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We extract constraints on the transition redshift ztr, determining the onset of cosmic acceleration,
predicted by an effective cosmographic construction, in the framework of f(T ) gravity. In particular,
employing cosmography we obtain bounds on the viable f(T ) forms and their derivatives. Since this
procedure is model independent, as long as the scalar curvature is fixed, we are able to determine
intervals for ztr. In this way we guarantee that the Solar-System constraints are preserved and
moreover we extract bounds on the transition time and the free parameters of the scenario. We find
that the transition redshifts predicted by f(T ) cosmology, although compatible with the standard
ΛCDM predictions, are slightly smaller. Finally, in order to obtain observational constraints on
f(T ) cosmology, we perform a Monte Carlo fitting using supernova data, involving the most recent
union 2.1 data set.

PACS numbers: 04.50.Kd, 98.80.-k, 95.36.+x

I. INTRODUCTION

Observational evidences imply that the universe is un-
dergoing a phase of anomalous acceleration after a precise
time, usually named the transition time [1, 2]. In particu-
lar, the corresponding transition redshift, ztr, indicates at
which stage the universe changed its dynamical proper-
ties and started accelerating after a phase of deceleration
[3]. Recently, it has been argued that constraining ztr
provides information on the form of the fluid responsible
for the observed universe speeding up. Consequently, ztr
may likely reveal possible new gravitational physics due
to modifications of Einstein’s gravity [4].

The fluid which triggers the current universe acceler-
ation is often referred to as dark energy and fills more
than the 70% of the whole universe energy budget [5].
The standard cosmological model assumes that the dark
energy source is supplied by the existence of a non-zero
cosmological constant Λ. The corresponding paradigm,
named the ΛCDM model, is constructed by employing a
net matter density composed by baryons and cold dark
matter, with a constant dark energy term ΩΛ ≡ 3Λ

8πG [6].
Even though the model likely represents the simplest ap-
proach for describing universe’s dynamics, amongst oth-
ers the cosmological constant does not furnish an expla-
nation to the coincidence problem between matter and
dark energy magnitudes. In other words, since the cos-
mological constant does not evolve in time, it is improb-
able that the ratio between matter and dark energy den-
sities is so close today [7]. Additionally, quantum field
theory predictions forecast an enormous value for the cos-
mological constant if compared with the one measured by
current cosmological observations. This issue is the well
known fine-tuning problem and represents a challenge to
understand the physical origin of the cosmological con-

stant itself [8]. Due to the above caveats, one can modify
the universe content, and attribute the dark energy sec-
tor to a canonical scalar field, a phantom field, to the
combination of both fields in a unified model, or proceed
to more complicated constructions (for reviews see [2, 9]).

An alternative way to reproduce the universe dynam-
ics is by extensions of general relativity by means of ad-
ditional degrees of freedom, which do not violate the
equivalence principle, and represent a bid to formulate
a semi-classical scheme for both late and early-time uni-
verse [10]. In the usual approach to modify gravity, one
starts by the usual curvature formulation of general rel-
ativity, and replaces the Ricci scalar R in the Einstein-
Hilbert action by arbitrary functions of it, or even more
complicated curvature invariants. However, alternatively
one can use as a base the torsional formulation of general
relativity, namely the so called “teleparallel equivalent of
general relativity” [11], and modify its action instead. In
particular, in teleparallel gravity [12] the gravitational
field is described not by the curvature tensor but by
the torsion one, and thus the corresponding Lagrangian,
namely the torsion scalar T , is constructed by contrac-
tion of the torsion tensor in a similar way that in usual
general relativity the Lagrangian, namely the curvature
scalar R, is constructed by contractions of the curvature
tensor. Hence, similarly to the f(R) extension of gen-
eral relativity, one can construct the f(T ) extension of
teleparallel equivalent of general relativity [13, 14]. The
interesting feature is that although general relativity co-
incides completely with teleparallel equivalent of general
relativity, f(T ) gravity is different from f(R) one, thus
it is a novel gravitational modification with rich cosmo-
logical implications [14–16].

With those considerations in mind, in this work we
are interested in describing the dark energy effects, di-
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rectly calculating the corresponding transition redshift
ztr that is predicted in f(T ) cosmology. In order to do
so, we only consider those f(T ) models which are consis-
tent with present-time cosmographic constraints. Hence,
we aim to obtain cosmographic bounds on the f(T ) sce-
narios, by considering the modified Friedmann equations,
and then get the corresponding limits on ztr. The main
advantage of using cosmography is that the value of ztr
is reconstructed by means of a model-independent proce-
dure. Rephrasing it differently, we are able to distinguish
which classes of f(T ) gravity pass the cosmographic re-
quirements and thus are viable, by inferring the limits
over ztr that those classes predict. In particular, we com-
pare this transition epoch with the one determined by
the standard cosmological paradigm, and we propose an
effective cosmological model capable of reproducing the
cosmographic constraints and compatible with the limits
on ztr. Additionally, to enable our treatment, we con-
sider the use of the luminosity distance and we match
cosmic union 2.1 supernova data [17] with the cosmo-
graphic expansions. Thus, we evaluate the corresponding
deceleration parameter and we show that the transition
redshift is effectively comparable to the one predicted by
the ΛCDM approach.

