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Abstract

We present a unifying semantic and proof-theoretical framework for investigating depth-bounded approx-
imations to Boolean Logic in which the number of nested applications of a single structural rule, repre-
senting the classical Principle of Bivalence (classical cut), is bounded above by a fixed natural number.
These approximations provide a hierarchy of tractable logical systems that indefinitely converge to classical
propositional logic. The operational rules are shared by all approximation systems and are justified by
an “informational semantics” whereby the meaning of a logical operator is specified solely in terms of the
information that is actually possessed by an agent.
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1 Introduction

According to the received view, classical logic is informationally trivial : the informa-

tion carried by its conclusion is included in the information carried by its premises.

This intuitively clashes with the known results that first-order logic is undecidable

and classical propositional logic is NP -hard. The fundamental question is:

do we actually possess the information that the conclusion of an inference

is true whenever we possess the information that its premises are true?

(1)

The lack of a general decision procedure strongly suggests that the intuitive answer

is “no” in the domain of classical first-order logic: there is no guarantee that we are

in a position to recognize the truth of a valid consequence A of a set Γ of sentences

1 This paper elaborates on ideas and results stemming from my collaboration with Marcelo Finger, Luciano
Floridi and Dov Gabbay. I wish to thank Maribel Fernandez and Marcelo Finger for inviting me to present
this work at LSFA2013 and all the participants for the stimulating discussion.
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in all situations in which we recognize the truth of the sentences in Γ. Moreover,

despite the existence of decision procedures for classical propositional logic, the

widely believed conjecture that P �= NP , makes it highly improbable that there

exists a feasible one. Therefore, if we construe the notion of “actually possessing” a

piece of information as having access to it in practice, and not only in principle, a

positive answer to (1) sounds highly counterintuitive even in the restricted domain

of propositional logic. Hence, there is a tension between the received view that logic

is informationally trivial and the intuitive, commonsense, interpretation of this view

underlying the simple question raised in (1).

In this contribution, we elaborate on ideas and results presented in a series of

previous papers [16,21,17,20,18,19], to address the following problem: for which

subsystems of classical propositional logic does it make intuitive sense to give a

positive answer to (1)? As argued in [20,19], a rather natural solution stems from

an alternative way of characterizing the meaning of the Boolean operators, that we

call informational semantics, whereby the meaning of a logical operator is specified

solely in terms of the information that is actually possessed by an agent. This seman-

tics leads to a hierarchy of tractable logical systems that indefinitely approximate

classical propositional logic. The informational meaning of the logical operators is

the same for all approximations and is captured by an intuitive semantics based

on non-deterministic matrices or, equivalently, on a set of natural introduction and

elimination rules for the logical operators. The increasing inferential power of each

approximation depends only on a single structural rule and on the depth at which

its application is allowed. This structural rule is, in essence, a classical cut rule —

closely related to the classical Principle of Bivalence — that governs the manipula-

tion of “virtual information”, i.e., information that we do not actually possess, but

we temporarily assume as if we possessed it. 3 Suppose that our current informa-

tion state includes the information that A ∨ B and ¬A ∨ B are both true, but no

information about A and B. However, our (metaphysical) notion of truth implies

that A is either true or false. Then, we can conclude that, in either case, the infor-

mation that B is true belongs to any virtual extension of our current information

state that includes definite information about A:

If we were informed that A is true, then we would be informed that
B is true

If we were informed that A is false, then we would be informed
that B is true

We are informed that B is true

But neither of the two pieces of information concerning A is actually included in

our current information state. This is why we call this “virtual information”. A

reasoning agent (whether human or artificial) that actually possesses the informa-

3 Logicians are familiar with virtual information from the so-called “discharge rules” of natural deduction
systems. However, in Gentzen-style natural deduction the use of virtual information is essential in some of
the inference rules that fix the (classical or intuitionistic) meaning of the logical operators. In our approach,
on the other hand, virtual information plays no role in the explication of their informational meaning and
its use is governed by a single structural rule (see Section 4 below).
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tion that A∨B and ¬A∨B are both true, does not thereby possess the information

that B is true, unless it is able to simulate virtual information states that are richer

than its current one. This is a non-trivial step both from the computational and

the cognitive viewpoint and the depth at which the iterated use of such virtual

information is required may be an interesting measure of the computational and

cognitive effort involved in extracting the information that is implicitly contained

in the premises.

The approximation of depth 0 is the one in which no use of virtual information is

allowed and valid inferences are those that can be justified directly by the informa-

tional semantics for the logical operators. This basic system enjoys the subformula

property and admits of a simple polynomial time decision procedure. A k-depth

approximation is obtained when at most k nested applications of the structural rule

for virtual information are allowed. 4 Each k-depth system enjoys the subformula

property and admits of a polynomial time decision procedure whose complexity

increases with k.

