
Electronic Notes in Theoretical Computer Science 48 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume48.html pp. 1 – 23

Probabilistic Confinement in a Declarative
Framework

Alessandra Di Pierro 1

Dipartimento di Informatica
Universitá di Pisa
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Abstract

We show how to formulate and analyse some security notions in the context of
declarative programming. We concentrate on a particular class of security proper-
ties, namely the so-called confinement properties. Our reference language is con-
current constraint programming. We use a probabilistic version of this language
(PCCP) to highlight via simple program examples the difference between proba-
bilistic and nondeterministic confinement. The different role played by variables in
imperative and constraint programming hinders a direct translation of the notion
of confinement into our declarative setting. Therefore, we introduce the notion of
identity confinement which is more appropriate for constraint languages. Finally,
we present an approximating probabilistic semantics which can be used as a base
for the analysis of confinement properties, and show its correctness with respect to
the operational semantics of PCCP.

1 Introduction

The aim of this work is to investigate the security problem from a probabilistic
viewpoint by formalising one aspect of the multi-form nature of this problem
in a probabilistic programming language. The aspect we consider is confi-
dentiality, that is the protection of some sensitive data against unauthorised
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disclosure. This aspect can be formalised in terms of the concept of nonin-
terference [8] which states conditions for guaranteeing secure information flow
throughout a computer system.

We propose a semantics-based formal specification of a noninterference
property which ensures that a given program does not leak some private in-
formation which it is allowed to access. This property is often referred to as
confinement after Lampson who first proposed the problem in the ’70’s [11].

Our specification is based on the Probabilistic Concurrent Constraint Pro-
gramming language (PCCP), previously introduced in [3,4] as a probabilistic
extension of concurrent constraint programming [10]. The probabilistic choice
construct provided by PCCP allows us to take into account also attackers
which are able to exploit some statistical information.

Previous approaches, notably the work by Volpano and Smith [19,17] and
by Sands and Sabelfeld [14,13], consider imperative programming languages.
Our choice of a declarative language, and in particular the PCCP language,
is essentially motivated by the availability of a simple and mathematically
sound semantics for this language which forms a base on which a systematic
design of program analysis can be developed. In fact, the ultimate aim of
this research is the development of a methodology for a probabilistic security
analysis of (probabilistic) programs which resembles the classical program
analysis methods [12].

As a first step in this direction, we present in this paper a control-flow anal-
ysis for PCCP programs which is able to detect whether a program is confined
according to an appropriate notion of declarative confinement. The analysis
refers to an abstract version of the derivation tree of a PCCP agent, where
all possible transitions between stores are recorded together with their proba-
bilities, and its correctness is shown with respect to the concrete operational
semantics.

1.1 Confinement

An information processing system has a confinement property if it protects
some important — so-called high level — information from non-authorised
— so-called low level — access. That means the information, e.g. the state
or value of a high level variable, does not “leak” out, i.e. influence low level
information. In a more complex implementation of the standard security
model [1] one may have several levels (“confident”, “secret”, “top secret”, etc)
but we consider here only the simple two levels case.

For example, a computer operating system might try to protect certain user
information, e.g. passwords, etc. (high level information), from being accessed
by some applications, e.g. spreadsheets, browsers, etc (low level applications),
though it might well allow these applications (the low level) access to other
data, e.g. the system time, etc. If the low level applications are unable to
access this high level information, e.g. the password of a user, we can say that
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it is confined.

Depending on the nature of the information flow between high and low
level information, one can distinguish several types of confinement, namely
deterministic, nondeterministic, and probabilistic confinement [19].

It is important to notice that nondeterministic confinement is somehow
weaker than probabilistic confinement, as it is not able to capture those sit-
uations in which the probabilistic nature of an implementation may allow for
the detection of the confidential information, e.g. by running the program a
sufficient number of times [9]. In the context of imperative programming lan-
guages, confinement properties with respect to the value of high and low level
variables, have been recently discussed in [17,20,18] where a type-system based
security analysis is developed. Another recent contribution to this problem is
the work in [13,14], where the use of probabilistic power-domains is proposed,
which allows for a compositional specification of the non-interference property
underlying a type-based security analysis.