As we will see, the limits on ztr show that the con-
sidered f(T ) classes reduce to the ΛCDM model in the
lowest redshift domain, in agreement with [18, 19]. This
feature indicates that the role played by the cosmological
constant may be reinterpreted as a limiting case of a more
general extension, and thus from those cosmographic cor-
rections we show that small discrepancies occur at z ≤ 1,
whereas higher departures might be expected at high-
redshift regimes. At this point, we involve a Monte Carlo
fitting procedure based on the Metropolis algorithm, in
order to compare our effective cosmological model with
present-time data. Numerical limits, priors and final out-
comes, testify the efficiency of our approach, showing
that the effective torsional dark energy naturally satis-
fies the cosmographic requirements, and hence it may be
a candidate as a valid alternative to describe the universe
dynamics.

The paper is organized as follows. In Sec. II we de-
scribe the techniques for recovering the cosmographic set-
tings on the f(T ) classes of models and we moreover pro-
pose how to obtain f(T ) reconstructions. In Sec. III we
enumerate the properties of the transition redshift and
its important role in modern cosmology. Furthermore,
we describe the main consequences in f(T ) gravity and
we show how the modified Friedmann equations changed
when the transition occurred. In Sec. IV we summarize
the cosmographic results and we propose an effective re-
construction of f(T ) cosmology. To do so, we infer the
deceleration parameter for the effective torsional dark en-
ergy models and finally we show the numerical priors on
the transition redshift ztr predicted by our paradigm. In
Sec. V we compare the cosmological consequences of the
examined models with modern data, employing the use
of the union 2.1 supernova survey. We determine the free

parameters of our approach and we show that the dark
energy corrections are compatible with the bounds of-
fered by alternative dark energy models. Finally, in Sec.
VI we summarize the conclusions and perspectives of our
approach.

II. THE PROCEDURE FOR f(T )
RECONSTRUCTION FROM COSMOGRAPHY

In teleparallel formulation of gravity, as well as in its
f(T ) extension, one uses the vierbein fields eµA, which
form an orthonormal base for the tangent space at each
point xµ defined on a generic manifold, and thus the
metric reads as gµν = ηABe

A
µ e

B
ν (in the following greek

indices and Latin indices span the coordinate and tan-
gent spaces respectively). Additionally, instead of the
torsionless Levi-Civita connection one uses the curvature-

less Weitzenböck one
w

Γ
λ

νµ ≡ eλA ∂µe
A
ν [12], and therefore

the gravitational field is encoded in the torsion tensor

T ρµν ≡ eρA
(

∂µe
A
ν − ∂νe

A
µ

)

. (1)

Hence, the Lagrangian of teleparallel gravity, namely the
torsion scalar T , is constructed by contractions of the
torsion tensor as [12]

T ≡ 1

4
T ρµνTρµν +

1

2
T ρµνTνµρ − Tρµ

ρT νµν . (2)

Finally, one can extend teleparallel gravity and construct
the action of f(T ) gravity as [13, 14]

S =

∫

d4xe

[

f(T )

2κ2

]

, (3)

where e = det
(

eAµ
)

=
√−g and κ2 is the gravitational

constant.
The general field equations of f(T ) gravity are ob-

tained by varying the action S+Sm, with Sm the matter
action, in terms of the vierbeins, and they read as

e−1∂µ(ee
ρ
ASρ

µν)f ′ + eρASρ
µν∂µ(T )f

′′

−f ′eλAT
ρ
µλSρ

νµ +
1

4
eνAf =

κ2

2
eρA T

(m) ν

ρ , (4)

where the tensor S µν
ρ

.
= 1

2

(

Kµν
ρ + δµρT

αν
α − δνρT

αµ
α

)

is defined in terms of the co-torsion Kµν
ρ

.
=

− 1
2

(

T µνρ − T νµρ − T µν
ρ

)

, and where T (m) ν

ρ is the
energy-momentum tensor corresponding to Sm. In (4)
the primes denote derivatives with respect to T . Finally,
since for f(T ) = T equations (4) provide exactly the
same equations with general relativity, that is why the
theory with f(T ) = T was named by Einstein “telepar-
allel equivalent of general relativity” [11].
In order to apply f(T ) gravity in a cosmological frame-

work we assume a spatially-flat Friedmann-Robertson-
Walker metric ds2 = dt2 − a(t)2

(

dr2 + r2 dΩ2
)

, with

dΩ2 .
= dθ2+sin2 θ dφ2, which can arise from the vierbein
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eAµ = diag(1, a, a, a). In this case, the field equations (4)
give rise to the modified Friedmann equation