In our approach, therefore, the answer to (1) is amatter of degree and depends on

the minimum depth at which the conclusion can be deduced from the premises. We

maintain that this “incremental” view of classical propositional logic, which takes

it as the limit of a sequence of tractable subsystems of increasing inferential power

(and increasing computational complexity), can be useful in a variety of computing

applications as well as in all research areas that require a non-idealized approach to

the inferential power of human or artificial reasoning systems.

2 Informational meaning of the Boolean operators

The classical meaning of the logical operators is usually specified by the familiar

truth-tables that fix the conditions under which a sentence is true or false in terms

of the truth or falsity of its immediate constituents. The underlying notions of

truth and falsity are assumed to obey the two classical principles of Bivalence (any

sentence is either true or false independent of our holding any information about it)

and Non-Contradiction (no sentence can be at the same time true and false). This

way of fixing the meaning of a logical operator is perfectly in tune with the classical,

information-transcendent, notions of truth and falsity and with the traditional view

of logical inference as a truth-transmission device; but it is at odds with the equally

widespread view of logical inference as an information-processing device. To abide

by the latter view we need a semantics based on informational notions. In particular,

in order to define subsystems of classical logic that justify a positive answer to (1),

we need a semantics based on the notion of actual information, i.e., to put it with

Jaakko Hintikka, information that “we actually possess (as distinguished from the

information we in some sense have potentially available to us) and with which we

4 This hierarchy can be interestingly compared to similar hierarchies based on different semantic and proof-
theoretical characterizations, as the ones proposed in [9,25,26,13,38,28,29,31,32,30]. The proof-theoretical
characterization is closely related to St̊almarck’s method [38]; for a more detailed discussion of this relation
see [20]. We stress that such hierarchies cannot be naturally obtained from Gentzen-style characterizations
of classical logic.
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can in fact operate” [33, p. 229].

The primary notions of this semantics are not truth and falsity, but informational

truth and informational falsity, namely holding the information that a sentence is

true, respectively false. Here, by saying that an agent x holds the information that

A is true (respectively false) we mean that this is information that is practically

available to x and with which x can operate. 5 Unlike classical truth and falsity

however, these informational notions do not satisfy the informational version of

the Principle of Bivalence: it may well be that for a given A, we neither hold the

information that A is true, nor do we hold the information that A is false. In this

paper we assume that they satisfy the informational version of the Principle of Non-

Contradiction: no agent can actually possess both the information that A is true

and the information that A is false, as this would be deemed to be equivalent to

possessing no definite information about A. 6 We may use the values 1 and 0 to

denote, respectively, informational truth and falsity. When a sentence takes neither

of these two defined values, we say that it is informationally indeterminate. It is

technically convenient to treat informational indeterminacy as a third value that

we denote by “⊥”. 7 The three values are partially ordered by the relation � such

that v � w (“v is less defined than, or equal to, w”) if, and only if, v = ⊥ or v = w

for v, w ∈ {0, 1,⊥}.
Note that the old familiar truth tables for ∧,∨ and ¬ are still intuitively sound

under this informational reinterpretation of 1 and 0. 8 However, they are no longer

exhaustive: they do not tell us what happens when one or all of the immediate

constituents of a complex sentence are assigned the value ⊥.

So, we only need to conservatively extend the classical truth-tables with new

entries to accommodate the third value ⊥. More precisely, for every n-ary Boolean

operator �, whose classical meaning is fixed by a truth-function f�, we want to

specify its informational meaning as given by some sort of function f̂� satisfying:

f̂�(z1, . . . , zn) = f�(z1, . . . , zn), whenever z1, . . . , zn ∈ {0, 1}. (2)

Given our interpretation of the third value ⊥ as informational indeterminacy, a rea-

sonable requirement is also that our logical operators are monotonic in the following

sense:

v1 � w1 and . . . and vn � wn =⇒ f̂�(v1, . . . , vn) � f̂�(w1, . . . , wn) (3)

Let us, from now on, restrict our attention to the logical operators ∧,∨,¬. Under

5 We do not need to engage in a discussion about what “true” and “false” may mean in a given application
context, but just to assume that these two words “true” and “false” have been given a definite meaning
(which may well be the classical one) that obeys the principles of Bivalence and Non-Contradiction.
6 It is, of course, possible to investigate variants of the semantics proposed in this paper in which this
informational version of the Principle of Non-Contradiction is relaxed.
7 This is the symbol for “undefined”, the bottom element of the information ordering, not to be confused
with the “falsum” logical constant.
8 For example, if we hold the information that A is true and the information that B is true, then we thereby
hold the information that A ∧ B is true. If we hold the information that A is true or the information that
B is true, we thereby hold the information that A ∨B is true, etc.
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∧ 1 0 ⊥

1 1 0 ⊥

0 0 0 0

⊥ ⊥ 0 ⊥

∨ 1 0 ⊥

1 1 1 1

0 1 0 ⊥

⊥ 1 ⊥ ⊥

¬

1 0

0 1

⊥ ⊥
Table 1

Kleene’s 3-valued matrices.

