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Existence and uniqueness of fixed points are established for a mapping satisfying a contractive condition involving a rational
expression on a generalized metric space. Several particular cases and applications as well as some illustrative examples are given.

1. Introduction and Preliminaries

In the last decades, several attempts have been made in order
to generalize the concept of metric space, and many impor-
tant results have been reported. For instance, see quasi metric
spaces [1], generalized quasi metric spaces [2], pseudometric
spaces ([3], Chapter 2), approach spaces [4], 𝑚-spaces [5],
inframetric spaces [6], and 𝐺-metric spaces [7]. Sometimes,
as in [8, 9], even the very notion of generalized metric spaces
(or even gms [10]) is used, but it has a different meaning.
In 2000, Branciari [11] introduced the notion of generalized
metric space where the triangle inequality of a metric space
is replaced by a rectangular inequality involving four terms
instead of three. He also extended the Banach’s contraction
principle in such spaces. In 2008, Azam and Arshad [12]
obtained sufficient conditions for existence of unique fixed
point of Kannan type mappings defined on generalized met-
ric spaces. Recently, Samet [13] and Sarma et al. [14] showed
that some propositions in [11] are not true. Moreover, in
[14], a rigorous and nice proof of the Banach’s contraction
principle is presented, by assuming that the generalized
metric space is Hausdorff. Afterwards, many authors studied
various existence theorems of fixed points in such spaces. For
more details about fixed point theory in generalized metric
spaces, we refer the reader to [13, 15–24].

On the other hand, in [25] Khan proved the following
fixed point theorem.

Theorem 1. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be a self-mapping on 𝑋 that satisfies the following contractive
condition:

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜇

𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦)

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

(1)

for all 𝑥, 𝑦 ∈ 𝑋 and for some 𝜇 ∈ [0, 1). Then 𝑇 has a unique
fixed point in𝑋.

Remark 2. In (1) if the denominator vanishes, then 𝑥 = 𝑇𝑦
and 𝑦 = 𝑇𝑥 and consequently also the numerator vanishes.
Moreover, we have 𝑑(𝑇𝑥, 𝑇𝑦) = 𝑑(𝑦, 𝑥), and so the contrac-
tive condition is not well defined.

The aim of this paper is to give a version of Theorem 1 in
the setting of generalized metric spaces.

The following definitions will be needed in the sequel.

Definition 3 (see [11]). Let 𝑋 be a nonempty set and let 𝑑 :
𝑋 × 𝑋 → [0, +∞) be a mapping such that for all 𝑥, 𝑦 ∈ 𝑋
and for all distinct points 𝑢, V ∈ 𝑋, each of them different
from 𝑥 and 𝑦, one has
(gm1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,
(gm2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),
(gm3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑢) + 𝑑(𝑢, V) + 𝑑(V, 𝑦) (the rectangular

inequality).



2 International Journal of Analysis

Then 𝑑 is called generalized metric and the pair (𝑋, 𝑑) is
called generalizedmetric space (gms, for short). Note that the
rectangular inequality and simple induction show that this
inequality holds with 2𝑙 + 1 terms, where 𝑙 ≥ 1.

The next example gives a method of construction a new
generalized metric space from a family of given generalized
metric spaces.

Example 4. Let {(𝑋
𝑛
, 𝑑
𝑛
) : 𝑛 ∈ 𝐽 ⊂ N} be a family of disjoint

generalized metric spaces and let 𝑋 = ⋃ {𝑋
𝑛
: 𝑛 ∈ 𝐽}. Define

𝑑 : 𝑋 × 𝑋 → [0, +∞) by 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) with

𝑑 (𝑥, 𝑦)

= {

𝑑
𝑛
(𝑥, 𝑦) , if 𝑥, 𝑦 ∈ 𝑋

𝑛
, 𝑛 ∈ 𝐽,

1, if 𝑥 ∈ 𝑋
𝑛
, 𝑦 ∈ 𝑋

𝑚
, 𝑚, 𝑛 ∈ 𝐽, 𝑚 ̸= 𝑛.

(2)

Then, (𝑋, 𝑑) is a gms.

By referring to the Minkowski’s inequality for sums, we
give an example of a gms that is not a metric space.

Example 5. Let𝑋 = R2, 𝑝 ∈ (0, 1) and define the generalized
metric 𝑑 : 𝑋 × 𝑋 → [0, +∞) by

𝑑 (𝑥, 𝑦) =

{
{
{
{
{

{
{
{
{
{

{

(

2

∑

𝑖=1

|𝑥
𝑖
− 𝑦
𝑖
|
𝑝

)

1/𝑝

, if 𝑥
𝑖
, 𝑦
𝑖
∈ {0, 1} ,

2

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
− 𝑦
𝑖

󵄨
󵄨
󵄨
󵄨
, otherwise.

