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We prove that the Burkill-Cesari integral is a value on a subspace of𝐴𝐶 and then discuss its continuity with respect to both the 𝐵𝑉
and the Lipschitz norm.We provide an example of value on a subspace of𝐴𝐶 strictly containing 𝑝𝑁𝐴 as well as an existence result
of a Lipschitz continuous value, different from Aumann and Shapley’s one, on a subspace of 𝐴𝐶

∞
.

1. Introduction

Since the seminal Aumann and Shapley’s book [1], it is widely
recognized that the theory of value of nonatomic games is
strictly linked with different concepts of derivatives. A few
papers, up to the recent literature, have investigated these
relations (see, e.g., [2–4]). In [1] Aumann and Shapley proved
the existence and uniqueness of a value on the space 𝑝𝑁𝐴,
namely, the space spanned by the powers of nonatomic
measures (which, under suitable hypotheses, contains, for
instance, games of interest in mathematical economics such
as transferable utility economies with finite types). Moreover,
in [1, Theorem H], the authors provided an explicit formula
for the value of games ] in 𝑝𝑁𝐴 in terms of a derivative of
their “ideal” set function ]∗.

To the best of our knowledge, the more general contri-
bution so far on the link between derivatives of set functions
and value theory is Mertens [3]; his results led to the proof
of the existence of a value on spaces larger than 𝑝𝑁𝐴. A
more recent contribution on the same subject is due to
Montrucchio and Semeraro [4].The problem of the existence
of a value on the whole space 𝐴𝐶 of absolutely continuous
games (which contains 𝑝𝑁𝐴) is instead still unsolved and
challenging. Therefore, proofs of the existence of a value on
other subspaces of 𝐴𝐶, beyond 𝑝𝑁𝐴, can represent a step
forward, and investigations of this kind appear to be in order.

In Epstein and Marinacci [2] the question of the relation
between their refinement derivative and the value was posed
and a possible direction sketched; in Montrucchio and
Semeraro [4], the authors applied their more general (i.e.,
without the nonatomicity restriction) notion of refinement
derivative to the study of the value on certain spaces of games
by extending the potential approach of Hart and Mas-Colell
[5] to infinite games.

In a previous paper [6] we had pointed out that, in a
nonatomic context, the refinement derivative is connected
with the classical Burkill-Cesari (BC) integral of set functions
and, for BC integrable functions, the BC integral coincides
with the refinement derivative at the empty set. Though less
general, the BC integral is analytically more treatable.

Motivated by all these facts, in [6] we have started the
study of the BC integral in the framework of transferable
utility (TU) games.

In this paper we extend our investigation to develop the
connection with the theory of value or of semivalue, also
in the light of the problem exposed above. In Section 2 we
introduce the general class of BC integrable games and prove
that, under natural assumptions, “regular” measure games
belong to this class. Moreover, the class of BC integrable
games contains a dense subspace of the largely used space
𝑝𝑁𝐴, where continuous values and semivalues are largely
described in the literature (see, for instance, [7]). In addition,
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on the subspace of BC integrable games in𝐴𝐶, the BC integral
turns out to be a semivalue. Then, as natural, one considers
the subspace of feasible BC integrable games, that is, the space
where the BC integral becomes indeed a value. We provide
examples of feasible BC integrable games that do not belong
to 𝑝𝑁𝐴. Actually by means of these examples, we provide a
large class of subspaces of𝐴𝐶where the BC integral is a value,
and we also exhibit an example of a subspace of 𝐴𝐶 strictly
containing 𝑝𝑁𝐴 on which a value can be defined as a sort of
direct sum of the usual Aumann-Shapley value and this new
set function.

Unfortunately, the BC integral proves to be not continu-
ous with respect to the 𝐵𝑉 norm on the BC integrable games
in 𝐴𝐶. As continuity appears to be a crucial property for
many questions concerning the value on subspaces of 𝐵𝑉, in
Section 3 we specialize to the subspace 𝐴𝐶

∞
⊂ 𝐴𝐶 of the

so-called Lipschitz games, where a suitable finer norm (the
‖ ⋅ ‖

∞
-norm) is defined and used as an alternative (see [8, 9]).

We completely characterize the scalar measure games (where
themeasure is nonnegative) that belong to𝐴𝐶

∞
andwe show

that the BC integral on an appropriate subspace is a Milnor
(therefore ‖ ⋅ ‖

∞
-continuous) semivalue. Then again we turn

our attention to the subspace of feasible BC integrable games
in 𝐴𝐶

∞
and to its closure in the ‖ ⋅ ‖

∞
-norm, 𝐹𝐸𝐴𝑆

∞
. In the

final part of the paper we consider and somehow characterize
the space 𝐹𝐸𝐴𝑆

∞
∩ 𝑝𝑁𝐴

∞
(namely, the ‖ ⋅ ‖

∞
-closure of

vector measure games generated by polynomials), and we
show that the BC integral is not the unique value on it, in that
it does not coincide with the Aumann-Shapley value.

2. A Semivalue on a Space of Burkill-Cesari
Integrable Games

From now on we will denote by (Ω, Σ) a standard Borel space
(i.e., Ω is a Borel set of a Polish space and Σ the family of
its Borel subsets). Ω represents a set of players and Σ the 𝜎-
algebra of admissible coalitions.

A set function ] : Σ → R such that ](Ø) = 0 is called a
transferable utility (TU) game.

For the sake of brevity we refer the reader to [1, 14] for
the terminology concerning TU games: in particular 𝐵𝑉 will
denote the space of all bounded variation games, endowed
with the variation norm ‖ ⋅ ‖

𝐵𝑉
. The subspace of nonatomic

countably additive measures will be denoted by 𝑁𝐴 and the
cone of the nonnegative elements of𝑁𝐴 by𝑁𝐴+.

Throughout the paper we will write ] ≪ 𝜇 to mean that
absolute continuity by chains holds.

Definition 1 (see [1]). A chain 𝐶 is a nondecreasing family of
sets:

Ø = 𝑆
0
⊂ 𝑆

1
⊂ ⋅ ⋅ ⋅ ⊂ 𝑆

𝑛
= Ω. (1)

A link of a chain is a set of two consecutive elements {𝑆
𝑖−1
, 𝑆

𝑖
}.

A subchain of a chain is any set of links.

A chain will be identified with the subchain consisting of
all the links. Given a game ] and a subchain Λ of a chain C,
the variation of ] over Λ is defined as

‖]‖
Λ
:= ∑

] (𝑆𝑖) − ] (𝑆𝑖−1)
 , (2)

where the sum ranges over all indexes 𝑖 such that {𝑆
𝑖−1
, 𝑆

𝑖
} is

a link in the subchain.

Definition 2 (see [1]). If ] and 𝑤 are two games defined on Σ,
] is said to be absolutely continuous with respect to 𝑤 if for
every 𝜀 > 0 there exists a 𝛿 > 0 such that, for every chain 𝐶
and every subchain Λ of 𝐶,

‖𝑤‖
Λ
≤ 𝛿 ⇒ ‖]‖

Λ
≤ 𝜀. (3)

The space 𝐴𝐶 ⊂ 𝐵𝑉 introduced by Aumann and Shapley
[1] is the space of all games ] for which there exists 𝜇 ∈
𝑁𝐴

+such that ] is absolutely continuous with respect to 𝜇.
We also refer the reader to [2] and to our previous

paper [6] for details about the Epstein-Marinacci refinement
derivative.