H2 =
1

3
(ρm + ρT ) , (5a)

Ḣ = −1

2
(ρm + pm + ρT + PT ) , (5b)

with H
.
= ȧ

a the Hubble parameter and dots indicating
derivatives with respect to the cosmic time. In the above
expressions ρm and pm are the energy density and pres-
sure of the matter sector considered to correspond to a
perfect fluid, and moreover from now on we use units
in which κ2 = 1. Furthermore, we have introduced the
energy density and pressure of the effective dark energy
sector, which incorporates the torsional modifications, as

ρT
.
= −f

2
− T

2
+ Tf ′, (6a)

PT
.
=

1

2

[

f − f ′T + 2T 2f ′′

f + 2Tf ′′

]

. (6b)

Thus, the dark energy equation-of-state parameter writes
as wDE

.
= wT = PT /ρT . Finally, note that for the FRW

geometry, the calculation of the torsion scalar (2) leads
to the useful relation

T = −6H2 . (7)

The issue of finding out a form for the dark energy
equation of state passes through the determination of
the most viable forms of f(T ). If one knows the f(T )
form, it is possible to infer the interpretations of ρT and
PT as terms associated to torsional dark energy, i.e. a
torsional contribution driving the observed cosmic accel-
eration. The idea to get a viable f(T ) function lies on re-
quiring that at small redshift the f(T ) model reproduces
the observational data and predicts a compatible transi-
tion redshift. Hence, the strategy of this manuscript is
to frame a phenomenological reconstruction of f(T ) and
its derivatives in terms of cosmography, which becomes a
sort of initial settings for f(T ) models. Having in mind
these cosmographic requirements, we simply impose the
validity of the cosmological principle [20], the geometrical
setting of the scalar curvature [21], and the possibility of
expanding f(T ) and its derivatives around present time
in Taylor series [22]. We discuss below each of those three
requirements, in order to define the cosmographic series
and its application in f(T ) cosmology.

• First, employing the cosmological principle per-
mits to frame the universe expansion history in
terms of a single parameter, namely the scale fac-
tor a(t) which enters the Friedmann-Robertson-
Walker metric as function of the cosmic time only.
One gathers viable outcomes imposing that this
function may be expanded in Taylor series around
present time, and constraining the corresponding
Taylor coefficients associated to the scale-factor

derivatives. This strategy compares a(t)’s deriva-
tives directly with cosmic data and may be used
as a reconstruction for the a(t) shape. This bene-
fit allows one to distinguish among all paradigms,
derived from imposing the form of f(T ), the ones
whose cosmographic requirements better match
with data.

• The second caveat is the issue of spatial curva-
ture which leads to a degeneracy problem between
its value and the variation of the acceleration.
It has been proved that photon geodesics change
their paths according to its value. Thus, expand-
ing a physical quantity into a cosmographic series
needs to fix somehow the value of spatial curva-
ture, in order to allow cosmography to be as model-
independent as possible [23]. According to previ-
ous approaches [24, 25], one imposes geometrical
bounds on Ωk by assuming the matching between
early and late time observations [26]. We therefore
assume that the universe is spatially flat, with pos-
sible small deviations which do not influence the
whole dynamics.

• Finally, since all observable quantities of interest
are assumed to smoothly evolve as the universe ex-
pands, it is licit to assume that Taylor expansions
may be easily accounted and no saddle points or
poles occur. It follows that all functions are ana-
lytic and the cosmographic treatment is perfectly
plausible [27, 28]. After those properties, one soon
expands in Taylor series the scale factor a(t) as

a(t)
.
=

∞
∑

l=0

1

p!
ap t̄

p ≈ a0 + a1t̄ + a2 t̄ + . . . , (8)

where ap
.
= dpa

dtp , with t̄
.
= t− t0 and t0 the present

time. Finally, it proves convenient to express the
observable quantities under interest in terms of the
redshift z = −1 + a0/a.

Amongst all observables, we are much interested in the
use of the luminosity distance, since we will use super-
novae Ia type to fix our cosmological bounds. Hence,
imposing a0 = 1 in (8) and inserting it in the definition
of the luminosity distance:

DL = (1 + z)

∫ z

0

dξ

H(ξ)
, (9)

we write down the Taylor series around z = 0 as






DL = z
H0

d̃L(z; θ) ,

d̃L(z; θ) = 1 + dL1z + dL2z
2 + . . . ,

(10)

truncated at the third order. Moreover, applying also the
definitions

Ḣ =−H2(1 + q) , (11a)

Ḧ =H3(j + 3q + 2) , (11b)



4

we obtain the corresponding coefficients of the Taylor
expansion in terms of the cosmographic series:

dL1 =
1− q0

2
, (12a)

dL2 =
1− q0(1 + 3q0) + j0

6
. (12b)