(3)

Clearly, (gm1) and (gm2) are obvious. Also (gm3) is imme-
diate if at least one between 𝑥

𝑖
and 𝑦

𝑖
is not in {0, 1}. Then,

consider𝐴 = [0, 0]𝑇, 𝐵 = [0, 1]𝑇,𝐶 = [1, 0]𝑇, and𝐷 = [1, 1]𝑇
so that we have 𝑑(𝐴, 𝐵) = 𝑑(𝐴, 𝐶) = 𝑑(𝐶,𝐷) = 𝑑(𝐵,𝐷) = 1
and 𝑑(𝐴,𝐷) = 𝑑(𝐶, 𝐵) = 21/𝑝. Note that

𝑑 (𝐶, 𝐵) = 2
1/𝑝

< 2 + 2
1/𝑝

= 𝑑 (𝐶,𝐷) + 𝑑 (𝐴,𝐷) + 𝑑 (𝐴, 𝐵)

(4)

and so (gm3) holds true. Then (𝑋, 𝑑) is a gms. On the other
hand, 𝑑(𝐴, 𝐵)+𝑑(𝐴, 𝐶) = 2 < 21/𝑝 = 𝑑(𝐶, 𝐵) since 𝑝 ∈ (0, 1).
Here, the triangle inequality is violated; that is, (𝑋, 𝑑) is not a
metric space.

Definition 6 (see [11]). Let (𝑋, 𝑑) be a gms, and let {𝑥
𝑛
} be a

sequence in𝑋 and 𝑥 ∈ 𝑋. We say that {𝑥
𝑛
} is gms convergent

to 𝑥 if and only if 𝑑(𝑥
𝑛
, 𝑥) → 0 as 𝑛 → +∞. We denote this

by 𝑥
𝑛
→ 𝑥.

Definition 7 (see [11]). Let (𝑋, 𝑑) be a gms and let {𝑥
𝑛
} be a

sequence in 𝑋. We say that {𝑥
𝑛
} is a gms Cauchy sequence if

and only if for each 𝜖 > 0 there exists a natural number 𝑛(𝜖)
such that 𝑑(𝑥

𝑛
, 𝑥
𝑚
) < 𝜖 for all 𝑛 > 𝑚 > 𝑛(𝜖).

Definition 8 (see [11]). Let (𝑋, 𝑑) be a gms. (𝑋, 𝑑) is called
a complete gms if every gms Cauchy sequence is gms con-
vergent in𝑋.

Definition 9. Let 𝑋 be a set and let 𝜏 be a topology on 𝑋.
(𝑋, 𝜏) is a Hausdorff topological space, if for every 𝑥, 𝑦 ∈ 𝑋
with 𝑥 ̸= 𝑦 there are open subsets 𝑈,𝑉 of 𝑋 such that 𝑥 ∈ 𝑈,
𝑦 ∈ 𝑉, and𝑈,𝑉 are disjoint. Equivalently, a topological space
(𝑋, 𝜏) is Hausdorff if and only if every convergent net in 𝑋
has a unique limit, and in particular the limit of a convergent
sequence is unique.

Now, we recall an example of a complete gms that is not
Hausdorff.

Example 10 (see [14]). Let 𝑋 = {0, 2} ∪ {1/𝑛 : 𝑛 ∈ N} and
define 𝑑 : 𝑋 × 𝑋 → [0, +∞) by 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) with

𝑑 (𝑥, 𝑦) =

{
{
{
{
{

{
{
{
{
{

{

0, if 𝑥 = 𝑦,
1, if 𝑥, 𝑦 ∈ {0, 2} or
𝑥, 𝑦 ∈ {1/𝑛 : 𝑛 ∈ N} , 𝑥 ̸= 𝑦,

𝑦, if 𝑥 ∈ {0, 2} , 𝑦 ∈ {1/𝑛 : 𝑛 ∈ N} .

(5)

Then (𝑋, 𝑑) is a complete gms.

2. Main Results

Our main theorem is essentially inspired by Khan [25]. More
precisely, we state and prove the following result.

Theorem 11. Let (𝑋, 𝑑) be a complete gms and let 𝑇 : 𝑋 → 𝑋

be a self-mapping such that

𝑑 (𝑇𝑥, 𝑇𝑦)

≤

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝜆𝑑 (𝑥, 𝑦)

+𝜇

𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦)

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

,

𝑖𝑓 𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥) ̸= 0,

0, 𝑖𝑓 𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥) = 0,

(6)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ̸= 𝑦, and for some 𝜆, 𝜇 ∈ [0, 1) with
𝜆 + 𝜇 < 1. Then 𝑇 has a unique fixed point in𝑋.