the requirements (2) and (3), the matrices of Kleene’s (strong) 3-valued logic [34,

§64], shown in Table 1, may appear as the most natural candidates to represent their

informational meaning. However, while the matrix for negation appears perfectly

in tune with our informational interpretation of the three values, the matrices for

∧ and ∨ are not, in that they clash with some of our intuitive judgments. This

intuitive counterevidence is well expressed in the following quotations from Willard

V.O. Quine taken from his book The Roots of Reference and concerning what he

there calls “the primitive meaning of the logical operators”:

Conjunction has its blind spot [...] when neither component commands assent or

dissent. There is no direct way of mastering this quarter. In some such cases the

conjunction commands dissent and in others it commands nothing. This sector

is mastered only later, in theory-laden ways. Where the components are “it is a

mouse” and “it is a chipmunk”, and neither is affirmed nor denied, the conjunc-

tion will still be denied. But where the components are “it is a mouse” and “it is

in the kitchen”, and neither is affirmed nor denied, the conjunction will perhaps

be left in abeyance.

[...]

Alternation, like conjunction, has its blind quarter where neither component com-

mands assent or dissent. We might assent to the alternation of “it is a mouse”

and “it is chipmunk” or we might abstain. 9

In general, when we are faced with a conjunction A ∧ B in which both A and

B are informationally indeterminate, the value of the conjunction may be either

informational falsity 0, or informational indeterminacy ⊥, depending on whether or

not we hold the information that A and B cannot be simultaneously true. And the

value of A∨B may be either informational truth 1 or informational indeterminacy

⊥, depending on whether or not we hold the information that at least one of A and

B must be true. For example, when I suffer from fuzzy vision, I may well hold the

information that the the digit at which the optician is pointing is either a 5 or a

7 as well as the information that it is not both a 5 and a 7, although the sentences

“it is a 5” and “it is a 7” are both informationally indeterminate.

As far as the operator ∨ is concerned, its informational meaning we are trying

to characterize clearly departs from its intuitionistic meaning, according to which

9 [36, p. 77].
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a disjunction A ∨ B is intuitionistically true (roughly speaking, provable 10 ) if and

only if either A is intuitionistically true or B is intuitionistically true. This is

the so-called disjunction property of intuitionistic logic. While this property is

appropriate for (constructive) mathematics, it is quite at odds with ordinary usage

outside mathematics. As Michael Dummett puts it:

I may be entitled to assert “A or B” because I was reliably so informed by someone

in a position to know, but if he did not choose to tell me which alternative held

good, I could not apply an or-introduction rule to arrive at that conclusion. [. . . ]

Hardy may simply not have been able to hear whether Nelson said “Kismet hardy”

or “Kiss me Hardy”, though he heard him say one or the other: once we have the

concept of disjunction, our perceptions themselves may assume an irremediably

disjunctive form. 11

Indeed, this appears to be a distinctive feature of the down-to-earth kind of infor-

mation with which we practically operate in most non-mathematical contexts:

Unlike mathematical information, empirical information decays at two stages: in

the process of acquisition, and in the course of retention and transmission. An

attendant directing theatre-goers to different entrances according to the colours

of their tickets might even register that a ticket was yellow or green, without

registering which it was, if holders of tickets of either colours were to use the

same entrance; even our observations are incomplete, in the sense that we do not

and cannot take in every detail of what is in our sensory fields. That informa-

tion decays yet further in memory and in the process of being communicated is

evident. In mathematics, any effective procedure remains eternally available to

be executed; in the world of our experience, the opportunity for inspection and

verification is fleeting. 12

This discussion strongly suggests that Kleene’s 3-valued matrices are not apt to

capture the informational meaning of the logical operators ∨ and ∧ and that, indeed,

no system of standard deterministic matrices can do any better. Quine’s suggestion,

reported in the above quotations, leads to the following non-deterministic matrices

for ∧ and ∨:

∧ 1 0 ⊥

1 1 0 ⊥

0 0 0 0

⊥ ⊥ 0 ⊥, 0

∨ 1 0 ⊥

1 1 1 1

0 1 0 ⊥

⊥ 1 ⊥ ⊥, 1

Here, the entries in which both arguments are ⊥ yield two alternative possible val-

ues, meaning that the value of the compound sentence is not uniquely determined

by the values of its immediate constituents, but can be either of the two values

10This is somewhat of a simplification. For a more accurate discussion of intuitionistic truth, see [37].
11 [27], pp. 266–267, my emphasis.
12 [27], pp. 277–278.