In these expressions we have introduced the deceleration
and jerk parameters as

q
.
= − 1

aH2

d2a

dt2
, (13a)

j
.
=

1

aH3

d3a

dt3
, (13b)

indicating respectively whether the universe is accelerat-
ing or not and how the acceleration changed sign, with
the subscript “0” denoting the value of a quantity at
present. Observations indicate j0 > 0 and then testify
that the transition time occurred. However, there still
exists a tension between the possibilities 0 < j0 < 1 and
j0 > 1 [29].
For the sake of completeness, we notice that it would

be easy to arbitrarily extend the cosmographic series
up to higher orders. For example, the next term, en-
tering the Taylor expansion of the luminosity distance,
i.e. the fourth order, would linearly depend on the

snap s ≡ 1
aH4

d4a
dt4 evaluated at present time1. However,

expanding beyond the third-order leads to a non-clear
physical interpretation of the corresponding coefficients.
In other words, using extended cosmographic series at
higher order could become quite non-predictive for our
analysis, since it is difficult to physically bound coeffi-
cients beyond j0. Indeed, in order to improve constraints
over cosmographic coefficients at arbitrary orders, one
can imagine to adopt either experimental combined tests
or different definitions of cosmic distances [21]. In partic-
ular, using combined tests may generally reduce the nu-
merical intervals of cosmographic coefficients, while any
alternative distance definition would be plagued by inac-
curate under/over-estimations of the cosmographic pa-
rameters, typically due to the limited cosmic available
data. In addition, present time combined tests may only
provide tighter ellipses where the cosmographic coeffi-
cients span, albeit definitive constraints up to 5σ confi-
dence level would be hardly determined.
A straightforward example of the difficulty to bound

the cosmographic parameters is offered by supposing to
fix the today spatial curvature with arbitrary accuracy.
In that case, it would be possible to better circumscribe
the parameters beyond the third order (including jerk,
snap, or higher terms)2. Unfortunately, from this proce-

1 In general, it is straightforward to prove that any order linearly
depends on the cosmographic n-term [30].

2 For our purposes, we follow the strategy to take a vanishing scalar
curvature to show that, under this hypothesis, the cosmographic
coefficients allow compatible transition redshifts in f(T ) gravity.

dure we can only partially exclude regions where those
intervals run, getting corresponding upper and lower lim-
its which characterize each coefficients of the Taylor ex-
pansions3. Recent analysis fixes the following limits over
the cosmographic coefficients [20]:

q0 ∈ [−0.9; −0.4] , (14a)

j0 ∈ [0.8; 2] , (14b)

s0 ∈ [−1; 7] , (14c)

all evaluated at a 2σ confidence level. It is immediately
clear that badly constrained results can be obtained going
beyond the third order of the cosmographic expansion. In
particular, as stressed above, the issue associated to those
regions is that they correspond to narrow (and often long)
ellipses which are characterized by high error dispersions.
Thus, even modern data seem to focus on strict regions
for H0, q0 and j0, whereas do not account for the sign of
s0 in the same way.
In addition, as shown in [30], one may relate cosmog-

raphy to the cosmic equation of state. From this fact, it
is easy to show that the second order derivative of the
cosmic pressure with respect to the total density linearly
depends upon s0 itself. Alternatively, even the second

derivative of the acceleration parameter, i.e. d2q
dz2 , cannot

be accurately constrained with current numerics on s0
reported in (14).
Summarizing, adopting present data, all cosmographic

quantities suffer from badly bounded numerical results,
so that the use of s0 in our approach would influence
the experimental analysis itself, providing broadening
systematics and higher dispersions in the evaluations of
the transition redshift zt. For those reasons, in order
to consider fourth order expansions, one should adopt
improved intervals of cosmic data or using distance defi-
nitions that do not somehow depend on scalar curvature,
i.e. where the scalar curvature is not fixed as a prior
coming from other observations. Hence, in this paper,
we definitively use a truncated third order Taylor expan-
sions of DL thanks to the above considerations. In so
doing, the numerical results of H0, q0 and j0 lead to ac-
ceptable dispersions and allow us to better circumscribe
the intervals for ztr in a more suitable way.
Thus, from the above analysis it follows that the cos-

mographic series is the set of coefficients evaluated at
present time. The cosmographic series has been built up
in function of a Taylor series expanded around z = 0, al-
beit it is possible to handle it also in terms of the cosmic
time. This is clearly possible involving the definition of
the redshift in terms of the cosmic time as:

dz

(1 + z)
= −H(z)dt . (15)

3 Possible examples of those regions are given in [31]. Here, the
authors showed that by means of combined tests, with older su-
pernova data sets, the jerk parameter should be positive at the
92% confidence level.
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Since the cosmographic series may be expressed in
terms of the scale-factor derivatives, it does not depend
upon the particular choice of the cosmological model.
This property represents a key to conclude that impos-
ing a cosmological model a priori is unnecessary and any
modified gravity may be limited by assuming the cos-
mographic requirements. We here follow the technique
of reconstructing the f(T ) models by means of late-time
cosmography. To do so, we rewrite the luminosity dis-
tance (9) in terms of f(T ) derivatives. This is possible
since there exists a direct correspondence between q0 and
j0 with the f(T ) form and its derivatives. In particular,
rewriting (12) as function of f(T ), we frame the effective
model derived from the torsional dark energy by directly
comparing DL with data. Rephrasing it differently, in-
stead of using q, j, . . . we consider f(T ), f ′(T ), f

