,

(ii) 1 −A1 +A2 −A3 > 0,

(iii) 1 −A2 +A1A3 − (A3)
2 > 0,

(iv) A2 < 3.

In our case the condition (i) is satisfied if e < 0.122 (approximate value). Condition (ii)
becomes 4.5593 + 1.0306e > 0 and is obviously satisfied for positive values of e. Condition
(iii) is satisfied for e < 1.0738 and e > 3.445. The last condition is fulfilled for e < 3.4145.
Starting from values of the parameter e positive and close to 0 and increasing the value, the
first condition which is violated is (i), so e = 0.122 is the bifurcation value at which the fixed
point loses stability, and at this value one eigenvalue is equal to 1.
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