1.2 An Example: War and Peace

We present a simple example illustrating the kind of security problem we are
going to consider in this paper. Imagine a world crisis scenario: a new war
might start. The Pentagon is preparing for war, but nobody knows whether it
is already attacking or it is still negotiating. Clearly, this information is “sen-
sitive” and the generals would like to confine it. They only allow a restricted
number of people to have access to the one-bit information on whether the
Pentagon is in a state of “war” or “peace”. Therefore, the information is de-
terministically confined: the Pentagon’s regulations allow no outsider to know
about the actual situation. However, the access to low-level information is still
possible for outsiders, e.g. via the press office. Nevertheless, the processing of
this low-level information is different in times of “war” and “peace”: In the
first case all information has to be processed in atomic steps (e.g. in order to
avoid system overload) while in the latter the GHQ puts no restriction on the
way low level information has to be treated.

The question then is: If one can observe the behaviour of the Pentagon
without directly accessing the sensitive information, e.g. by normal means of
communication, is it still possible to get (indirect) information about whether
it is in a state of “war” or “peace”.

1.3 The Approach

The question above can be answered by first giving a formal specification of
which information flow is to be considered secure, in terms of a programming
language semantics.

We attack the above question by means of an approach based on a formal
programming language semantics. We use for this purpose the Probabilistic
Concurrent Constraint Programming (PCCP) language, which was introduced
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Table 1
The Syntax of PCCP Agents.

A ::= stop successful termination

| tell(c) adding a constraint

| n
i=1 ask(ci) → pi : Ai probabilistic choice

| ‖n
i=1 qi : Ai prioritised parallelism

| ∃xA hiding, local variables

| p(x) procedure call, recursion

in [3,4] as a probabilistic version of the Concurrent Constraint Programming
(CCP) paradigm [16,15]. The basic features of this language are recalled in
Section 2 together with its semantics.

In Section 3 we then use this setting to give a formal specification of what
we consider as a secure information flow. Having formalised the problem as
a confinement property we can now apply static analysis methods in order to
guarantee that a given program has a secure information flow.

We will adopt a control-flow analysis approach. In Section 4 an abstract
specification of this analysis is defined by considering only those elements
of the transitions occurring in an execution of the program which contain
information essential for detecting the violation of the confinement property.
The analysis is then proved to be safe with respect to the semantics of the
language (cf. Section 5).

2 Probabilistic Concurrent Constraint Programming

The syntax and the basic execution model of PCCP are very similar to CCP.
Both languages are based on the notion of a generic constraint system C,
defined as a cylindric algebraic complete partial order (see [16,2] for more
details), which encodes the information ordering. In PCCP probability is in-
troduced via a probabilistic choice which replaces the nondeterministic choice
of CCP, and a form of probabilistic parallelism, which replaces the pure non-
determinism in the interleaving semantics of CCP by introducing priorities.
In the following we recall the syntax and the basic operational model of PCCP
agents.

A PCCP program P is a set of procedure declarations of the form p(x) :
−A, where A is an agent. The syntax of a PCCP agent is given in Table 1,
where c and ci are finite constraints in C, and pi and qi are real numbers
representing probabilities.
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Table 2
The transition system for PCCP

R1 〈tell(c), d〉 −→1 〈stop, c 
 d〉

R2 〈 n
i=1 ask(ci) → pi : Ai, d〉 −→p̃j

〈Aj, d〉 j ∈ [1, n] and d � cj

R3
〈Aj, c〉 −→p 〈A′

j, c
′〉

〈‖n
i=1 pi : Ai, c〉 −→p·p̃j

〈‖n
j �=i=1 pi : Ai ‖ pj : A′

j, c
′〉 j ∈ [1, n]

R4
〈A, d 
 ∃xc〉 −→p 〈A′, d′〉

〈∃d
xA, c〉 −→p 〈∃d′

x A
′, c 
 ∃xd

′〉

R5 〈p(y), c〉 −→1 〈A, c〉 p(x) : −A ∈ P

The operational semantics of PCCP has a simple definition in terms of a
probabilistic transition system, (Conf,−→p), where Conf is the set of config-
urations 〈A, d〉 representing the state of the system at a certain moment and
the transition relation −→p is defined in Table 2. The state of the system
is described by the agent A which has still to be executed and the common
store d. The index p in the transition relation indicates the probability of
the transition to take place. The rules are closely related to the ones for
(nondeterministic) CCP, and we refer to [2] for a detailed description.