′′

(T ), . . .
and we obtain the numerical outcomes on those quan-
tities. The cosmographic constraints on f(T ) and its
derivatives, point out the numerical priors that we use
as initial settings for reconstructing the shape of viable
effective f(T ) models, which reproduce dark energy at
small redshift. Afterwards, we predict the transition red-
shift from our effective model and we understand whether
our model indicates a viable ztr if compared with the
ΛCDM predictions. We will report the connections be-
tween the cosmographic series and the f(T ) derivatives
in Sec. IV.

III. THE f(T ) TRANSITION REDSHIFT

In the scenario at hand, the f(T ) term drives the dark
energy contribution, interpreting the dark sector as due
to a torsional dark energy. It is widely believed that
the dark energy contribution dominates over matter at
our time, while it appears negligible at higher redshift
regimes. The type of the transition and the time at which
it occurs are extremely relevant, since they indicate the
dark energy nature and may also provide information on
how the dark energy evolves in time. In particular, the
transition time and correspondingly the transition red-
shift emphasize the change from decelerated to acceler-
ated cosmological expansion, and represent a prediction
of any particular model involved to describe the universe
expansion history. In other words, direct measurements
of the transition redshift provide direct information on
both the deceleration and acceleration epochs.
To show how to investigate ztr in the framework of

f(T ) gravity, let us consider the definition of the transi-
tion redshift, which occurs at a zero of the deceleration
parameter q. We will find out the transition redshift ztr
for a class of cosmographic f(T ) models, and we will also
compare it with standard model predictions and with re-
cent bounds on ztr itself.
Passing through the phase of transition between mat-

ter and dark energy dominance, and assuming the matter
to be dust (i.e. Pm = 0), it is useful to combine the two
Friedmann equations (5a), (5b) to obtain the torsional

pressure in terms of the deceleration parameter as:

PT = H2(2q − 1) , (16)

where we made use of relation (13a). At the transition
time we therefore obtain the value of the torsional pres-
sure as

PT (ztr) = −H2
tr , (17)

which corresponds to q = 0 at the transition redshift
ztr, with Hubble rate Htr. This expression is equivalent
to the standard barotropic dark-energy pressure in the
framework of general relativity given by [32]:

Ptr = −H2
tr . (18)

In particular, the two results, (17) and (18), lead to the
same formal outcome. In fact, assuming Htr to be posi-
tive definite, both the torsional and standard dark-energy
pressures are negative at the transition. However, the
physical meaning behind (17) and (18) is different, in the
sense that in the first case the transition is induced by
the torsional terms, while in the standard approach the
transition is realized due to the dark energy or curvature
terms.
In the standard ΛCDM cosmological model, the cos-

mological constant contributes about 70% of the present
cosmological energy budget and the consequence on cos-
mology lies on an evolving deceleration parameter q of
the form [1]

qΛ = −1 +
3Ωm,0(1 + z)3

2 + 2Ωm,0z[3 + z(3 + z)]
, (19)

with Ωm,0 the present matter density parameter, and
where the corresponding transition redshift formally is
given by

ztr =
( 1

H

dH

dz

)−1∣
∣

∣

z=ztr
− 1 , (20)

which has been obtained assuming ä = 0. Thus, the
ΛCDM model gives an exact solution for ztr, of the form

ztr,Λ =

[

2
(1− Ωm,0)

Ωm,0

]1/3

− 1 . (21)

In the following section we will use relations (16) and
(17) in order to infer the numerical values of the tor-
sional pressure at the transition time. Afterwards, we
will quantify the difference of the standard predictions
of the ΛCDM model with those obtained in the present
cosmographic approach. We will therefore predict ztr for
f(T ) cosmology and we will compare it with expression
(21).

IV. RECONSTRUCTING EFFECTIVE

COSMOGRAPHIC f(T ) MODELS

Let us now apply the approach described in the pre-
vious two sections and proceed to the reconstruction of
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effective cosmographic f(T ) models. We start by using
(7), as well as (13a),(13b), in order to calculate the time
derivatives of T as

Ṫ = 12H3 (1 + q) , (22a)

T̈ = −12H4 (q2 + j + 5q + 3) , (22b)

with the connection between the torsion and PT reading
as

T =
6PT
1− 2q

. (23)

Hence, at the transition time, we have

Ṫ = 12H3
tr , (24)

T̈ = −12H4
tr (jtr + 3) . (25)

The cosmographic requirements give the connection be-
tween f, f ′ and f ′′ from the modified Friedmann equa-
tions, namely [22]

f(T0) = 6H2
0 (Ωm,0 − 2) , (26a)

f ′′(T0) =
1

6H2
0

[1

2
− 3Ωm,0

4(1 + q0)