M. D’Agostino / Electronic Notes in Theoretical Computer Science 305 (2014) 35–5240



¬

1 0

0 1

⊥ ⊥

∧ 1 0 ⊥

1 1 0 ⊥

0 0 0 0

⊥ ⊥ 0 ⊥, 0

∨ 1 0 ⊥

1 1 1 1

0 1 0 ⊥

⊥ 1 ⊥ ⊥, 1

→ 1 0 ⊥

1 1 0 ⊥

0 1 1 1

⊥ 1 ⊥ ⊥, 1

Table 2
Informational 3-valued matrices for the Boolean operators.

shown. In other words, the “function” f̂� that fixes the informational meaning of a

binary operator � is a non-deterministic truth-function. 13 These non-deterministic

matrices where independently rediscovered by Crawford and Etherington [13] and

used to provide a semantic characterization of unit-resolution. The general the-

ory of non-deterministic matrices has been brought to the attention of the logical

community and extensively investigated by Arnon Avron (see [3,4,1,5,2,6] among

others).

A non-deterministic matrix for the informational meaning of the Boolean con-

ditional can be obtained in the obvious way. The informational 3-valued matrices

for the four Boolean operators are recapitulated in Table 2.

3 The 0-depth logic

We start by characterizing the 0-depth logic whose inferences are justified by the

only means of the informational meaning of the logical operators and no use of

virtual information is allowed. Let F be the set of all Boolean formulae.

Definition 3.1 A 3ND-valuation is a mapping V : F → {0, 1,⊥}, satisfying the

following conditions for all A,B ∈ F :

(i) V (¬A) = f̂¬(V (A))

(ii) V (A ◦B) ∈ f̂◦(V (A), V (B))

where ◦ is ∧, ∨ or →, f̂¬ is the deterministic truth-function defined by the informa-

tional 3-valued matrix for ¬, and f̂◦ is the non-deterministic truth-function defined

by the informational 3-valued matrix for ◦.

A 3ND-valuation can be seen as describing an information state that is closed

under the implicit information that stems from the informational meaning of the

logical operators. The claim is that such an information state contains information

that we actually possess and with which we can operate, in the precise sense that we

have a feasible procedure to decide, for every formula A, whether the information

that A is true, or the information that A is false, or neither of them actually belongs

to our information state. This claim will be substantiated in Proposition 3.8 below,

by showing that all the implicit information that stems from the informational

13This is just convenient jargon for a function V n → 2V \ ∅, with V the set of truth-values.
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meaning of the logical operators can be feasibly recognized. 14

In what follows we shall make use of signed formulae (S-formulae for short),

namely expressions of the form T A or F A with the intended meaning of “A is

informationally true” and “A is informationally false”. This choice allows us to

express a 3ND-valuation V as a set of S-formulae, namely the set {T A | V (A) = 1}∪
{F A | V (A) = 0}. We shall use “ϕ, ψ, θ, . . .”, as variables ranging over S-formulae

and “A,B,C, . . .” as variables ranging over usual unsigned formulae. We shall also

use “X,Y, Z,. . . ”, as variables ranging over sets of S-formulae and “Γ,Δ,Λ, . . .”, as

variables ranging over sets of unsigned formulae.

Let us say that a 3ND-valuation V satisfies an S-formula T A if V (A) = 1 and

an S-formula F A if V (A) = 0.

Definitions 3.2 For every set X of S-formulae and every S-formula ϕ, we say

that:

• ϕ is a 0-depth consequence of X if V satisfies ϕ for every 3ND-valuation V such

that V satisfies all the S-formulae in X.

• X is 0-depth inconsistent if there is no 3ND-valuation V such that V satisfies all

the S-formulae in X.

We use the symbol “�0” for the 0-depth consequence relation and write “X �0 ϕ”

for “ϕ is a 0-depth consequence of X”. The notions of 0-depth consequence and

0-depth inconsistency can be extended to unsigned formulae by stipulating that an

unsigned formula A is a 0-depth consequence of a set Γ of unsigned formulae if

and only if T Γ �0 T A and that Γ is 0-depth inconsistent if and only if T Γ is 0-

depth inconsistent. In [20] (Proposition 2.49) it is shown that 0-depth consequence

and 0-depth inconsistency cannot be characterized by any set of finitely valued

deterministic matrices.

Note that, according to our definitions, as they stand, �0 is explosive just like

classical logic: when X is 0-depth inconsistent, X �0 ϕ for every ϕ, since there is

no 3ND-valuation V that satisfies all the formulae in X. However, 0-depth incon-

sistency is stricter than classical inconsistency — a set X of S-formulae may well

be 0-depth consistent but classically inconsistent — and, more importantly, can be

feasibly detected (see Proposition 3.8 below and the following comment).

It is not difficult to show that he relation �0 is a Tarskian consequence rela-

tion, that is, it satisfies reflexivity, monotonicity and cut. We remark that �0, like

Kleene’s 3-valued logic [34, §64] and Belnap’s 4-valued logic [7,8], has no tautolo-

gies. This is not so surprising if one thinks that a tautology is usually described as

“a consequence of the empty set of premises”. Since the 0-depth logic is the logic

that uses no virtual information, there is no way of extracting information from

the empty information state without simulating possible non-empty extensions of

it. Accordingly, tautologies make their appearance only at depth > 0, when virtual

information is introduced, and the set of provable tautologies increases with the

depth at which its use is allowed.