Proof. Let 𝑥
0
∈ 𝑋 be an arbitrary point. Define 𝑥

𝑛+1
= 𝑇𝑥
𝑛
=

𝑇
𝑛+1

𝑥
0
, for 𝑛 = 0, 1, 2, . . .. If 𝑥

𝑛
= 𝑥
𝑛−1

for some 𝑛 ≥ 1,
then 𝑥

𝑛−1
= 𝑇𝑥
𝑛−1

and hence 𝑥
𝑛−1

is a fixed point of 𝑇. This
completes the proof. Therefore, we suppose 𝑥

𝑛
̸= 𝑥
𝑛−1

for all
𝑛 ≥ 1 and distinguish two cases.
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Case 1. Assume that 𝑑(𝑥
𝑛−1
, 𝑇𝑥
𝑛
) + 𝑑(𝑥

𝑛
, 𝑇𝑥
𝑛−1
) ̸= 0, for 𝑛 =

0, 1, 2, . . .. Then

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
)

= 𝑑 (𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛
)

≤ 𝜆 𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝜇 (𝑑 (𝑥

𝑛−1
, 𝑇𝑥
𝑛−1
) 𝑑 (𝑥
𝑛−1
, 𝑇𝑥
𝑛
)

+ 𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛−1
) 𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
))

× (𝑑 (𝑥
𝑛−1
, 𝑇𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛−1
))
−1

= 𝜆𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
)

+ 𝜇 (𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) 𝑑 (𝑥
𝑛−1
, 𝑥
𝑛+1
)

+ 𝑑 (𝑥
𝑛
, 𝑥
𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
))

× (𝑑 (𝑥
𝑛−1
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛
))
−1

,

(7)

that is,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) ≤ 𝜆𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) + 𝜇𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) , (8)

or equivalently

𝑑 (𝑇
𝑛

𝑥
0
, 𝑇
𝑛+1

𝑥
0
) ≤ (𝜆 + 𝜇) 𝑑 (𝑇

𝑛−1

𝑥
0
, 𝑇
𝑛

𝑥
0
) . (9)

Thus in general, for 𝑛 ≥ 1, we have

𝑑 (𝑇
𝑛

𝑥
0
, 𝑇
𝑛+1

𝑥
0
) ≤ (𝜆 + 𝜇) 𝑑 (𝑇

𝑛−1

𝑥
0
, 𝑇
𝑛

𝑥
0
)

≤ (𝜆 + 𝜇)
2

𝑑 (𝑇
𝑛−2

𝑥
0
, 𝑇
𝑛−1

𝑥
0
)

≤ ⋅ ⋅ ⋅

≤ (𝜆 + 𝜇)
𝑛

𝑑 (𝑥
0
, 𝑇𝑥
0
) ,

(10)

and so, since 𝜆 + 𝜇 < 1, 𝑑(𝑇𝑛𝑥
0
, 𝑇
𝑛+1

𝑥
0
) → 0 as 𝑛 → +∞.

Now, we consider the following two subcases.
Subcase 1.1. We assume that 𝑇𝑚𝑥

0
= 𝑇
𝑛

𝑥
0
for some𝑚, 𝑛 ∈ N

with 𝑚 ̸= 𝑛. Letting 𝑚 > 𝑛, then 𝑇𝑚−𝑛 (𝑇𝑛𝑥
0
) = 𝑇
𝑛

𝑥
0
, that is,

𝑇
𝑘

𝑦 = 𝑦 where 𝑘 = 𝑚 − 𝑛, 𝑦 = 𝑇𝑛𝑥
0
. Now, if 𝑘 > 1, from (6)

we have

𝑑 (𝑦, 𝑇𝑦) = 𝑑 (𝑇
𝑘

𝑦, 𝑇
𝑘+1

𝑦)

≤ ⋅ ⋅ ⋅

≤ (𝜆 + 𝜇)
𝑘

𝑑 (𝑦, 𝑇𝑦) ,

(11)

that implies 𝑦 = 𝑇𝑦, since 𝜆 + 𝜇 < 1.
Subcase 1.2. We assume that 𝑇𝑚𝑥

0
̸= 𝑇
𝑛

𝑥
0
for all 𝑚, 𝑛 ∈ N

with𝑚 ̸= 𝑛. Clearly we have

𝑑 (𝑇
𝑛

𝑥
0
, 𝑇
𝑛+1

𝑥
0
) ≤ (𝜆 + 𝜇)

𝑛

𝑑 (𝑥
0
, 𝑇𝑥
0
) (12)

and, after routine calculations, it is also easy to obtain

𝑑 (𝑇
𝑛

𝑥
0
, 𝑇
𝑛+2

𝑥
0
)