A partition 𝐷 of a set 𝐸 ∈ Σ is a finite family of pairwise
disjoint elements of Σ, whose union is 𝐸. By Π(𝐸) we will
denote the set of all the partitions of 𝐸. A partition𝐷 ∈ Π(𝐸)
is a refinement of another partition𝐷 ∈ Π(𝐸) if each element
of𝐷 is union of elements of𝐷.

As in [11], given a monotone nonatomic game 𝜆 one
defines the mesh of a partition𝐷 as

𝛿
𝜆
(𝐷) = max {𝜆 (𝐼) , 𝐼 ∈ 𝐷} (4)

and the Burkill-Cesari (BC) integral of a game ] with respect
to 𝛿

𝜆
as

𝐸 → ∫
𝐸

] = lim
𝛿𝜆(𝐷)→0

𝐷∈Π(𝐸)

∑

𝐼∈𝐷

] (𝐼) . (5)

We denote by BC the space of games ] such that there exists
𝜆 ∈ 𝑁𝐴

+ so that ] is BC integrable with respect to the mesh
𝛿
𝜆
.
The BC integral does not depend upon the integration

mesh (see Proposition 5.2 in [6]); in other words, for every
𝜆 ∈ 𝑁𝐴

+ such that ] is 𝛿
𝜆
-BC integrable, the BC integral is

the same. Moreover, the BC integral of a game ] is a finitely
additivemeasure and, as observed in [6], it coincides with the
Epstein-Marinacci outer derivative at the empty set 𝜕+Ø(], ⋅)
(see [2]).Hence, fromnowonwewill use the notation 𝜕+Ø(], ⋅).

As we will see, the space BC contains many games which
are of interest in the literature: we begin by recalling a
sufficient condition for vector measure games to be in BC,
which is an immediate consequence of [6, Theorem 6.1].

Proposition 3. Let 𝑃 : Σ → R𝑛 be a nonatomic vector
measure, and let 𝑓 : R𝑛

→ R be a function with 𝑓(0) = 0.
If 𝑓 is differentiable at 0, then the game ] = 𝑓 ∘ 𝑃 ∈ BC, and
𝜕
+

Ø(], 𝐹) = ∇𝑓(0) ⋅ 𝑃(𝐹), 𝐹 ∈ Σ.

Anyway, the class of BC integrable games is not limited to
smooth measure games. Indeed note that the converse impli-
cation of the previous proposition does not hold: consider as
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in [6, Example 3.2] 𝑓 : R → R to be any discontinuous
solution to the functional equation

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) , 𝑥, 𝑦 ∈ R. (6)

Then ] = 𝑓 ∘ 𝑃 is additive, and therefore for each 𝐹 ∈ Σ and
each𝐷 ∈ Π(𝐹) one has

∑

𝐼∈𝐷

] (𝐼) = ∑
𝐼∈𝐷

𝑓 [𝑃 (𝐼)] = 𝑓 [𝑃 (𝐹)] = ] (𝐹) (7)

and hence ] is BC integrable with respect to 𝛿
𝑃
although 𝑓 is

not differentiable at 0.
As for the relation between the spaces 𝐴𝐶 and BC, it is

well known (seeTheoremCof [1]) that the game ] = √𝜆 (with
𝜆 the Lebesguemeasure on [0, 1]) belongs to𝐴𝐶. Anyway ] ∉
BC. To see it, one has to show that ] is not BC integrable with
respect to anymesh 𝛿

𝜇
determined by some 𝜇 ∈ 𝑁𝐴+. Indeed

] is not refinement differentiable at Ø, and then it cannot be
BC integrable with respect to 𝛿

𝜇
; to get convinced that ] does

not admit outer refinement derivative at Ø, observe that for
every partition 𝐷

𝑜
∈ Π(Ω) and every 𝛿 > 0 we can provide a

refinement 𝐷

= {𝐼
1
, . . . , 𝐼

𝑘
, 𝐼
𝑜
} such that 𝜆(𝐼

1
) = ⋅ ⋅ ⋅ = 𝜆(𝐼

𝑘
)

and 𝜆(𝐼
𝑜
) < 𝛿 [15, Lemma 3.5]. Clearly we can choose 𝑘 quite

larger than say ♯𝐷
𝑜
. Also we can choose 𝛿 = 𝛿(𝜀) determined

by the uniform continuity of 𝑥 → √𝑥 on [0, 1]. Thus


∑

𝐼∈𝐷


] (𝐼) − √𝑘 (1 − 𝛿)


< 𝜀 (8)

which shows that the refinement limit does not exist.
In fact 𝜆(Ω \ 𝐼

𝑜
) > 1 − 𝛿, and therefore 𝜆(𝐼

𝑗
) > ((1 −

𝛿)/𝑘), 𝑗 = 1, . . . , 𝑘, whence ](𝐼
𝑗
) ≥ √((1 − 𝛿)/𝑘), 𝑗 = 1, . . . , 𝑘,

while ](𝐼
𝑜
) < 𝜀.

So

𝑘 ⋅
√1 − 𝛿

√𝑘

≤ ∑

𝐼∈𝐷


] (𝐼) = ] (𝐼
𝑜
) +

𝑘

∑

𝑗=1

] (𝐼
𝑗
)

≤ 𝜀 + 𝑘 ⋅
√1 − 𝛿

√𝑘

.

(9)

On the contrary, any strongly nonatomic finitely additive
measure ] that is not countably additive provides an example
of game belonging to BC (for 𝜕+Ø(], ⋅) = ](⋅)), but not to 𝐴𝐶
(see the different notions of absolute continuity in [6]).

Therefore, we can now consider the space 𝑉 = BC ∩ 𝐴𝐶.
The following result states that the same measure can be

used for the absolute continuity and the BC integrability of a
game in 𝑉.

Proposition 4. The space𝑉 can be equivalently defined as the
space of games ] such that there exists𝜇 ∈ 𝑁𝐴+ such that ] ≪ 𝜇
and ] is BC integrable with respect to 𝛿

𝜇
.

Proof. The fact that each game ] for which there exists 𝜇 ∈
𝑁𝐴

+ such that ] ≪ 𝜇 and ] is BC integrable with respect to
𝛿
𝜇
lies in 𝑉 is straightforward.
Conversely, let ] ∈ 𝑉; then there are 𝜇

1
, 𝜇

2
∈ 𝑁𝐴

+ such
that ] ≪ 𝜇

1
(since ] ∈ 𝐴𝐶) and ] is 𝛿

𝜇2
-BC integrable.

Then consider 𝜇 = 𝜇
1
+ 𝜇

2
; evidently ] ≪ 𝜇 and, in view

of Proposition 5.2 in [6], ] is also 𝛿
𝜇
-BC integrable.

From [1] we recall the following.

Definition 5. Let G denote the space of automorphisms of
(Ω, Σ), then each 𝜗 ∈ G induces a linear mapping 𝜗

∗
of 𝐵𝑉

onto itself, defined by

(𝜗
∗
]) (𝐸) = ] (𝜗 (𝐸)) (10)

for 𝐸 ∈ Σ. A subspace that is invariant under 𝜗
∗
for every

𝜗 ∈ G is called symmetric.

Proposition 6. The space 𝑉 is symmetric.