14Clearly this is not the case of the implicit information that stems from their classical meaning.
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A natural proof-theoretical characterization of the 0-depth consequence relation

�0 is obtained by means of a set of introduction and elimination rules (intelim rules)

for the logical operators. These rules are shown in Tables 3 and 4 and are expressed

in terms of S-formulae. A version of these rules for unsigned formulae is obtained

by removing all the occurrences of the sign T and replacing all the occurrences of

the sign F with the negation sign ¬.
Definitions 3.3 Given a set X of S-formulae:

• An intelim sequence for X is a sequence ϕ1, . . . ϕn of S-formulae such that, for

every i = 0, . . . , n, either ϕi ∈ X or is the conclusion of the application of an

intelim rule to preceding formulae.

• An intelim sequence is closed when it contains both T A and F A for some A.

• An intelim refutation of X is a closed intelim sequence for X.

• A intelim proof of ϕ from X is an intelim sequence for X such that ϕ is the last

S-formula in the sequence.

• X is intelim-refutable if there is a closed intelim sequence for X.

• An S-formula ϕ is intelim deducible from X if there is an intelim proof of ϕ from

X.

We use the symbol “�0” to denote the relation of intelim-deducibility and write

“X �0 ϕ” for “ϕ is a 0-depth deducible from X”.

Again, we can extend the notions of intelim deducibility and refutability to

unsigned formulae by stipulating that an unsigned formula A is intelim deducible

from a set Γ of unsigned formulae if T A is intelim deducible from T Γ and that a

set Γ of unsigned formulae is intelim refutable if T Γ is intelim refutable.

Before showing that �0 and �0 are co-extensional we show that �0 is explosive

like its semantic counterpart �0 (and like classical logic).

Proposition 3.4 If X is intelim refutable, than X �0 ϕ for every ϕ.

Proof. If X is intelim refutable, then there is an intelim sequence for X that

contains both T A and F A for some A. Then, for every B: (i) an intelim proof of

T B is obtained in two steps as follows: from premise T A derive T A∨B by T∨-I1;
then from premises F A and T A ∨B derive T B by T∨-E2; 15 (ii) an intelim proof

of F B s obtained in two steps as follows: from premise F A derive F A ∧ B by

F∧-I1; then from premises T A and F A ∧B derive F B by F∧-E1. �

Proposition 3.5 For every set X of S-formulae and every S-formula ϕ,

(i) X is 0-depth inconsistent if and only if X is intelim refutable;

(ii) X �0 ϕ if and only if X �0 ϕ.

Proof (Sketch) The reader can check that the intelim rules are all sound with

respect to the informational 3-valued matrices. For example, the rule T∨-E1 can be

read off the informational 3-valued matrix for ∨, simply by noting that, whenever

15This is Lewis’s argument for ex-falso quodlibet.
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the value of the disjunction is 1 and that of one of the two disjuncts is 0, the

value of the other disjunct must be 1. As for completeness, 16 consider the set

X∗ = {ψ | X �0 ψ}. For the first claim, suppose that X is not intelim refutable.

Then, for no formula A, T A and F A are both in X∗. Next, show that the function

V defined as follows:

V (A) =

⎧
⎪⎨

⎪⎩

1 if T A ∈ X∗

0 if F A ∈ X∗

⊥ otherwise

is a 3ND-valuation. Here we just outline a typical case. Suppose V (A) = V (B) = ⊥.

Then F A ∨ B �∈ X∗. Otherwise, if F A ∨ B ∈ X∗, then by definition of X∗ and

by the rules F∨-E , F A and F B should also be in X∗; therefore, by definition of

V , V (A) = V (B) = 0 against our assumption. Hence V (A ∨ B) �= 0. Moreover,

T A ∨B, may or may not belong to X∗, and so V (A ∨B) = 1 or V (A ∨B) = ⊥.

Finally, observe that ψ ∈ X∗ for all ψ ∈ X and so, by definition of V , V satisfies

all ψ ∈ X. Hence X is 0-depth consistent. For the second claim, suppose X �0 ϕ.

Observe that, in this case, X is not intelim refutable, otherwise, by Proposition 3.4,

X �0 ϕ against the hypothesis. Moreover, ϕ �∈ X∗. So, for the 3ND-valuation V

defined above, V satisfies all ψ ∈ X and V does not satisfy ϕ. Hence X �0 ϕ. �

The unsigned part of an S-formula is the unsigned formula that results from it

by removing the sign T or F . Given an S-formula ϕ, we denote by ϕu the unsigned

part of ϕ.