Rule R1 describes the effect of tell(c). This agent always terminates
successfully with probability one, and the new store is the least upper bound
of the constraint c and the current store d, i.e. c 
 d. Note that the agent
stop represents successful termination and is used to distinguish success from
other forms of termination, e.g. deadlock (no guard is enabled) or in general
situations in which agents get stuck.

Both rules R2 and R3 refer to normalised probabilities p̃i. Normalisation
can be defined for a generic set of real numbers X = {xi}, as the process of
replacing each xi by x̃i defined as follows:

Definition 2.1 Let x =
∑

i xi, and n the cardinality of X = {xi}. Then

x̃i = x̃X
i =




xi

x
if x �= 0

1
n

otherwise

The superscript in the notation x̃X
i is used to indicate the set X with

respect to which we normalise.

Rule R2 describes probabilistic choice. An agent Ai is called enabled iff
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its guard ci is entailed by the store, i.e. d � ci. The normalisation process
described above is applied only to those pi’s which are associated to enabled
agents. The p̃i’s are therefore normalised with respect to the set {pi | d � ci}.
Then the choice is made among the enabled agents only.

Rule R3 describes a prioritised interleaving: Each time the scheduler has
to select an agent to be executed, it will choose according to the probabilities
p̃i, i.e. the probabilities normalised with respect to the set {pi | Ai is active }.
An agent A is called active if it can make a transition, i.e. there exists
〈A′, d′〉 ∈ Conf such that 〈A, d〉 −→p 〈A′, d′〉. Again, the normalisation and
the successive choice is applied to active agents only. In this way the schedul-
ing probability of an agent actually represents its priority [6]. Note that there
is no rule for a transition from the stop agent to any other agent, i.e. stop is
never active.

Rule R4 in Table 2 deals with the introduction of local variables; we use
the notation ∃d

xA for the agent A with local store d containing information
on x which is hidden to the external store (see [15,16,2] for further details).
Obviously, the transition probability p is not changed by hiding.

In the recursion rule R5 for the procedure call p(y), we assume that the
link between the actual parameter y and the formal parameter x has been
correctly established before p(y) is replaced by the body of its definition in
the program P . In [16], this link is elegantly expressed by using the hiding
operation ∃x and only one fresh variable. As this is a deterministic operation
the transition probability in this rule is one.

Based on these transition rules we now define an operational semantics
for PCCP in terms of a notion of observables which captures the results of
finite executions of a given agent together with their probabilities. Let us first
introduce some basic definitions.

Definition 2.2 Let A be a PCCP agent. A computational path ψ for A is
defined by

ψ = 〈A0, c0〉 −→p1 〈A1, c1〉 −→p2 . . . −→pn 〈An, cn〉,
where A0 = A, c0 = true, An = stop and n < ∞.

Note that this definition only account for successful termination. Our
observables will not include infinite computation nor those situations in which
the agent in the final configuration is not the stop agent and yet is unable to
make a transition, i.e. the case of suspended computations.

Definition 2.3 Let ψ be a computational path for A

〈A0, c0〉 −→p1 〈A1, c1〉 −→p2 . . . −→pn 〈An, cn〉.
We define the result of ψ as res(ψ) = cn and its probability as prob(ψ) =∏n

i=1 pi.

We denote by Comp(A) the set of all computational paths for A.

Given a PCCP program, the set RP of the results of an agent A is the
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(multi-)set of all pairs 〈c, p〉, where c is the final store corresponding to the least
upper bound of the partial constraints accumulated during a computational
path, and p is the probability of reaching that result.

RP (A) = {〈c, p〉 | ∃ψ ∈ Comp(A) : c = res(ψ) and p = prob(ψ)}.
Because of nondeterminism, there might be different computational paths

leading to the same result. Thus, we need to ‘compactify’ the results so as to
identify all those pairs with the same constraint as a first component. This
operation is formally defined as follows.

Definition 2.4 Let S = {〈cij, pij〉}i,j be a (multi-)set of results, where cij

denote the jth occurrence of the constraint ci, and let Pci
=

∑
ci
pci

be the
sum of all probabilities occurring in the set which are associated with ci. The
compactification of S is defined as follows:

K(S) = {〈ci, Pci
〉 | Pci

=
∑

ci
pci

=
∑

j pij}i.