Proof. We need to prove that for every 𝜗 ∈ G and every game
] ∈ 𝑉 the game 𝜗

∗
] defined in (10) is in𝑉; namely, it is≪with

respect to some nonatomic measure, and it is BC integrable
too.

Let 𝜇 be a measure in𝑁𝐴+ with respect to which we have
] ≪ 𝜇 and ] is 𝛿

𝜇
-BC integrable (thanks to Proposition 4 we

can always assume that the default measure is the same).
Fix 𝜗; note that 𝜗 preserves set operations; therefore easily

𝜆 = 𝜗
∗
𝜇 is in𝑁𝐴+.

It is also immediate to check that 𝜗
∗
] ≪ 𝜆, because 𝜗

transforms chains and subchains into chains and subchains
as well.

It remains to prove that 𝜗
∗
] is BC integrable with respect

to the mesh 𝛿
𝜆
. Indeed we will prove that

𝜕
+

Ø (𝜗∗], 𝐹) = 𝜕
+

Ø (], 𝜗 (𝐹)) (11)

for every 𝐹 ∈ Σ.
To this aim, for any 𝐹 ∈ Σ and any 𝜀 > 0 fixed, one has to

find 𝛿(𝜀, 𝐹) > 0 such that for every partition 𝐷 ∈ Π(𝐹) with
𝛿
𝜆
(𝐷) < 𝛿 there holds



∑

𝐼∈𝐷

𝜗
∗
] (𝐼) − 𝜕+Ø (], 𝜗 (𝐹))



< 𝜀. (12)

Since ] is BC integrable, to each 𝜀 > 0 there corresponds
𝜏(𝜀, 𝜗(𝐹)) > 0 such that for each partition 𝐷 ∈ Π[𝜗(𝐹)] with
𝛿
𝜇
(𝐷) < 𝜏 there follows



∑

𝐽∈𝐷

] (𝐽) − 𝜕+Ø (], 𝜗 (𝐹))


< 𝜀. (13)

Clearly we can rewrite (12) as



∑

𝐼∈𝐷

] [𝜗 (𝐼)] − 𝜕+Ø (], 𝜗 (𝐹))


< 𝜀. (14)

We choose 𝛿(𝜀, 𝐹) = 𝜏(𝜀, 𝜗(𝐹)); thus if𝐷 ∈ Π(𝐹) has 𝛿
𝜆
(𝐷) <

𝛿, the corresponding partition 𝐷

= {𝜗(𝐼), 𝐼 ∈ 𝐷} ∈ Π[𝜗(𝐹)]
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has 𝛿
𝜇
(𝐷



) < 𝛿 = 𝜏 since, for each 𝐼 ∈ 𝐷, clearly 𝜆(𝐼) =
𝜗
∗
𝜇(𝐼) = 𝜇[𝜗(𝐼)] < 𝛿 = 𝜏 and hence



∑

𝐼∈𝐷

] [𝜗 (𝐼)] − 𝜕+Ø (], 𝜗 (𝐹))


=



∑

𝐽∈𝐷


] (𝐽) − 𝜕+Ø (], 𝜗 (𝐹))


< 𝜀.

(15)

According to [7] we recall the following definition.

Definition 7. A linearmapping𝜑 : Y → 𝑁𝐴 on a symmetric
subspace Y of 𝐵𝑉 is called a semivalue provided that it
satisfies the following properties:

V.1 (symmetry): 𝜗
∗
𝜑 = 𝜑(𝜗

∗
) for each 𝜗 ∈ G;

V.2 (positivity): 𝜑 is positive, that is for every monotone
game ] the measure 𝜑(]) is nonnegative;

V.3 (projection axiom): 𝜑 is the identity operator on𝑁𝐴∩
Y;
when 𝜑 satisfies also the property:

V.4 (efficiency): for each ] ∈ Y there holds 𝜑(])(Ω) =
](Ω);

𝜑 is called a value onY (compare with [1]).
The following result immediately derives from (11) and

the definition of 𝜕+Ø.

Corollary 8. The mapping 𝜕+Ø : 𝑉 → 𝑁𝐴 is a semivalue on
𝑉.

Consider now the space 𝐹𝐸𝐴𝑆
0
= {] ∈ BC : 𝜕+Ø(], 𝐼) =

](𝐼)} and define the space 𝐹𝐸𝐴𝑆 = 𝐹𝐸𝐴𝑆
0
∩𝑉 = 𝐹𝐸𝐴𝑆

0
∩𝐴𝐶.

Obviously 𝜕+Ø is a value on 𝐹𝐸𝐴𝑆.
The next example shows that this space contains several

games which do not belong to 𝑝𝑁𝐴, and through these one
finds several new subspaces of 𝐴𝐶 on which 𝜕+Ø defines a
value.

Example 9. Let 𝜇 be a signed measure on a measurable space
(Ω, Σ) with range say [−1, 1] and, for instance, 𝜇(Ω) = 𝛼 ∈
]0, 1[, and let 𝑓 : [−1, 1] → R be defined as

𝑓 (𝑥) =

{{

{{

{

−𝛼
2 if 𝑥 ∈ [−1, −𝛼[

𝛼𝑥 if 𝑥 ∈ [−𝛼, 𝛼]
𝛼
2 if 𝑥 ∈ ]𝛼, 1] .

(16)

Let ] = 𝑓 ∘ 𝜇 and consider the space 𝐸 = span{𝜗∗] : 𝜗 ∈ G}.
Then ] ∈ 𝐴𝐶 \ 𝑝𝑁𝐴 so that 𝐸 ⊂ 𝐴𝐶 but 𝐸 ̸⊂ 𝑝𝑁𝐴 and 𝜕+Ø is
a value on 𝐸:

Fact I. ] ∈ 𝐹𝐸𝐴𝑆
0
; indeed, since𝑓(0) exists, by Proposition 3,

] ∈ BC and 𝜕+Ø(], ⋅) = 𝛼𝜇 whence immediately 𝜕+Ø(], Ω) =
𝛼
2

= ](Ω).

Fact II. ] ∉ 𝑝𝑁𝐴; indeed, according to Kohlberg [13] a
measure game 𝑓 ∘ 𝜇, where 𝜇 is a signed measure, is in 𝑝𝑁𝐴

if and only if the function 𝑓 is continuously differentiable in
] − 1, 1[.

Fact III. ] ∈ 𝐴𝐶; for the proof, see the Appendix.

Finally 𝐸 is symmetric, and by linearity and relationship
(11), 𝜕+Ø is efficient on 𝐸; therefore it is a value on 𝐸.

It is clear that one can use functions of different forms to
provide classes of measure games 𝑓 ∘ 𝜇 with signed 𝜇 that are
in𝐴𝐶\𝑝𝑁𝐴 and in𝐹𝐸𝐴𝑆

0
, andhence similar subspaces of𝐴𝐶

on which 𝜕+Ø is a value.These subspaces will not be contained
in 𝑝𝑁𝐴 because the generating game ] ∉ 𝑝𝑁𝐴. However, we
can go a little further; in fact the next example shows that, by
means of a similar construction, there are subspaces in 𝐴𝐶
strictly containing 𝑝𝑁𝐴 on which a value can be defined.