Definition 3.6 We say that an intelim proof of ϕ from X (an intelim refutation of

X) has the subformula property (SFP) if, for every S-formula ψ occurring in it, ψu

is a subformula of θu for some θ in X ∪ {ϕ} (in X).

For an intelim sequence π, let |π| denote the length of π.

Proposition 3.7 (Subformula Property)

(i) For every intelim proof π of ϕ from X:
• if π is an open intelim sequence, π can be transformed into an intelim proof

π′ of ϕ from X such that π′ has the SFP and |π′| ≤ |π|;
• if π is a closed intelim sequence, there is an intelim refutation π′ of X such

that π′ has the SFP and |π′| ≤ |π|.
(ii) For every intelim refutation π of X, π can be transformed into an intelim

refutation π′ of X such that π′ has the SFP and |π′| ≤ |π|.

A detailed proof of the above proposition can be found in [20]. The subformula

property of intelim proofs and refutations paves the way for a feasible decision

procedure for intelim deducibility and refutability. The following proposition is also

proven in [20].

16An indirect proof is given in [20] where the 0-depth consequence relation �0 is characterized in terms of
another semantics (called “modular semantics”) that is shown to be equivalent to the informational 3-valued
semantics.
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F A

T ¬A
T¬-I

T A

F ¬A
F¬-I

T A

T A ∨B
T∨-I1

T B

T A ∨B
T∨-I2

F A

F B

F A ∨B
F∨-I

F A

F A ∧B
F∧-I1

F B

F A ∧B
F∧-I2

T A

T B

T A ∧B
T∧-I

F A

T A → B
T→-I1

T B

T A → B
T→-I2

T A

F B

F A → B
F→-I

Table 3
Introduction rules for the standard Boolean operators.

Proposition 3.8 Whether or not X �0 ϕ (X is 0-depth refutable) can be decided

in time O(n2) where n is the total number of occurrences of symbols in X ∪{ϕ} (in

X).

Proposition 3.8 suggests that the explosivity of 0-depth consequence is far less

serious a problem then the explosivity of classical consequence. For, we can always

feasibly detect that our premises are 0-depth inconsistent and, therefore, we may

as well abstain from drawing bizarre conclusions on their basis. 17 Unlike hidden

classical inconsistencies, that may be hard to discover even for agents equipped with

powerful (but still bounded) computational resources, 0-depth inconsistency lies, as

it were, on the surface. So, we always have a feasible means to ensure that our

premises are 0-depth consistent, in which case the consequence relation �0 is not

explosive, even if these premises are classically inconsistent.

4 Tractable k-depth approximations to Boolean logic

As argued in the previous section, we can think of a 3ND-valuation as a most basic

kind of information state: a collection of pieces of information closed only under

the implicit information that stems from the informational meaning of the logical

17As Michael Dummett puts it: “Obviously, once a contradiction has been discovered, no one is going to
go through it: to exploit it to show that the train leaves at 11:52 or that the next Pope will be a woman.”
[27, p. 209].
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T ¬A

F A
T¬-E

F ¬A

T A
F¬-E

T A ∨B

F A

T B
T∨-E1

T A ∨B

F B

T A
T∨-E2

F A ∨B

F A
F∨-E1

F A ∨B

F B
F∨-E2

F A ∧B

T A

F B
F∧-E1

F A ∧B

T B

F A
F∧-E2

T A ∧B

T A
T∧-E1

T A ∧B

T B
T∧-E2

T A → B

T A

T B
T→-E1

T A → B

F B

F A
T→-E2

F A → B

T A
F→-E1

F A → B

F B
F→-E2

Table 4
Elimination rules for the four standard Boolean operators

operators. The 0-depth consequence relation �0 is a tractable subsystem of classical

propositional logic obtained by replacing the notion of “possible world” with this

weaker notion of information state, which makes no direct reference to the classical

information-transcendent notions of truth and falsity of classical semantics, but only

to their informational counterparts — informational truth and informational falsity

— that are taken as primary semantic notions. 18

What about the classical inferences that are not valid under this informational

semantics? For example, consider the classically valid inference A∨B,¬A∨B/B dis-

cussed in the introduction. This inference cannot be justified by virtue of the 3ND-

matrices. A counterexample is any 3ND-valuation V such that V (A) = V (B) = ⊥
and V (A ∨ B) = V (¬A ∨ B) = 1. 19 In order to validate the above inference, we

need to restrict our attention to the refinements V ′ of V such that V ′(A) �= ⊥. It

is easy to check that V ′(B) = 1 for every such refinement of V . In other words,

we need to go beyond the information that we actually possess and simulate virtual

18The notions of informational truth and informational falsity (holding the information that a sentence
is true, respectively false) may make indirect reference to information-transcendent notions of truth and
falsity, that may well (but need not) be the classical notions, but the latter play no role in the justification
of logical inference, since all the inference rules are based only on the informational notions. In classical
logic, on the other hand, the truth-tables entries are all sound under the informational interpretation, but
the Principle of Bivalence, which plays an essential role in justifying the validity of classical inferences, is
not.
19Recall that if V (A) = ⊥, then V (¬A) = ⊥ and that when the value of both disjuncts is ⊥, the value of
the disjunction may be either 1 or ⊥.