≤ 𝜆 𝑑 (𝑇
𝑛−1

𝑥
0
, 𝑇
𝑛+1

𝑥
0
)

+ 𝜇 (𝑑 (𝑇
𝑛−1

𝑥
0
, 𝑇
𝑛

𝑥
0
) 𝑑 (𝑇

𝑛−1

𝑥
0
, 𝑇
𝑛+2

𝑥
0
)

+ 𝑑 (𝑇
𝑛+1

𝑥
0
, 𝑇
𝑛

𝑥
0
) 𝑑 (𝑇

𝑛+1

𝑥
0
, 𝑇
𝑛+2

𝑥
0
))

× (𝑑 (𝑇
𝑛−1

𝑥
0
, 𝑇
𝑛+2

𝑥
0
) + 𝑑 (𝑇

𝑛+1

𝑥
0
, 𝑇
𝑛

𝑥
0
))

−1

≤ 𝜆𝑑 (𝑇
𝑛−1

𝑥
0
, 𝑇
𝑛+1

𝑥
0
) + 𝜇𝑑 (𝑇

𝑛−1

𝑥
0
, 𝑇
𝑛

𝑥
0
)

+ 𝜇 𝑑 (𝑇
𝑛+1

𝑥
0
, 𝑇
𝑛+2

𝑥
0
)

≤ 𝜆 𝑑 (𝑇
𝑛−1

𝑥
0
, 𝑇
𝑛+1

𝑥
0
) + 𝜇(𝜆 + 𝜇)

𝑛−1

𝑑 (𝑥
0
, 𝑇𝑥
0
)

+ 𝜇(𝜆 + 𝜇)
𝑛+1

𝑑 (𝑥
0
, 𝑇𝑥
0
)

≤ 𝜆 𝑑 (𝑇
𝑛−1

𝑥
0
, 𝑇
𝑛+1

𝑥
0
) + 2(𝜆 + 𝜇)

𝑛−1

𝑑 (𝑥
0
, 𝑇𝑥
0
) .

(13)

Using the previous inequality, we get

𝑑 (𝑇
𝑛

𝑥
0
, 𝑇
𝑛+2

𝑥
0
) ≤ 𝜆
2

𝑑 (𝑇
𝑛−2

𝑥
0
, 𝑇
𝑛

𝑥
0
) + 2𝜆(𝜆 + 𝜇)

𝑛−2

× 𝑑 (𝑥
0
, 𝑇𝑥
0
) + 2(𝜆 + 𝜇)

𝑛−1

𝑑 (𝑥
0
, 𝑇𝑥
0
)

≤ 𝜆
2

𝑑 (𝑇
𝑛−2

𝑥
0
, 𝑇
𝑛

𝑥
0
)

+ 4(𝜆 + 𝜇)
𝑛−1

𝑑 (𝑥
0
, 𝑇𝑥
0
)

(14)

and hence

𝑑 (𝑇
𝑛

𝑥
0
, 𝑇
𝑛+2

𝑥
0
) ≤ 𝜆
𝑛

𝑑 (𝑥
0
, 𝑇
2

𝑥
0
)

+ 2𝑛(𝜆 + 𝜇)
𝑛−1

𝑑 (𝑥
0
, 𝑇𝑥
0
) .

(15)

Now, if 𝑚 > 2 is odd, then writing 𝑚 = 2𝑙 + 1, 𝑙 ≥ 1 and
using the fact that 𝑇𝑚𝑥

0
̸= 𝑇
𝑛

𝑥
0
for 𝑚, 𝑛 ∈ N with 𝑚 ̸= 𝑛, we

can easily show that

𝑑 (𝑇
𝑛

𝑥
0
, 𝑇
𝑛+𝑚

𝑥
0
)

≤ 𝑑 (𝑇
𝑛

𝑥
0
, 𝑇
𝑛+1

𝑥
0
) + 𝑑 (𝑇

𝑛+1

𝑥
0
, 𝑇
𝑛+2

𝑥
0
)

+ ⋅ ⋅ ⋅ + 𝑑 (𝑇
𝑛+2𝑙

𝑥
0
, 𝑇
𝑛+2𝑙+1

𝑥
0
)

≤ (𝜆 + 𝜇)
𝑛

𝑑 (𝑥
0
, 𝑇𝑥
0
) + (𝜆 + 𝜇)

𝑛+1

𝑑 (𝑥
0
, 𝑇𝑥
0
)

+ ⋅ ⋅ ⋅ + (𝜆 + 𝜇)
𝑛+2𝑙

𝑑 (𝑥
0
, 𝑇𝑥
0
)

≤

(𝜆 + 𝜇)
𝑛

1 − 𝜆 − 𝜇

𝑑 (𝑥
0
, 𝑇𝑥
0
) .