Example 10. On Ω = [−1, 1] equipped with the usual Borel
𝜎-algebra, consider the signed measure 𝜇(𝑆) = ∫

𝑆

(sign𝑥)𝑑𝑥.
Denote 𝐼

1
= [−1, −(1/2)], 𝐼

2
=] − (1/2), (1/2)[, and 𝐼

3
=

[(1/2), 1] and take the function 𝑓 : Ω → R defined by

𝑓 (𝑥) =

{{{{

{{{{

{

−𝑥 −
1

2
if 𝑥 ∈ 𝐼

1

0 if 𝑥 ∈ 𝐼
2

𝑥 −
1

2
if 𝑥 ∈ 𝐼

3
.

(17)

Define the scalar measure game ] = 𝑓 ∘ 𝜇 and take then 𝑤 =
] + 𝜆, where 𝜆 denotes the usual Lebesgue measure.

As in the previous example, ] and hence 𝑤 are in 𝐹𝐸𝐴𝑆
0
,

𝑤 ∉ 𝑝𝑁𝐴 (for ] ∉ 𝑝𝑁𝐴) and 𝑤 ∈ 𝐴𝐶 (again, for the proof,
see the Appendix).

Furthermore ] (and hence 𝑤) is in 𝑝𝑁𝐴, since 𝑓 is
continuous [16].

Thus ] ∈ 𝐹𝐸𝐴𝑆 \ 𝑝𝑁𝐴.
Again take 𝐸 = span{𝜗∗𝑤 : 𝜗 ∈ G} and denote by 𝑝𝑁𝐴𝐸

the smallest linear subspace containing 𝑝𝑁𝐴 and 𝐸. Define
Ψ : 𝑝𝑁𝐴𝐸 → 𝑁𝐴 as follows: for each 𝛾 = ∑𝑚

𝑖=1
𝑐
𝑖
𝜗
∗

𝑖
𝑤 + 𝑝 ∈

𝑝𝑁𝐴𝐸, setΨ(𝛾) = ∑𝑚
𝑖=1
𝑐
𝑖
𝜕
+

Ø(𝜗
∗

𝑖
𝑤, ⋅)+𝜙AS(𝑝), where 𝜙AS is the

usual Aumann and Shapley value.
Ψ is a value on 𝑝𝑁𝐴𝐸 (see the Appendix for the proof).

Finally, the following example shows that 𝜕+Ø is not
continuous on 𝑉 equipped with the variation norm.

Example 11. Consider the sequence of scalar measure games
]
𝑛
= 𝑓

𝑛
∘ 𝑃, where 𝑓

𝑛
(𝑥) = min{𝑥, 1/𝑛} and 𝑃 ∈ 𝑁𝐴1. Then

‖]
𝑛
‖
𝐵𝑉
→ 0 as 𝑛 → +∞. However, 𝜕+Ø(]𝑛, 𝑆) = 𝑓



𝑛
(0)𝑃(𝑆) =

𝑃(𝑆) does not converge to 0.

3. The Operator 𝜕+Ø on Subspaces of
Lipschitz Games

In [9] the author considers the class 𝐴𝐶
∞

of Lipschitz games,
that is, games ] in 𝐵𝑉 for which there exists a measure 𝜇 ∈
𝑁𝐴

+ such that both 𝜇− ] and ]+𝜇 are monotone games.The
reasonwhy these games are called Lipschitz is the fact that the
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condition can be equivalently labelled in the following form:
for every link 𝑆 ⊂ 𝑇 in Σ there holds

|] (𝑇) − ] (𝑆)| ≤ 𝜇 (𝑇) − 𝜇 (𝑆) . (18)

The connection to the Lipschitz condition is made even
stronger by the following.

Proposition 12. For a scalar measure game ] = 𝑓 ∘ 𝜆 the
following are equivalent:

(1) ] ∈ 𝐴𝐶
∞
;

(2) 𝑓 is Lipschitz on the interval [0, 𝜆(Ω)] (with 𝜇(Ω) as
Lipschitz constant, for each 𝜇 ∈ 𝑁𝐴+ for which (18)
above is satisfied);

(3) (18) holds for 𝜇 = 𝐿𝜆, with 𝐿 Lipschitz constant for 𝑓.

Proof. To prove that (1) implies (2), assume that ] = 𝑓 ∘ 𝜆 is
a Lipschitz game, and let 𝜇 ∈ 𝑁𝐴+ be a measure for which
(18) holds. For simplicity we assume that 𝜆 is a probability
measure. Let 𝑡, 𝑡 ∈ [0, 1] with say 𝑡 < 𝑡.

Then, by Lyapunov theorem, there exist setsΩ
𝑡
⊂ Ω

𝑡
 ⊂ Ω

such that

(𝜆, 𝜇) (Ω
𝑡
) = 𝑡 (𝜆, 𝜇) (Ω) ,

(𝜆, 𝜇) (Ω
𝑡
) = 𝑡



(𝜆, 𝜇) (Ω) .

(19)

Hence 𝑓(𝑡) = 𝑓[𝜆(Ω
𝑡
)] = ](Ω

𝑡
) and 𝑓(𝑡) = ](Ω

𝑡
); then

from (18)

𝑓 (𝑡) − 𝑓 (𝑡



)

=
] (Ω𝑡

) − ] (Ω
𝑡
)
 ≤ 𝜇 (Ω𝑡

\ Ω
𝑡
)

= (𝑡


− 𝑡) 𝜇 (Ω) .

(20)

The fact that a Lipschitz function 𝑓 generates a Lipschitz
game (where one can precisely choose 𝐿𝜆 = 𝜇 in (18)) is
immediate, so (2) implies (3).

Also (3) implies (1) trivially.

It is immediate to note that 𝐴𝐶
∞
⊂ 𝐴𝐶. However,

the smaller space can be equipped with an alternative norm
defined in the following way; for every 𝜇 ∈ 𝑁𝐴+ such that
(18) holds, write −𝜇 ⪯ ] ⪯ 𝜇. Then we set

‖]‖
∞
= inf {𝜇 (Ω) , 𝜇 ∈ 𝑁𝐴+, −𝜇 ⪯ ] ⪯ 𝜇} . (21)

Then 𝐴𝐶
∞

is a Banach space when equipped with the above
norm.

Again from [9] we quote the following definition.

Definition 13. Let ] ∈ 𝐴𝐶
∞

and define the following two
subsets of𝑁𝐴:

𝐷
]
= {𝜆 ∈ 𝑁𝐴 | ] ⪯ 𝜆} ,

𝐷] = {𝜆 ∈ 𝑁𝐴 | 𝜆 ⪯ ]} .
(22)

Then the following two measures exist: ]∗ = g.l.b.𝐷], ]
∗
=

l.u.b.𝐷], and immediately ]
∗
≤ ]∗ (although the symbol

≤ should be distinguished from ⪯, as the first one refers to

setwise ordering while the second one to the order induced
by the cone of monotonic games, in the case of measures they
actually assume the same meaning).

Let 𝑁𝐴 ⊆ 𝑄 ⊆ 𝐴𝐶
∞

be a linear subspace, and let 𝜓 :
𝑄 → 𝑁𝐴 be a linear operator; we will say that 𝜓 is aMilnor
operator (MO) provided that for every ] ∈ 𝑄 we have

]
∗
≤ 𝜓] ≤ ]∗. (23)

Consider now the vector subspace 𝑄 = BC ∩ 𝐴𝐶
∞

of
Lipschitz games that are BC integrable.
𝑄 is strictly included in BC, for there are easy examples of

games in BC \ 𝐴𝐶
∞
.