M. D’Agostino / Electronic Notes in Theoretical Computer Science 305 (2014) 35–5246



information states in which we hold definite information about the truth or falsity

of A.

Given a set of formulae Γ, we use the notation Sub(Γ) to denote the set of all

subformulae of the formulae in Γ.

Definitions 4.1 For all k ∈ N+,

(i) X �k ϕ if and only if X ∪ {T A} �k−1 ϕ and X ∪ {F A} �k−1 ϕ for some

A ∈ Sub(Xu ∪ {ϕu});
(ii) X is k-depth inconsistent if and only if X ∪ {T A} and X ∪ {F A} are both

k − 1-depth inconsistent for some A ∈ Sub(Xu).

Observe that, since �0 is monotonic, �j⊆�k whenever j ≤ k. The transition from

�k to �k+1 corresponds to an increase in the depth at which the nested use of virtual

information is allowed. It is not difficult to show that:

Proposition 4.2 The relation �∞=
⋃

k∈N |=k is the consequence relation of clas-

sical propositional logic.

Given Proposition 3.5 and the definitions of k-depth consequence �k and k-

depth inconsistency given above, the corresponding notions of k-depth deducibility

and k-depth refutability for k ∈ N+, are trivially defined as follows:

Definition 4.3 For all k ∈ N+,

(i) X �k ϕ if and only if X ∪ {T A} �k−1 ϕ and X ∪ {F A} �k−1 ϕ for some

A ∈ Sub(Xu ∪ {ϕu});
(ii) X is k-depth refutable if and only if X ∪ {T A} and X ∪ {F A} are both

k − 1-depth refutable for some A ∈ Sub(Xu).

As before, we extend the relations �k and �k to unsigned formulae by stipulating

that Γ �k A (Γ �k A) if and only if T Γ �k T A (T Γ �k T A). Similarly, we stipulate

that Γ is k-depth inconsistent (k-depth refutable) if and only if T Γ is k-depth

inconsistent (k-depth refutable).

While deductions of depth 0 are represented by intelim sequences, deductions

of depth k > 0 may be aptly represented in the format of intelim trees. For this

purpose it is sufficient to add to the intelim rules the following branching rule: 20

T A
�� ��

F A

PB

Each application of this rule allows us to introduce virtual information concerning

an arbitrary formula A by appending both T A and F A as sibling nodes at the end

of any branch of the tree, generating two new branches. The formula A involved in

a specific application of the rule is called PB-formula. The S-formulae T A and F A

are called virtual assumptions. Such a step invites us to consider information states

that, besides containing all the information expressed by the preceding S-formulae

20“PB” stands for “Principle of Bivalence”.
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in the branch, also contain definite information about the truth or falsity of the

PB-formula A.

Definition 4.4 An intelim tree for X is a tree T of S-formulae such that, for every

S-formula ϕ in a branch of T , either

(i) ϕ ∈ X, or

(ii) ϕ is obtained from preceding S-formulae in the same branch by an application

of an intelim rule, or

(iii) ϕ is a virtual assumption introduced by an application of the branching rule

PB.

We say that a branch of an intelim tree is closed if it contains both T A and F A

for some formula A, otherwise it is open.

Definition 4.5 The depth of an intelim tree T is the maximum number of virtual

assumptions occurring in a branch of T .

Definitions 4.6 For all k ∈ N,

(i) A k-depth intelim proof of ϕ from X is an intelim tree T for X of depth k

such that ϕ occurs in all open branches of T ;

(ii) A k-depth refutation of X is an intelim tree T for X of depth k such that every

branch of T is closed.

For each intelim tree T , let us denote by PB(T ) the set of all PB-formulae

occurring in T .

Proposition 4.7 For all k ∈ N,

(i) Every k-depth intelim proof T of ϕ from X can be transformed into a k+j-depth

(with j ≥ 0) intelim proof T ′ of ϕ from X such that PB(T ′) ⊆ Sub(Xu ∪ ϕu).

(ii) every k-depth refutation T of X can be transformed into a k + j-depth (with

j ≥ 0) T ′ of X such that PB(T ′) ⊆ Sub(Xu).

A proof of the above proposition can be adapted from [16]. Let us say that an

intelim proof T of ϕ from X (an intelim refutation T of X) has the subformula

property (SFP) if ψu ∈ Sub(Xu ∪ ϕu) (ψu ∈ Sub(Xu)) for every S-formula ψ

occurring in T . It follows from Propositions 3.7 and 4.7 that

Proposition 4.8 For all k ∈ N,

(i) Every k-depth intelim proof T of ϕ from X such that PB(T ) ⊆ Sub(Xu ∪ ϕu)

can be transformed into a k-depth intelim proof T ′ of ϕ from X such that T ′

has the SFP.