(16)
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On the other hand, if𝑚 > 2 is even, thenwriting𝑚 = 2𝑙, 𝑙 ≥ 2
and using the fact that 𝑇𝑚𝑥

0
̸= 𝑇
𝑛

𝑥
0
for𝑚, 𝑛 ∈ N with𝑚 ̸= 𝑛,

we can easily show that

𝑑 (𝑇
𝑛

𝑥
0
, 𝑇
𝑛+𝑚

𝑥
0
)

≤ 𝑑 (𝑇
𝑛

𝑥
0
, 𝑇
𝑛+2

𝑥
0
) + 𝑑 (𝑇

𝑛+2

𝑥
0
, 𝑇
𝑛+3

𝑥
0
)

+ ⋅ ⋅ ⋅ + 𝑑 (𝑇
𝑛+2𝑙−1

𝑥
0
, 𝑇
𝑛+2𝑙

𝑥
0
)

≤ 𝜆
𝑛

𝑑 (𝑥
0
, 𝑇
2

𝑥
0
) + 2𝑛(𝜆 + 𝜇)

𝑛−1

𝑑 (𝑥
0
, 𝑇𝑥
0
)

+ (𝜆 + 𝜇)
𝑛+2

𝑑 (𝑥
0
, 𝑇𝑥
0
) + ⋅ ⋅ ⋅

+ (𝜆 + 𝜇)
𝑛+2𝑙−1

𝑑 (𝑥
0
, 𝑇𝑥
0
)

≤ 𝜆
𝑛

𝑑 (𝑥
0
, 𝑇
2

𝑥
0
) + 2𝑛(𝜆 + 𝜇)

𝑛−1

𝑑 (𝑥
0
, 𝑇𝑥
0
)

+

(𝜆 + 𝜇)
𝑛+2

1 − 𝜆 − 𝜇

𝑑 (𝑥
0
, 𝑇𝑥
0
) .

(17)

Thus, combining all the cases, for all𝑚, 𝑛 ∈ N we have

𝑑 (𝑇
𝑛

𝑥
0
, 𝑇
𝑛+𝑚

𝑥
0
) ≤

(𝜆 + 𝜇)
𝑛

1 − 𝜆 − 𝜇

𝑑 (𝑥
0
, 𝑇𝑥
0
) + 𝜆
𝑛

𝑑 (𝑥
0
, 𝑇
2

𝑥
0
)

+ 2𝑛(𝜆 + 𝜇)
𝑛−1

𝑑 (𝑥
0
, 𝑇𝑥
0
) .

(18)

Therefore, 𝑑(𝑇𝑛𝑥
0
, 𝑇
𝑛+𝑚

𝑥
0
) → 0 as 𝑛 → +∞. This

implies that {𝑥
𝑛
} is a Cauchy sequence in 𝑋. Since 𝑋 is

complete, there exists a 𝑢 ∈ 𝑋 such that 𝑥
𝑛
→ 𝑢. If

𝑑(𝑢, 𝑇
𝑛

𝑥
0
) + 𝑑(𝑇

𝑛−1

𝑥
0
, 𝑇𝑢) = 0, for some 𝑛 ≥ 1, then

𝑢 = 𝑇
𝑛

𝑥
0
, and, by (6), we get 𝑑(𝑇𝑢, 𝑇𝑛𝑥

0
) = 0. It follows

that 𝑢 = 𝑇𝑛𝑥
0
= 𝑇𝑢; that is, 𝑢 is a fixed point of 𝑇. Then,

without loss of generality we can assume that 𝑑(𝑢, 𝑇𝑛𝑥
0
) +

𝑑(𝑇
𝑛−1

𝑥
0
, 𝑇𝑢) > 0 for all 𝑛 ≥ 1. Now, if 𝑢 ̸= 𝑇𝑢, 𝑇𝑢 ̸= 𝑇

𝑛

𝑥
0

and 𝑇𝑛+1𝑥
0
̸= 𝑢, by the rectangular inequality we have

𝑑 (𝑇𝑢, 𝑢)

≤ 𝑑 (𝑇𝑢, 𝑇
𝑛

𝑥
0
) + 𝑑 (𝑇

𝑛

𝑥
0
, 𝑇
𝑛+1

𝑥
0
) + 𝑑 (𝑇

𝑛+1

𝑥
0
, 𝑢)

≤ 𝜆𝑑 (𝑢, 𝑇
𝑛−1

𝑥
0
)

+ 𝜇 (𝑑 (𝑢, 𝑇𝑢) 𝑑 (𝑢, 𝑇
𝑛

𝑥
0
) + 𝑑 (𝑇

𝑛−1

𝑥
0
, 𝑇𝑢)