For instance, consider the function 𝑓 : [0, 1] → R

defined as

𝑓 (𝑥) =

{{{

{{{

{

𝑥 if 0 ≤ 𝑥 ≤
√2

2

√1 − 𝑥2 if
√2

2
≤ 𝑥 ≤ 1

(24)

and the scalar measure game ] = 𝑓 ∘ 𝜆, where 𝜆 represents
the usual Lebesgue measure. Then ] ∈ BC with 𝜕+Ø(]) =
𝑓


(0)𝜆 = 𝜆 thanks to Proposition 3, but ] ∉ 𝐴𝐶
∞

since 𝑓
is not Lipschitz on [0, 1].

Also the inclusion 𝑄 ⊂ 𝐴𝐶
∞

is a strict one, for there are
Lipschitz games that are not in BC. To see this we need the
following result, which is a partial converse of Proposition 3.

Proposition 14. Let the scalar measure game ] = 𝑓 ∘ 𝜇, 𝜇 ∈
𝑁𝐴

+

, 𝜇 ̸= 0 be in 𝐴𝐶
∞
; then the following are equivalent:

(1) 𝑓 admits right-hand side derivative at 0;
(2) ] is 𝛿

𝜇
- BC integrable and hence ] ∈ 𝑄.

Proof. The implication (1)⇒ (2) follows from Proposition 3.
We turn then to the implication (2)⇒ (1).
As ] ∈ 𝑄, there exists 𝜆 ∈ 𝑁𝐴+ such that ] is 𝛿

𝜆
-

BC integrable. Since ] ∈ 𝐴𝐶
∞

we already know that 𝑓
is Lipschitz; hence the ratios 𝑓(𝑥)/𝑥 are bounded. Assume
by contradiction that 𝑓(0) does not exist. Then it can only
happen that

−∞ < ℓ
1
= lim inf

𝑥→0

𝑓 (𝑥)

𝑥
< lim sup

𝑥→0

𝑓 (𝑥)

𝑥
= ℓ

2
< +∞. (25)

Choose then two decreasing sequences {𝑥
𝑛
}, {𝑥



n } ∈]0, 𝜇(Ω)]

with lim
𝑛
𝑥


𝑛
= lim

𝑛
𝑥


𝑛
= 0 and

lim
𝑛

𝑓 (𝑥


𝑛
)

𝑥
𝑛

= ℓ
1
, lim

𝑛

𝑓 (𝑥


𝑛
)

𝑥
𝑛

= ℓ
2
. (26)

Fix 𝐹 ∈ Σ with 𝜇(𝐹) > 0 and 𝜀 ∈]0, 𝜇(𝐹)]. Then there exists
𝑛 ∈ N such that for each 𝑛 > 𝑛



𝑓 (𝑥


𝑛
)

𝑥
𝑛

− ℓ
1



<
𝜀

3𝜇 (𝐹)
,



𝑓 (𝑥


𝑛
)

𝑥
𝑛

− ℓ
2



<
𝜀

3𝜇 (𝐹)
.

(27)
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By means of the continuity of 𝑓 at 0, choose next 𝑛 > 𝑛 such
that |𝑓(𝑥)| < 𝜀/3 whenever 𝑥 ≤ 𝑥

𝑛
; also 𝑛 can be chosen so

that |ℓ
1
|𝑥



𝑛
< 𝜀/3 and such that 𝑥

𝑛
(𝜆(𝐹)/𝜇(𝐹)) < 𝛿𝜀/3, where

𝛿 is the parameter of 𝛿
𝜆
BC integrability.

Choose now the following 𝐷 ∈ Π(𝐹): by means of
Lyapunov theorem, divide 𝐹 into finitely many sets, say
𝐼
1
, . . . , 𝐼

𝑘
, each with (𝜇, 𝜆)(𝐼

𝑗
) = (𝑥



𝑛
, (𝜆(𝐹)/𝜇(𝐹))𝑥



𝑛
), until

𝜇(𝐹 \ ⋃
𝑘

𝑗=1
𝐼
𝑗
) ≤ 𝑥



𝑛
and then choose 𝐼

𝑘+1
= 𝐹 \ ⋃

𝑘

𝑗=1
𝐼
𝑗
; thus

easily 𝜆(𝐼
𝑘+1
) = (𝜆(𝐹)/𝜇(𝐹))𝜇(𝐼

𝑘+1
).

Then for𝐷 = {𝐼
1
, . . . , 𝐼

𝑘
, 𝐼
𝑘+1
} one has 𝛿

𝜆
(𝐷) < 𝛿(𝜀/3).

We have then, similar to the computation in
Proposition 3:

∑

𝐼∈𝐷

𝑓 [𝜇 (𝐼)] − ℓ1𝜇 (𝐼)


=

𝑘

∑

𝑛=1


𝑓 (𝑥



𝑛
) − ℓ

1
𝑥


𝑛


+
𝑓 [𝜇 (𝐼𝑘+1)] − ℓ1𝜇 (𝐼𝑘+1)



𝑘

∑

𝑛=1


𝑓 (𝑥



𝑛
) − ℓ

1
𝑥


𝑛


+
𝑓 [𝜇 (𝐼𝑘+1)]

 +
ℓ1
 𝑥



̃
𝑘

=

𝑘

∑

𝑛=1



𝑓 (𝑥


𝑛
) − ℓ

1
𝑥


𝑛

𝑥


𝑛



𝑥


𝑛
+
𝜀

3
+
𝜀

3
.

(28)

As for the first sum we have the following estimate:

𝑘

∑

𝑛=1



𝑓 (𝑥


𝑛
) − ℓ

1
𝑥


𝑛

𝑥


𝑛



𝑥


𝑛
<

𝜀

3𝜇 (𝐹)

𝑘

∑

𝑛=1

𝑥


𝑛

=
𝜀

3
⋅
𝜇 (𝐹 \ 𝐼

𝑘+1
)

𝜇 (𝐹)
<
𝜀

3
.

(29)

In conclusion

∑

𝐼∈𝐷

𝑓 [𝜇 (𝐼)] − ℓ1𝜇 (𝐼)
 < 𝜀. (30)

Clearly we can repeat this construction with 𝑥
𝑛
and find

another partition𝐷∗

∈ Π(𝐹) with 𝛿
𝜆
(𝐷

∗

) < 𝛿(𝜀/3) as above;
again

∑

𝐼∈𝐷
∗

𝑓 [𝜇 (𝐼)] − ℓ2𝜇 (𝐼)
 < 𝜀. (31)

It is then clear that, since ℓ
1
̸= ℓ
2
, the game ] is not 𝛿

𝜆
-BC

integrable.

Therefore, for instance, taking 𝑓 : [0, 1] → R defined as

𝑓 (𝑥) = {
𝑥 sin log 𝑥 if 𝑥 ̸= 0,
0 if 𝑥 = 0

(32)

the game ] = 𝑓 ∘ 𝜆 ∈ 𝐴𝐶
∞
, since for 𝑥 ̸= 0 one has 𝑓(𝑥) =

sin log 𝑥 + cos log 𝑥 ∈ 𝐿∞, but, as 𝑓(0) does not exist,
according to the previous result, ] ∉ BC.

We will need in the sequel the following lemma.