]

, (26b)

and moreover f ′(T0) = 1 to guarantee the Solar-System
constraints in order to preserve the value of G at our time
[22].
Thus, using expressions (22) and (26), we acquire the

priors on T , f(T ) and f ′′(T ) as

f(T0) ∈ [−5.23; −4.79] , (27a)

f ′′(T0) ∈ [−0.19; 0.01] , (27b)

T0 ∈ [−3.11; −2.77] , (27c)

Ṫ ∈ [0.75; 2.24] , (27d)

T̈ ∈ [−7.26; −0.36] , (27e)

which have been obtained assuming a normalized Hub-
ble rate H0 ∈ [0.68; 0.72] and a mass density Ωm,0 ∈
[0.274; 0.318], with q0 ∈ [−0.8,−0.5], j0 ∈ [0.5, 1.5] and
jtr ≈ j0 [33]. The last condition has been imposed assum-
ing that the universe is slightly evolving in the redshift
domain z ≤ 1. We stress that the priors (27) are the re-
quirements that determine whether a specific f(T ) form
is viable or not.
The strategy is the following: we assume the validity

of the cosmographic series as the initial conditions of the
modified Friedmann equations, and then we integrate the
first Friedmann equation. Thus, we infer the numerical
values of H(z) for different redshifts, and we separately
extrapolate those points, determining a list of numbers
for H(z) and z. Finally, through the use of testing func-
tions, we reconstruct an effective f(T ) which reproduces
the numerical limits. Hence, from this function one ob-
tains a parameterized cosmological model, which departs
from the ΛCDM scenario, corresponding to a varying
dark-energy sector.

Our treatment suggests that a possible approximation
of the dark-energy density term ρDE may be

ρDE ≈ log
[

α+ β

N
∑

i=0

ai
]

. (28)

Truncating at the second order in a, we obtain the Hubble
rate as

H2

H2
0

= Ωm(z) + log[α+ β(2− 3a+ a2)] , (29)

where we considered Ωm ≡ Ωm,0(1+ z)3. The parameter
α is fixed in order to guarantee that at z = 0 the Hubble
rate is identically H = H0. Therefore, we have

α = e1−Ωm,0 . (30)

Hence, the cosmographic reconstruction of torsional dark
energy provides a deceleration parameter of the form

q =
3Ωm,0(1 + z)5α+ β + 3z[1 + Ωm(z)(1 + 2z)]β

2
[

(1 + z)2α+ z(1 + 2z)β
][

Ωm(z) + log
(

α+βz(1+2z)

(1+z)2

)]−1.

(31)

In Fig. 1 we depict the behaviors ofH(z)/H0 and q(z),
given in (29) and (31) respectively. We deduce that up
to the redshift domain z ≤ 2, our approach is compat-
ible with the standard cosmological model, and in fact
only small differences occur between our predictions and
the ΛCDM ones, which are slightly larger. This is due to
the fact that our H(z) parameter indicates a dark-energy
evolution which does not departure significantly from the
case of a constant dark-energy term at small redshifts.
Hence, our Hubble rate well approximates the standard
ΛCDM contribution, slightly evolving as the redshift in-
creases. This is more evident in Fig. 2, in which we plot
the dark-energy term (28), normalized by means of the

standard critical density ρc ≡ 3H2
0

8πG .
Afterwards, linearizing the deceleration parameter

around z = 0, keeping first-order terms, we find the tran-
sition redshift as

ztr ≃
α2(Ωm,0 + logα)(2 logα− Ωm,0 − β)

[9Ωm,0α2 + (α− β)β] logα− β[β +Ωm,0(5α+ β)]
.

(32)
We mention that this approximation is efficient, since one
expects a transition at z ≤ 1 and therefore the linearized
q does not substantially differ from the exact value.
Having in mind the form of the Hubble rate, we can

infer limits over Ωm,0 and β. This permits one to de-
termine ztr from expression (32). In the next section we
describe the fitting procedure using supernova data, and
we extract numerical bounds on the free parameters of
our cosmographic torsional dark-energy scenario.

V. THE MATCHING WITH OBSERVATIONS

The above approach provided a particular set of cos-
mographic quantities related to the f(T ) form. Corre-
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Figure 1: The evolution of H(z)/H0 (upper graph) and q(z)
(lower graph), according to viable f(T ) cosmology (blue-solid
curves) versus the ΛCDM predictions (red-dashed curves).
We employed the indicative values Ωm,0 = 0.27 and β = 1
and we normalized through H0 = 100KmMpc−1 s.