× 𝑑 (𝑇
𝑛−1

𝑥
0
, 𝑇
𝑛

𝑥
0
))

× (𝑑 (𝑢, 𝑇
𝑛

𝑥
0
) + 𝑑 (𝑇

𝑛−1

𝑥
0
, 𝑇𝑢))

−1

+ (𝜆 + 𝜇)
𝑛

𝑑 (𝑥
0
, 𝑇𝑥
0
) + 𝑑 (𝑇

𝑛+1

𝑥
0
, 𝑢)

≤ 𝜆 𝑑 (𝑢, 𝑇
𝑛−1

𝑥
0
) + 𝜇 (𝑑 (𝑢, 𝑇𝑢) + 𝑑 (𝑇

𝑛−1

𝑥
0
, 𝑇
𝑛

𝑥
0
))

+ (𝜆 + 𝜇)
𝑛

𝑑 (𝑥
0
, 𝑇𝑥
0
) + 𝑑 (𝑇

𝑛+1

𝑥
0
, 𝑢)

≤ 𝜆 𝑑 (𝑢, 𝑇
𝑛−1

𝑥
0
) + 𝜇 (𝑑 (𝑢, 𝑇𝑢) + (𝜆 + 𝜇)

𝑛−1

𝑑 (𝑥
0
, 𝑇𝑥
0
))

+ (𝜆 + 𝜇)
𝑛

𝑑 (𝑥
0
, 𝑇𝑥
0
) + 𝑑 (𝑇

𝑛+1

𝑥
0
, 𝑢) .

(19)

Letting 𝑛 → +∞, since 𝑇𝑛𝑥
0
→ 𝑢, we obtain easily (1 −

𝜇) 𝑑 (𝑢, 𝑇𝑢) ≤ 0 that leads to a contradiction since 𝜇 < 1 and
so must be 𝑢 = 𝑇𝑢.

On the other hand, if 𝑇𝑢 = 𝑇𝑛𝑥
0
for every 𝑛 ∈ 𝐽 ⊂ N and

𝐽 is infinite, then

lim
𝑛→+∞,𝑛∈𝐽

𝑑 (𝑇𝑢, 𝑢) = lim
𝑛→+∞,𝑛∈𝐽

𝑑 (𝑇
𝑛

𝑥
0
, 𝑢) = 0, (20)

that implies 𝑑(𝑇𝑢, 𝑢) = 0 and so 𝑇𝑢 = 𝑢. If 𝐽 is finite, then
𝑇
𝑛−1

𝑥
0
= 𝑢 (or generally 𝑇𝑛+1𝑥

0
= 𝑢) only for a finite set of

values of 𝑛, and therefore (19) holds for all 𝑛 large enough.
Now, we show that 𝑇 has a unique fixed point. For this, we
assume that 𝑢∗ is another fixed point of 𝑇 in 𝑋 such that
𝑑(𝑢, 𝑢

∗

) + 𝑑(𝑢
∗

, 𝑢) > 0. By (6) we have

𝑑 (𝑢, 𝑢
∗

)

= 𝑑 (𝑇𝑢, 𝑇𝑢
∗

)

≤ 𝜆 𝑑 (𝑢, 𝑢
∗

)

+ 𝜇

𝑑 (𝑢, 𝑇𝑢) 𝑑 (𝑢, 𝑇𝑢
∗

) + 𝑑 (𝑢
∗

, 𝑇𝑢) 𝑑 (𝑢
∗

, 𝑇𝑢
∗

)

𝑑 (𝑢, 𝑇𝑢
∗
) + 𝑑 (𝑢

∗
, 𝑇𝑢)

= 𝜆 𝑑 (𝑢, 𝑢
∗

) + 𝜇

𝑑 (𝑢, 𝑢) 𝑑 (𝑢, 𝑢
∗

) + 𝑑 (𝑢
∗

, 𝑢) 𝑑 (𝑢
∗

, 𝑢
∗

)

𝑑 (𝑢, 𝑢
∗
) + 𝑑 (𝑢

∗
, 𝑢)

,

(21)

or, equivalently, (1 − 𝜆) 𝑑 (𝑢, 𝑢∗) ≤ 0 that leads to a con-
tradiction and hence 𝑢 = 𝑢∗.
Case 2. Assume that 𝑑(𝑥

𝑛−1
, 𝑇𝑥
𝑛
) + 𝑑(𝑥

𝑛
, 𝑇𝑥
𝑛−1
) = 0, for

some 𝑛. By condition (6), it follows that 𝑑(𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛
) = 0

and hence 𝑥
𝑛
= 𝑇𝑥
𝑛
.This completes the proof of the existence

of a fixed point of 𝑇, say 𝑢.