Lemma 15. The space 𝐴𝐶
∞

is symmetric and the following
equality holds for every 𝜗 ∈ G:

𝜗∗]
∞
= ‖]‖

∞
. (33)

Proof. Fix 𝜀 > 0 and choose 𝜇 ∈ 𝑁𝐴+ such that −𝜇 ⪯ ] ⪯ 𝜇
and 𝜇(Ω) < ‖]‖

∞
+ 𝜀.

Let 𝜆 = 𝜗
∗
𝜇 ∈ 𝑁𝐴

+. If 𝐴 ⊂ 𝐵, then 𝜗(𝐴) ⊂ 𝜗(𝐵) and
therefore, by monotonicity, (𝜇 − ])[𝜗(𝐴)] ≤ (𝜇 − ])[𝜗(𝐵)], or
else 𝜗

∗
𝜇(𝐴) − 𝜗

∗
](𝐴) ≤ 𝜗

∗
𝜇(𝐵) − 𝜗

∗
](𝐵), which is the same

as to say that 𝜗
∗
𝜇 − 𝜗

∗
] is monotone, and hence 𝜗

∗
] ⪯ 𝜗

∗
𝜇.

In a completely analogous way, as 𝜗
∗
(−𝜇) = −𝜗

∗
(𝜇), one

reaches −𝜗
∗
(𝜇) ⪯ 𝜗

∗
(]). In conclusion −𝜆 ⪯ 𝜗

∗
] ⪯ 𝜆.

Moreover, 𝜆(Ω) = 𝜗
∗
[𝜇(Ω)] = 𝜇[𝜗(Ω)] = 𝜇(Ω) whence

𝜗∗]
∞
≤ 𝜆 (Ω) = 𝜇 (Ω) < ‖]‖

∞
+ 𝜀. (34)

To prove the converse inequality, first of all, for 𝜆 ∈ 𝑁𝐴,
consider the game 𝜗−1

∗
𝜆 defined in the following fashion: for

every 𝐵 ∈ Σ set 𝐴 = 𝜗−1(𝐵) ∈ Σ and set

𝜗
−1

∗
𝜆 (𝐵) = 𝜆 (𝐴) (35)

so that 𝜗
∗
[𝜗

−1

∗
𝜆] = 𝜆. It is a routine computation, based on

the properties of 𝜗, to show that 𝜗−1
∗
𝜆 is a countably additive

measure as well.
Again fix 𝜀 > 0 and choose 𝜆 ∈ 𝑁𝐴 such that −𝜆 ⪯ 𝜗

∗
] ⪯

𝜆 and 𝜆(Ω) < ‖𝜗
∗
]‖

∞
+ 𝜀.

Take 𝜇 = 𝜗−1
∗
𝜆 defined above.

Now 𝜗
∗
] ⪰ −𝜆 = −𝜗

∗
𝜇 (or else 𝜗

∗
] + 𝜗

∗
𝜇 monotone)

implies in turn that ]+𝜇 is monotone too, and similarly ] ⪯ 𝜇.
Hence

‖]‖
∞
≤ 𝜇 (Ω) = 𝜆 [𝜗

−1

(Ω)] = 𝜆 (Ω) <
𝜗∗]
∞
+ 𝜀 (36)

which concludes the proof of relationship (33).

In 𝑄 we have the following result.

Proposition 16. The BC integral 𝜕+Ø is a Milnor semivalue on
𝑄.

Proof. Let ] be any game in 𝑄, 𝜆 ∈ 𝐷]; then 𝜆 − ] is a
monotone game, and hence (𝜆 − ])(𝐸) ≥ 0 for each 𝐸 ∈ Σ,
which in turn implies immediately that 𝜕+Ø(𝜆−]) ≥ 0, namely,
𝜆 − 𝜕

+

Ø(]) ≥ 0 setwise in Σ. As 𝜆 − 𝜕
+

Ø(]) is a measure, this
equivalently says that𝜆−𝜕+Ø(]) ismonotone, that is,𝜆 ⪯ 𝜕+Ø(]).
In complete analogy if 𝜆 ∈ 𝐷], then −𝜆 ⪯ 𝜕

+

Ø(]).
Hence for ] ∈ 𝑄 we have necessarily ]

∗
≤ 𝜕

+

Ø(]) ≤ ]∗

which proves that 𝜕+Ø is a MO.
Finally, we deduce from (11) the symmetry of the operator

𝜕
+

Ø, and the proof is thus complete.

According to Theorem 1.8 in [9], 𝜕+Ø can be extended to
the whole space𝐴𝐶

∞
in such a way that the extension, which

we will label as 𝜕+Ø, remains a linearMO. Recall moreover that
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MO on subspaces of 𝐴𝐶
∞
are continuous with respect to the

norm ‖ ⋅ ‖
∞

[9, Lemma 1.6].
Let 𝑄

∞
denote the ‖ ⋅ ‖

∞
-closure of 𝑄. Then on 𝑄

∞
we

have the following.

Theorem 17. 𝜕+Ø is a Milnor semivalue on 𝑄
∞
.

Proof. If ] ∈ 𝑄
∞
, there exists a sequence in 𝑄, say (]

𝑘
)
𝑘
that

‖ ⋅ ‖
∞

converges to ].

Because of (33), for each 𝜗 ∈ G, we have that 𝜗
∗
]
𝑘

‖⋅‖∞

→

𝜗
∗
]. But then 𝜕+Ø(𝜗∗]𝑘)

‖⋅‖∞

→ 𝜕
+

Ø(𝜗∗]) too.

Similarly 𝜕+Ø(]𝑘)
‖⋅‖∞

→ 𝜕
+

Ø(]), and then, again by (33),

𝜗
∗
[𝜕

+

Ø(]𝑘)]
‖⋅‖∞

→ 𝜗
∗
[𝜕

+

Ø(])].
In conclusion 𝜗

∗
[𝜕

+

Ø(])] = 𝜕
+

Ø(𝜗∗]).

Since powers of probabilities belong to 𝑄, there immedi-
ately follows the following.

Corollary 18. 𝜕+Ø is a ‖ ⋅ ‖
∞
-continuous semivalue on 𝑝𝑁𝐴

∞
.

We point out that, as 𝑄, 𝑄
∞
, and 𝑝𝑁𝐴

∞
are symmetric

subspaces of 𝐴𝐶
∞
, there follows from [9, Theorem 3.1] that

𝜕
+

Ø and 𝜕+Ø are diagonal.
Moreover from [9, Theorem 2.1], there exists a Borel

measure 𝜉 on [0, 1] such that the following representation of
𝜕
+

Ø on 𝑝𝑁𝐴
∞

holds:

𝜕
+

Ø (], 𝑆) = ∫
1

0

𝜕]∗ (𝑡1
Ω
, 1

𝑆
) 𝑑𝜉, 𝑆 ∈ Σ, (37)

where 𝜕]∗ is the ideal extension of the game ] defined in [1,
Theorem G].

Define now the space 𝐹𝐸𝐴𝑆
1
= 𝑄 ∩ 𝐹𝐸𝐴𝑆. Note that

𝐹𝐸𝐴𝑆
1
= 𝑄 ∩ 𝐹𝐸𝐴𝑆

0
. Also define

𝐹𝐸𝐴𝑆
∞
= {] ∈ 𝑄

∞
: 𝜕

+

Ø (], Ω) = ] (Ω)} . (38)

Proposition 19. 𝐹𝐸𝐴𝑆
∞

is the ‖ ⋅ ‖
∞
-closure of 𝐹𝐸𝐴𝑆

1
.