(ii) Every k-depth refutation T of X such that PB(T ) ⊆ Sub(Xu) can be trans-

formed into a k-depth refutation T ′ of X such that T ′ has the SFP.

Then, it is easy to show that:

Proposition 4.9 For all k ∈ N,
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(i) X �k ϕ if and only if, for some j ≤ k, there is a j-depth intelim proof T of ϕ

from X such that T has the SFP;

(ii) X is k-depth refutable if and only if for some j ≤ k, there is a j-depth intelim

refutation T of X such that T has the SFP.

An example of an intelim proof of depth 2 with the SFP is given in Figure 1.

This is an intelim proof of T H from premises 1–6. The reader can check that

each S-formula that is not a premise either is obtained from previous S-formulae

on the same branch by an application of one of the intelim rules in Tables 3 and 4,

or is one of the virtual assumptions introduced by the branching rule PB. All the

open branches end with the S-formula T H. The rightmost branch is closed since

it contains both T C and F C. Each open branch is a 0-depth intelim proof of T H

from the union of the initial premises 1–6 plus the virtual assumptions introduced

by the rule PB on that branch. Given Propositions 3.8 and 4.9 it is not difficult to

show that, for each fixed k, �k admits of a feasible decision procedure:

Proposition 4.10 For each k ∈ N, whether or not X �k ϕ (X is k-depth refutable),

can be decided in time O(nk+2), where n is the total number of occurrences of

symbols in X ∪ {ϕ} (in X).

For unbounded k, the method of intelim trees is a proof system for full classical

propositional logic that enjoys the subformula property. 21 If unbounded applica-

tions of PB are allowed, the introduction rules become redundant, since they can be

easily derived from the elimination rules with the help of PB. The system consist-

ing only of the elimination rules plus unbounded applications of PB is a complete

system for classical propositional logic that enjoys the SFP, since the applications

of PB can be restricted to subformulae and the elimination rules obviously preserve

the SFP. This system, known as KE, was originally proposed as a refutation system

akin to Smullyan’s semantic tableaux but essentially more efficient. It was shown

that KE has an exponential speed-up on semantic tableaux and on Gentzen’s cut-

free sequent calculus even if we consider its “analytic restriction” that yields only

refutations with the SFP [14,24,15]. The unbounded method of intelim trees can be

seen as an extension of KE, obtained by adding suitable introduction rules for the

logical operators that are all easily derivable from the elimination rules and PB. So,

intended as a method for full classical propositional logic, intelim trees still have

an exponential speed-up on Smullyan’s semantic tableaux and on cut-free sequent

proofs even when we consider only intelim proofs and refutations with the SFP.

5 Conclusions and further work

The relations �k and �k provide an infinite sequence of tractable depth-bounded ap-

proximations to classical propositional logic. The method of intelim trees combines

21However, this presentation of classical logic allows also for representing proofs that do not have the
subformula property simply by removing the restriction to subformulae in the applications of the rule PB.
On the connection between the rule PB and the cut rule of Gentzen’s sequent calculus, as well as on the
advantages of cut-based formalizations of classical logic, see [14,15].
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1 T A → B

2 F ¬A ∧ C

3 T (B ∨D) → (E → H)

4 T (B ∨D) → (¬H → E)

5 T ¬(C ∧D) → (G → H)

6 T ¬C → (¬G → (A ∨ C))

T A

T B

T B ∨D

T E → H

T ¬H → E

T E

T H

�� ��
F E

F ¬H

T H

�� ��
F A

T ¬A

F C

F C ∧D

T ¬(C ∧D)

T G → H

T ¬C

T ¬G → (A ∨ C)

T G

T H

�� ��
F G

T ¬G

T A ∨ C

T C

×

Fig. 1. An intelim proof of depth 2.

features of Natural Deduction (it is based on introduction and elimination rules that

satisfy a form of the inversion principle [16]) and of Smullyan’s Semantic Tableaux

(it is a tree method with no discharge rules 22 that can be used as a refutation

system), but is essentially more efficient than both. It appears to be heuristically

interesting for further developments in a variety of areas. Possible topics of future

research include:

• providing alternative characterizations of classes of inferences whose validity can

(or cannot) be shown at a given depth k;

22The role played by the discharge rules in Gentzen-style natural deduction is played here by the structural
rule PB, which is the only branching rule.
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• extending the notions of depth-bounded consequence and depth-bounded incon-

sistency to non-classical logics by relativizing the primary semantic notions of

informational truth and informational falsity to points of some structured space

(e.g., possible worlds, information states, etc., equipped with an accessibility re-

lation); 23

• investigating depth-bounded approximations for the logics of formal inconsistency

[11] and, more in general, for paraconsistent logics [35];

• exploring the connections between depth-bounded consequence and the polyno-

mial ring calculus [10,12].
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