The uniqueness follows as in Case 1.
As consequence of Theorem 11, we give the following

corollary.

Corollary 12. Let (𝑋, 𝑑) be a complete gms and let 𝑇 : 𝑋 →

𝑋 be a self-mapping such that

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦)

≤

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

𝜆𝑑 (𝑥, 𝑦)

+𝜇

𝑑 (𝑥, 𝑇
𝑛

𝑥) 𝑑 (𝑥, 𝑇
𝑛

𝑦) + 𝑑 (𝑦, 𝑇
𝑛

𝑥) 𝑑 (𝑦, 𝑇
𝑛

𝑦)

𝑑 (𝑥, 𝑇
𝑛
𝑦) + 𝑑 (𝑦, 𝑇

𝑛
𝑥)

,

𝑖𝑓 𝑑 (𝑥, 𝑇
𝑛

𝑦) + 𝑑 (𝑦, 𝑇
𝑛

𝑥) ̸= 0,

0, 𝑖𝑓 𝑑 (𝑥, 𝑇
𝑛

𝑦) + 𝑑 (𝑦, 𝑇
𝑛

𝑥) = 0,

(22)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ̸= 𝑦, for some 𝑛 ≥ 1 and for some 𝜆, 𝜇 ∈
[0, 1) with 𝜆 + 𝜇 < 1. Then 𝑇 has a unique fixed point in𝑋.
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Proof. By Theorem 11, let 𝑢 be the unique fixed point of the
mapping 𝑇𝑛. Then, we have 𝑇𝑛(𝑇𝑢) = 𝑇(𝑇𝑛𝑢) = 𝑇𝑢 and so
𝑇𝑢 is a fixed point of𝑇𝑛.Therefore, by uniqueness of the fixed
point it must be that 𝑇𝑢 = 𝑢.

By setting 𝜇 = 0 in Corollary 12, we draw the following
result which can be viewed as an extension of Bryant’s
theorem [26] to generalized metric spaces.

Corollary 13. Let (𝑋, 𝑑) be a complete gms and let 𝑇 : 𝑋 →

𝑋 be a self-mapping such that

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) ≤ 𝜆 𝑑 (𝑥, 𝑦) (23)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ̸= 𝑦, for some 𝑛 ≥ 1 and for some 𝜆 ∈
[0, 1). Then 𝑇 has a unique fixed point in𝑋.

Proof. Note that if 𝑑(𝑥, 𝑇𝑛𝑦) + 𝑑(𝑦, 𝑇𝑛𝑥) = 0, then 𝑥 = 𝑇𝑛𝑦
and 𝑦 = 𝑇𝑛𝑥 and so from (23) we have

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) = 𝑑 (𝑥, 𝑦) ≤ 𝜆 𝑑 (𝑥, 𝑦) . (24)

Since 𝜆 < 1, this implies 𝑥 = 𝑦, but by hypothesis, condition
(23) must hold true only for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦. Then,
without loss of generality we can assume that 𝑑(𝑥, 𝑇𝑛𝑦) +
𝑑(𝑦, 𝑇

𝑛

𝑥) ̸= 0. The rest of the proof is a direct consequence
of Corollary 12 andTheorem 11.

Our first example illustrates Theorem 11.

Example 14. Let 𝑋 = {1, −1, 𝑖, −𝑖} and define the generalized
metric 𝑑 : 𝑋 × 𝑋 → [0, +∞) by 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) with

𝑑 (𝑥, 𝑦) =

{
{
{
{
{

{
{
{
{
{

{

0, if 𝑥 = 𝑦,
1, if 𝑥 ∈ {1, −1} , 𝑦 = 𝑖,
3, if 𝑥, 𝑦 ∈ {1, −1} , 𝑥 ̸= 𝑦,

5, otherwise.

(25)

By routine calculations, it is easy to check that (gm3) holds
and so 𝑑 is a generalizedmetric; obviously, (𝑋, 𝑑) is complete.
On the other hand, 𝑑 does not satisfy the triangle inequality.
Indeed, we get

3 = 𝑑 (1, −1) > 𝑑 (1, 𝑖) + 𝑑 (𝑖, −1) = 2. (26)

Now, define 𝑇 : 𝑋 → 𝑋 by

𝑇𝑥 = {

𝑖, if 𝑥 ̸= − 𝑖,

1, if 𝑥 = −𝑖.
(27)

The reader can easily show that the mapping 𝑇 satisfies the
contractive condition of Theorem 11 with 𝜆 = 1/3 and 𝜇 =
1/4, for example. Then, 𝑥 = 𝑖 is the unique fixed point of 𝑇.