Proof. Denote by [𝑄 ∩ 𝐹𝐸𝐴𝑆]
∞

the ‖ ⋅ ‖
∞
-closure of 𝐹𝐸𝐴𝑆

1
.

Indeed it is immediate to prove that [𝑄∩𝐹𝐸𝐴𝑆]
∞
⊂ 𝐹𝐸𝐴𝑆

∞
:

take ] ∈ [𝑄 ∩ 𝐹𝐸𝐴𝑆]
∞

and a sequence (]
𝑘
)
𝑘
∈ 𝐹𝐸𝐴𝑆

1

converging in the ‖ ⋅ ‖
∞

norm to ]. Then ] ∈ 𝑄
∞
. Moreover,

the convergence of (]k)𝑘 to ] implies that ]
𝑘
(Ω) converges

to ](Ω). Furthermore, 𝜕+Ø(]𝑘, ⋅) converges in variation (and
hence setwise) to 𝜕+Ø(], ⋅). Therefore,

] (Ω) = lim
𝑘

]
𝑘
(Ω) = lim

𝑘

𝜕
+

Ø (]𝑘, Ω) = 𝜕
+

Ø (], Ω) , (39)

so ] ∈ 𝐹𝐸𝐴𝑆
∞
.

For the converse inclusion, take ] ∈ 𝐹𝐸𝐴𝑆
∞
. Hence ] is

the ‖ ⋅ ‖
∞
-norm limit of a sequence (]

𝑘
)
𝑘
of elements in 𝑄.

Construct now the sequence

𝜏
𝑘
= ]

𝑘
+ [𝜕

+

Ø (]𝑘, Ω) − ]𝑘 (Ω)] 𝜇
2

, (40)

for some 𝜇 ∈ 𝑁𝐴1. We claim that 𝜏
𝑘
∈ 𝐹𝐸𝐴𝑆

1
and 𝜏

𝑘
‖ ⋅ ‖

∞

converges to ].
Indeed, by the feasibility of ] and by the fact that

]
𝑘
(Ω) → ](Ω) and 𝜕+Ø(]𝑘, Ω) → 𝜕

+

Ø(], Ω), it follows that
𝜏
𝑘
‖ ⋅ ‖

∞
converges to ]. Moreover, as 𝜕+Ø(𝜏𝑘, ⋅) = 𝜕

+

Ø(]𝑘, ⋅), it
immediately follows that 𝜏

𝑘
∈ 𝐹𝐸𝐴𝑆.

Obviously 𝜕+Ø is a value of 𝐹𝐸𝐴𝑆
∞
, but, unfortunately, on

the subspace 𝑝𝑁𝐴
∞
∩𝐹𝐸𝐴𝑆

∞
we lose uniqueness, in that 𝜕+Ø

does not agree with the Aumann-Shapley (AS) value.

Example 20. Let 𝑓(𝑥, 𝑦) = 𝜙
1
(𝑥) + 𝜙

2
(𝑦), where 𝜙

1
(𝑥) =

𝑥
2

/2 + 𝑥/2 and 𝜙
1
(𝑦) = −(𝑦

2

/2) + 𝑦. Let 𝜇
1
and 𝜇

2
be two

linearly independent measures in𝑁𝐴1, and ] = 𝑓 ∘ 𝜇, where
𝜇 = (𝜇

1
, 𝜇

2
).

We claim that ] ∈ 𝐹𝐸𝐴𝑆
∞
, but 𝜕+Ø(]) ̸=Φ(]), where Φ

denotes the AS value.
The function 𝑓 ∈ 𝐶1(R2

) and we know that Φ(]) =
[∫

1

0

𝑓


𝑥
(𝑡, 𝑡)𝑑𝑡]𝜇

1
+ [∫

1

0

𝑓


𝑦
(𝑡, 𝑡)𝑑𝑡]𝜇

2
and 𝜕+Ø(]) = 𝑓



𝑥
(0)𝜇

1
+

𝑓


𝑦
(0)𝜇

2
. Hence 𝜕+Ø(]) = (𝜇1/2) + 𝜇2, while Φ(]) = 𝜇1 + 𝜇2/2.

It is also immediate to check that ] ∈ 𝐹𝐸𝐴𝑆
∞
.

Indeed one can provide infinitely many examples of
subspaces of 𝑝𝑁𝐴

∞
where a value different from the AS one

is defined. By means of [9, Theorem 2.1], each probability
measure 𝜉 on [0, 1] generates a Milnor semivalue 𝜋

𝜉
on

𝑝𝑁𝐴
∞

which clearly becomes a value on the subspace
𝐹𝐸𝐴𝑆

𝜉
= {] ∈ 𝑝𝑁𝐴

∞
: 𝜋

𝜉
(])(Ω) = ](Ω)}. In our

case for the Dirac measure 𝛿
0
based at 0, we have precisely

𝐹𝐸𝐴𝑆
𝛿0
= 𝑝𝑁𝐴

∞
∩ 𝐹𝐸𝐴𝑆

∞
. However, we point out that

our main interest in this paper is not uniqueness of the value
but the fact that the Burkill-Cesari integral and hence the
Epstein-Marinacci derivative constitute a value.

It may anyway be of interest to characterize games in
𝑝𝑁𝐴

∞
∩𝐹𝐸𝐴𝑆

∞
. Remember that𝑝𝑁𝐴

∞
is the ‖ ⋅ ‖

∞
-closure

of the linear span 𝐵 of powers of nonatomic probability
measures. With the same technique used in Proposition 19
one proves that 𝑝𝑁𝐴

∞
∩ 𝐹𝐸𝐴𝑆

∞
is in fact the ‖ ⋅ ‖

∞
-closure

of𝐵∩𝐹𝐸𝐴𝑆
0
. It is now easy to characterize these games: in fact

if ] = ∑𝑛
𝑘=1
𝛼
𝑘
𝜇
𝑘

𝑘
∈ 𝐵∩𝐹𝐸𝐴𝑆

0
, with 𝜇

𝑘
∈ 𝑁𝐴

+, then 𝜕+Ø(], ⋅) =
𝛼
1
𝜇
1
. So ] ∈ 𝐹𝐸𝐴𝑆

0
if and only if ∑𝑛

𝑘=2
𝛼
𝑘
[𝜇

𝑘
(Ω)

𝑘

] = 0.

Appendix

We will first prove that the measure game in Example 9 is in
AC.

Let 𝐼
1
= [−1, −𝛼[, 𝐼

2
= [−𝛼, 𝛼], 𝐼

3
=]𝛼, 1] and let 𝑚 = |𝜇|

(the total variation of 𝜇).
Fix a Hahn decomposition (𝑃,𝑁) of 𝜇.
We will prove that ] ≪ 𝑚.
Fix 𝜀 > 0 and choose 𝛿 = 𝜀 ∧ 𝛼. Let 𝐶 be a chain and Λ a

subchain with ‖𝑚‖
Λ
< 𝛿. We claim that ‖]‖

Λ
< 𝜀.