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

z

ΡdeHzL

Figure 2: The evolution of the dark-energy density accord-
ing to viable f(T ) cosmology (blue-solid curves) versus the
ΛCDM predictions (red-dashed curves). The two cosmological
paradigms exhibit very similar behaviors, and thus the ΛCDM
curve is almost indistinguishable from the viable f(T ) one.
We employed the indicative values Ωm,0 = 0.27 and β = 1
and we normalized through H0 = 100KmMpc−1 s.

spondingly, the effective Hubble rate was built in terms
of corrections to the simple teleparallel gravity, that is
to general relativity. Hence, these corrections are due
to the difference between f(T ) cosmology and the stan-
dard paradigm of ΛCDM cosmology. These terms may
be compared with the cosmological constant value with-
out showing great departures at small redshift regimes, as
we discussed in the above section. The contribution due
to the f(T ) sector needs to match an adequate conver-

gence at small and high redshift domains. Hence, it is re-
quired to obtain bounds on the observational parameters,
in order to understand whether the cosmological model
at hand passes or not the observational constraints.
In order to proceed, we perform the analysis by in-

volving the Monte Carlo technique with the use of the
union 2.1 supernova compilation [17]. This survey is
built up by 580 measurements of apparent magnitudes,
with the corresponding redshifts and magnitude errors.
Assuming a Gaussian distribution, one acquires the rele-
vant fact that the luminosity distance may be rewritten
in terms of the cosmographic series itself. Thus, all ob-
servations may be performed by directly fitting DL with
union 2.1 data.
We employ type Ia supernova observations since they

probably represent the most suitable cosmic compilation.
The role of supernovae has been crucial for cosmological
parameter-fittings, since supernovae are considered stan-
dard candles. It follows that their luminosity curves are
easily related to distances themselves4.
The union 2.1 data set is capable of reducing previous

systematics, entered in old catalogs, for instance in union
and union 2 [35, 36]. Hence, it is easy to show that one
can use the well known χ-squared function, which is com-
monly involved to quantify theoretical and observational
distance modulus. In particular, one defines it as [37]

χ2 = A− B2

C +D , (33)

where

A = x
TC−1

x ,

B =
∑

i

(C−1
x)i , (34)

C = Tr[C−1 ] ,

D = log

(

C
2π

)

,

with C the covariance matrix of observational data, and
where x is

xi = 5 log10

[

DL(zi; θ)

Mpc

]

+ 25− µobs(zi) . (35)

In particular, having a spatially flat universe, the lumi-
nosity distance simply reduces to

dL =
1

a

∫ ψ

0

dψ

H(ψ)
. (36)

The Hubble derivatives, evaluated as a function of the

4 Frequently, cosmologists showed that when different light curve
fitters are used, different results with significative discrepancies
may be found. For the case of f(T ) gravity see for example [34]
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redshift z at our time (z = 0), give us

dH

dz
= H0 (1 + q0) , (37a)

d2H

dz2
= H0

(

j0 − q20
)

, (37b)

(37c)

providing a third order Taylor series for the luminosity
distance of the form: d̃L = η1 z+η2z

2+η3z
3+ . . ., where

η1 = 1 , (38a)

η2 = 2− 3Ωm,0 + β exp (Ωm,0 − 1)

2
, (38b)

η3 =
1

8

[

3Ωm,0 + β exp (Ωm,0 − 1)
]

·
[

3Ωm,0 − 2 + β exp (Ωm,0 − 1)
]

. (38c)

It is useful to stress here that expression (10) represents
a general Taylor expansion and may be applied to any
cosmological model. The advantage of passing through
it is that one directly fits a particular model of interest,
weighting the coefficients directly with the most recent
data. A simple strategy for definitively alleviating the
problem of matching data with our model, is to assume
a priori compatible cosmographic priors. To do so, we
employ the theoretical bounds given by (27).
This treatment represents the key to obtain suitable

cosmographic intervals, in which the free parameters of
our model, i.e. Ωm,0 and β, do not violate the cosmologi-
cal limits. Our numerical outcomes also need to be com-
patible with the ones already proposed in the literature
and do not have to influence the analyses themselves. In
addition, we aim at finding out numerical outcomes over
ztr, which can be indirectly derived from the experimen-
tal analysis by using (32).
Hence, the Bayesian technique provides the likelihood

function:

L ∝ exp(−χ2/2) , (39)

whose maximum corresponds to the minimum of the χ2.
We obtain our numerical results performing a test with
the free available code ROOT and the additional pack-
age BAT [38]. Our analyses are based on two statistical
treatments, characterized by different maximum order of
parameters. We perform such a procedure in order to
provide a hierarchy among all parameters. Firstly, we
allow all parameters to freely vary (Fit1), and secondly
we fix the mass density parameter through values com-
patible with the most recent Planck measurements [33]
(Fit2).
Our numerical results are summarized in Table I,

where we separately report the obtained and the inferred
results, showing the limits on the transition redshift it-
self.