The following example illustrates Corollary 12 but essen-
tially shows the usefulness of Bryant’s theorem in respect of
Banach’s contraction principle.

Example 15. Let 𝑋 = [0, 2] and 𝐴 = {1/2, 2/3, 3/4, 4/5}.
Define the generalized metric 𝑑 : 𝑋 × 𝑋 → [0, +∞) by
𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) with

𝑑(

1

2

,

2

3

) = 𝑑 (

3

4

,

4

5

) = 0.2,

𝑑 (

1

2

,

4

5

) = 𝑑 (

2

3

,

3

4

) = 0.3,

𝑑 (

1

2

,

3

4

) = 𝑑 (

2

3

,

4

5

) = 0.6,

𝑑 (

1

2

,

1

2

) = 𝑑 (

2

3

,

2

3

) = 𝑑 (

3

4

,

3

4

) = 𝑑 (

4

5

,

4

5

) = 0,

𝑑 (𝑥, 𝑦) =
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

if 𝑥, 𝑦 ∈ 𝑋 \ 𝐴 or 𝑥 ∈ 𝐴, 𝑦 ∈ 𝑋 \ 𝐴.
(28)

By routine calculations, it is easy to check that (gm3)
holds and so 𝑑 is a generalized metric. On the other hand,
𝑑 does not satisfy the triangle inequality on𝐴. Indeed, we get

0.6 = 𝑑 (

1

2

,

3

4

) ≥ 𝑑 (

1

2

,

2

3

) + 𝑑 (

2

3

,

3

4

) = 0.5. (29)

Next, we show that (𝑋, 𝑑) is complete. Indeed, if there exists
𝑚 ∈ N such that 𝑥

𝑚
= 𝑥
𝑛
for all 𝑛 ≥ 𝑚, then the sequence

{𝑥
𝑛
} is Cauchy. Now, we assume that for all𝑚 ∈ N there exists

𝑛 ≥ 𝑚 such that 𝑥
𝑚
̸= 𝑥
𝑛
. Let 𝜀 < 0.2 be fixed and assume that

there exists 𝑛(𝜀) such that 𝑑(𝑥
𝑛
, 𝑥
𝑚
) < 𝜀. This implies that

{𝑥
𝑛
: 𝑛 ≥ 𝑛(𝜀)} ∩ 𝐴 is at most singleton (each two distinct

points in 𝐴 have distance greater than 𝜀, by definition). Also
by definition of𝑑, it follows that {𝑥

𝑛
} is Cauchy in𝑋, endowed

with the usual metric of real numbers, and so convergent in
[0, 2]. Consequently, the same holds in the gms (𝑋, 𝑑).

Now, define 𝑇 : 𝑋 → 𝑋 by

𝑇𝑥 =

{
{
{
{
{

{
{
{
{
{

{

0, if 𝑥 ∈ {1
2

,

2

3

,

3

4

} ,

2, if 𝑥 = 4
5

,

1, otherwise.

(30)

Then, for 𝑥 = 1/2 and 𝑦 = 4/5, we get

𝑑(𝑇(

1

2

) , 𝑇 (

4

5

)) = 𝑑 (0, 2) = 2 ≤ 𝜆 𝑑 (

1

2

,

4

5

) = 𝜆 (0.3) ,

(31)

which leads to a contradiction since 𝜆 ∈ [0, 1). Therefore, the
Banach’s contraction principle is not applicable in this case.
On the other hand, since 𝑇2𝑥 = 1, we have

0 = 𝑑 (𝑇
2

𝑥, 𝑇
2

𝑦) ≤ 𝜆 𝑑 (𝑥, 𝑦) , (32)

which shows that 𝑇 satisfies the contractive condition of
Corollary 12 and 𝑥 = 1 is the unique fixed point of 𝑇.

Finally, as an application of Theorem 11 we give the
following result.
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Corollary 16. Let (𝑋, 𝑑) be a complete gms and let 𝑇 : 𝑋 →

𝑋 be a self-mapping satisfying (6). If 𝑆 : 𝑋 → 𝑋 is a self-
mapping such that 𝑆𝑇 = 𝑇𝑆, then 𝑇 and 𝑆 have a unique
common fixed point in 𝑋; that, is there exists 𝑢 ∈ 𝑋 such that
𝑢 = 𝑇𝑢 = 𝑆𝑢.

Proof. By Theorem 11, let 𝑢 be the unique fixed point of the
mapping 𝑇. Then, we have 𝑇(𝑆𝑢) = 𝑆(𝑇𝑢) = 𝑆𝑢 and so 𝑆𝑢 is
a fixed point of 𝑇. Therefore, by uniqueness of the fixed point
it must be that 𝑆𝑢 = 𝑢 = 𝑇𝑢.
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