In fact, let (𝑆
𝑖
, 𝑆

𝑖+1
) be a link in Λ. Then, as 𝑚(𝑆

𝑖+1
) −

𝑚(𝑆
𝑖
) < 𝛼, necessarily if 𝜇(𝑆

𝑖
), 𝜇(𝑆

𝑖+1
) do not belong to the

same 𝐼
𝑗
, then they are at most in two contiguous 𝐼

𝑗
’s.

Indeed, suppose, for instance, that 𝜇(𝑆
𝑖
) ∈ 𝐼

1
, 𝜇(𝑆

𝑖+1
) ∈ 𝐼

3
,

namely, 𝜇(𝑆
𝑖
) < −𝛼, 𝜇(𝑆

𝑖+1
) > 𝛼. Hence 𝜇(𝑆

𝑖
∩𝑃)+𝜇(𝑆𝑖∩𝑁) =
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𝑚(𝑆
𝑖
∩ 𝑃) − 𝑚(𝑆

𝑖
∩ 𝑁) < −𝛼 and analogously 𝑚(𝑆

𝑖+1
∩ 𝑃) −

𝑚(𝑆
𝑖+1
∩ 𝑁) > 𝛼. Thus

[𝑚 (𝑆
𝑖+1
∩ 𝑃) − 𝑚 (𝑆

𝑖+1
∩ 𝑁)]

− [𝑚 (𝑆
𝑖
∩ 𝑃) − 𝑚 (𝑆

𝑖
∩ 𝑁)] > 2𝛼

(A.1)

that is;

[𝑚 (𝑆
𝑖+1
∩ 𝑃) − 𝑚 (𝑆

𝑖
∩ 𝑃)]

− [𝑚 (𝑆
𝑖+1
∩ 𝑁) − 𝑚 (𝑆

𝑖
∩ 𝑁)] > 2𝛼

(A.2)

namely,

[𝑚 (𝑆
𝑖+1
\ 𝑆

𝑖
) ∩ 𝑃] − [𝑚 (𝑆

𝑖+1
\ 𝑆

𝑖
) ∩ 𝑁] > 2𝛼 (A.3)

whence, a fortiori, 𝑚(𝑆
𝑖+1
\ 𝑆

𝑖
) > 2𝛼 which contradicts the

initial assumption ‖𝑚‖
Λ
< 𝛼.

Then an easy computation shows that in both cases
(either 𝜇(𝑆

𝑖
), 𝜇(𝑆

𝑖+1
) belong to the same 𝐼

𝑗
or they lie in two

contiguous 𝐼
𝑗
’s)

] (𝑆𝑖+1) − ] (𝑆𝑖)
 ≤
𝛼𝑚 (𝑆𝑖+1) − 𝛼𝑚 (𝑆𝑖)

 (A.4)

and this proves our claim, since 𝛼 < 1.
In a completely analogous way one shows that the game ]

in Example 10 is in 𝐴𝐶.
To prove thatΨ : 𝑝𝑁𝐴𝐸 → 𝑁𝐴 in the same example is a

value, the only property that needs to be checked is positivity
(the others are obvious).

Assume that 𝛾 = ∑𝑚
𝑖=1
𝑐
𝑖
𝜗
∗

𝑖
𝑤 + 𝑝 ∈ 𝑝𝑁𝐴𝐸, 𝑝 ∈ 𝑝𝑁𝐴 is

monotone.
We will also use the alternative form 𝛾 = ∑𝑚

𝑖=1
𝑐
𝑖
𝜗
∗

𝑖
] + 𝑢,

where 𝑢 = ∑𝑚
𝑖=1
𝑐
𝑖
𝜗
∗

𝑖
𝜆 + 𝑝.

Now by (11)

Ψ (𝛾) =

𝑚

∑

𝑖=1

𝑐
𝑖
𝜕
+

Ø (𝜗
∗

𝑖
𝑤, ⋅) + 𝜙AS (𝑝)

=

𝑚

∑

𝑖=1

𝑐
𝑖
𝜗
∗

𝑖
𝜆 + 𝜙AS (𝑝) = 𝜙AS (𝑢)

(A.5)

since 𝜕+Ø(], ⋅) = 0, while 𝜕
+

Ø(𝜆, ⋅) = 𝜆. Hence we need to prove
that 𝜙AS(𝑢) ≥ 0.

Note first that since ] ∈ 𝑝𝑁𝐴
, the ideal set func-

tion ]∗ exists, and it actually coincides with 𝑓 ∘ 𝜇∗ [1,
Proposition 22.16 p. 152], and that 𝜇∗(𝜑) = ∫

Ω

𝜑𝑑𝜇. Hence
the ideal function 𝛾∗ exists too.

Recall now the definition of 𝜕]∗
+
(𝑡, 𝑆), 𝜕]∗

−
(𝑡, 𝑆), 𝑡 ∈

[0, 1], 𝑆 ∈ Σ from [16].
In particular, since

𝜕]∗
+
(𝑡, 𝑆) = lim

𝜏↓0

]∗ (𝑡1
Ω
+ 𝜏1

𝑆
) − ]∗ (𝑡1

Ω
)

𝜏
,

]∗ (𝑡1
Ω
+ 𝜏1

𝑆
) − ]∗ (𝑡1

Ω
)

= 𝑓 [𝑡 ∫
Ω

1
Ω
𝑑𝜇 + 𝜏∫

Ω

1
𝑆
𝑑𝜇] − 𝑓 [𝑡∫

Ω

1
Ω
𝑑𝜇]

= 𝑓 [𝑡𝜇 (Ω) + 𝜏𝜇 (𝑆)] − 𝑓 [𝑡𝜇 (Ω)] = 𝑓 [𝜏𝜇 (𝑆)]

(A.6)

(for 𝜇(Ω) = 0), we find

𝜕]∗
+
(𝑡, 𝑆) = lim

𝜏↓0

𝑓 [𝜏𝜇 (𝑆)]

𝜏
= 𝑓



(0) 𝜇 (𝑆) = 0 (A.7)

and similarly for the left-hand side limit. In other words
𝜕]∗(𝑡, 𝑆) = 0 for each 𝑡, 𝑆.

We note now that, since ] is a measure game, for every
𝜗 ∈ G, 𝜕(𝜗∗])∗

+
= 𝜗

∗

𝜕]∗
+
= 0 [1, Proposition 22.16, p. 152],

and the proof of Theorem 3 in [16]).
Now, since 𝛾 is monotone, both 𝜕𝛾∗

+
(𝑡, 𝑆), 𝜕𝛾

∗

−
(𝑡, 𝑆) are

nonnegative for each 𝑡, 𝑆. Hence

0 ≤ 𝜕𝛾
∗

+
(𝑡, 𝑆) =

𝑚

∑

𝑖=1

𝑐
𝑖
𝜕(𝜗

∗

𝑖
])∗

+
(𝑡, 𝑆) + 𝜕𝑢

∗

(𝑡, 𝑆)

= 𝜕𝑢
∗

(𝑡, 𝑆) ,

(A.8)

where in the last summand we do not need to distinguish
between 𝜕𝑢∗

+
and 𝜕𝑢∗

−
as 𝑢 ∈ 𝑝𝑁𝐴 and hence 𝜕𝑢∗ exists.

But then

0 ≤ ∫

1

0

𝜕𝑢
∗

(𝑡, 𝑆) 𝑑𝑡 = 𝜙AS (𝑢) (𝑆) , 𝑆 ∈ Σ, (A.9)

which is precisely what we wanted to prove.
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