Parameter Fit1 Fit2

H0 69.490+0.366
−0.379

69.450+0.342
−0.355

α 1.367+0.296
−0.252

2.067−−−

−−−

β −1.147+0.696
−0.502

0.834+0.186
−0.168

Ωm,0 0.687+0.217
−0.185

0.274−−−

−−−

ztr 0.247+0.345
−0.271

0.643+0.034
−0.030

∣

∣

∣
∆ztr

∣

∣

∣
0.385−−−

−−−
0.011−−−

−−−

PT,tr −0.687+0.660
−0.641

−1.032+0.070
−0.063

Table I: Table of our experimental and a posteriori-derived
results. We report the 1σ confidence level errors for our fitting
procedure, performed through the Metropolis algorithm. The
associated errors on derived quantities have been obtained
through the logarithmic rule [1, 39]. To evaluate the transition
redshift in the ΛCDM model we considered Ωm,0 = 0.315 from
the Planck measurements. Finally, H0 is given in Km/s/Mpc.

The cosmological results show that the first fit (Fit1),
in which all coefficients are taken free, does not give con-
clusive results. In this case, in fact, the mass density
is overestimated probably due to the strong multiplica-
tive degeneracy between the coefficients Ωm,0 and β, as
one can see from (38). The cosmographic analysis suf-
fers from this kind of degeneracy and shows the same
inefficiency in bounding ztr, which seems to significantly
departure from the ΛCDM predictions, as shown by look-
ing at the ∆ztr. The likelihood contours of this case are
shown in Fig. 3.

In the second fit (Fit2), where we fix the matter den-
sity parameter to a value compatible with the Planck
measurements, namely Ωm,0 = 0.274 [33], the results are
mostly accurate. This fixing enables to get refined limits
even on the other two free coefficients of our model, as
can be seen in Fig. 4 (compare with the middle graph
of Fig. 3). As a consequence, we obtain more precise
bounds on ztr, which becomes perfectly compatible with
the constraints predicted by the ΛCDM model, at the
1 − σ confidence level. Our value however seems to be
slightly smaller than theoretical expectations (ztr = 0.74
according to [40]).

Hence, we conclude that combined observational tests
will represent a landscape to better fix constraints over
the involved quantities, showing more accurate limits on
the transition predicted by f(T ) gravity. Further, this
seems to be evident by looking at the contour plots of
Figs. 3 and 4, in which a delineated curve corresponds
to the second fit. In other words, from these Figures
it is clear that the first fit shows higher errors since the
contours are larger than the one inferred from the second
fit. Nevertheless, in all cases the predicted transition
time occurs at z < 1, in agreement with the standard
theoretical framework.
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Figure 3: Contour plots for our observational analyses in the
case where all parameters are free to vary (Fit1): Ωm,0 versus
H0 (upper graph), β parameter versus H0 (middle graph) and
β versus Ωm,0 (lower graph).

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we investigated the transition redshift
derived in an effective model inferred from f(T ) grav-
ity. In order to do so, we extracted an approximate
reconstruction of the f(T ) dark-energy term. The ef-

Figure 4: Contour plots for our observational analyses in the
case where only H0 and β are free to vary, and Ωm,0 is fixed
to a value compatible with the Planck measurements, namely
Ωm,0 = 0.274 (Fit2): β parameter versus H0.

fective dark energy contribution has been obtained by
numerically solving the Friedmann equations, employ-
ing as initial conditions the numerical outcomes obtained
from cosmographic bounds. In this way, we defined a set
of numerical constraints on f(T ) and its derivatives in
a model-independent way, and we were able to fix the
evolving dark-energy term through a logarithmic correc-
tion.

Our cosmographic model well adapts to the late-
time constraints, and it reproduces a cosmological model
which smoothly departures from the standard ΛCDM
paradigm. The corresponding limits on the free parame-
ters of the model have been obtained by directly fitting
the luminosity distance with supernova data, using the
most recent union 2.1 compilation. We extracted viable
constraints on the free parameters of the scenario, in two
distinct fits with different hierarchy between coefficients.
We first considered all parameters free to vary and af-
terwards we fixed the value of the matter density consis-
tently with current Planck results. All predictions pro-
vided intervals for the transition redshift which are com-
patible with present expectations, although the numeri-
cal outcomes are slightly smaller than the ones predicted
by the standard cosmological model. Departures have
been encountered in the case where we leave all parame-
ters free to vary, due to the degeneracy problem between
coefficients in the luminosity distance definition. Possible
approaches will be devoted to better fix those constraints
by means of combined cosmological tests. Moreover, we
could mostly investigate the properties of our logarith-
mic corrections, studying their consequences in the early
phases of the universe evolution.

Finally, it would be interesting to extend the above
analysis in the case of higher-order torsional cosmology,
and in particular in the case where the teleparallel equiv-
alent of the Gauss-Bonnet combination is used in the ac-
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tion, as in f(T, TG) cosmology [41]. The corresponding
results could be compared with both ΛCDM cosmology,
as well as with the f(R,G) cosmology [42–44]. Such an
analysis could provide more information on the possible
distinguishability of curvature and torsional gravity using
cosmographic methods.
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