We observe that this operation may not always result in a probability
distribution when infinite computations are involved. In particular, this may
happen when the derivation tree has infinitely many infinite branches. This
case needs a more complicated, measure-theoretical treatment which we will
not develop here as it is not essential for the purposes of this paper.

We can now define the observables associated to an agent A as:

OP (A) = K(RP (A)).

Note that this notion of observables differs from the classical notion of
input/output behaviour in CCP. In the classical case a constraint c belongs
to the input/output observables of a given agent A if at least one path leads
from the initial store d to the final result c. In the probabilistic case we have
to consider all possible paths leading to the same result c and combine the
associated probabilities.

A more general notion of computational path can be defined which cor-
responds to a computation starting from any store c and not necessarily the
empty one. Given an agent A we will denote by Comp(A, c) the set of all
general computational paths starting from store c. Of course, Comp(A) cor-
respond exactly to Comp(A, true).

An operation on computational paths — which will turn out to be useful
in Section 5 — is prefixing. This is formally defined as follows:

Definition 2.5 Let A be a PCCP agent and ψ ∈ Comp(A, c) be the general
computational path

〈A, c〉 −→p1 〈A1, c1〉 −→p2 . . . −→pn 〈An, cn〉.
Consider the transition s = 〈B, d〉 −→p 〈A, c〉. We define the composition s ·ψ
as the general computational path

〈B, d〉 −→p 〈A, c〉 −→p1 〈A1, c1〉 −→p2 . . . −→pn 〈An, cn〉.
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The following proposition states an important property of the transition
system given in Table 2.

Proposition 2.6 Let 〈A, c〉 be a configuration with A �= stop and c ∈ C.
Then the following condition holds:∑

〈A,c〉−→pi 〈Ai,ci〉
pi = 1.

i.e. the transitions from 〈A, c〉 are normalised.

Proof. The proof is by induction on the structure of A.

[A = tell(d)] According to rule R1 there is only one, normalised transition.

[A =
n

i=1 ask(di) → pi : Ai] The transition probabilities p̃j in rule R2 are
normalised by definition.

[A =‖n
i=1 pi : Ai] By the induction hypothesis, the transitions 〈Ai, c〉 −→pki

〈Aki
, cki

〉 are normalised for all Ai, i.e.
∑

ki
pki

= 1. Furthermore, the
p̃i are normalised by definition. Therefore, the transitions 〈‖n

i=1 pi :
Ai, c〉 −→pkj

·p̃j
〈‖n

j �=i=1 pi : Ai ‖ pj : Akj
, ckj

〉 are normalised, as

∑
i

(∑
ki

p̃i · pki

)
=

(∑
i

p̃i

)
·
(∑

ki

pki

)
= 1.

[A = ∃d
xA

′] By induction hypothesis, the transitions 〈A′, d
∃xc〉 −→p 〈A′′, d′〉
are normalised, therefore the transitions 〈∃d

xA
′, c〉 −→p 〈∃d′

x A
′′, c
 ∃xd

′〉 are
normalised too.

[A = p(y)] The procedure call, according to rule R5, is deterministic, thus
normalised.

✷

3 Declarative Confinement

The notion of confinement is typically formulated for imperative languages in
terms of variables’ values. In declarative programming the role of variables
is substantially different from the one they play in imperative programming.
We will therefore introduce a notion of confinement which is more appropriate
in our declarative setting. It refers to the identity of some agents instead of
the value of some variables: A set of agents Ai confine their identity if it is
impossible to specify a context in which one can determine which of the agents
is actually executed.

One could think of the context given by a certain store, or, more generally,
by an agent C which — whenever run in combination with each of the Ai’s —
is able to reveal the identity of a certain Ai. This is the case when the results
obtained by the execution of C in parallel with each Ai are different, which
allow us to discriminate between the Ai’s. Note that the first case of a store
context is obtained by restricting to agents C = tell(c) for some store c.
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The only context which is interesting in our setting is parallel composition,
as there is no interaction between sub-agents in the other structured agents,
like the choice.

Definition 3.1 A set of agents Ai is identity confined if for all agents C
the parallel executions Ai ‖ C are all observationally equivalent, i.e. if all
observables O(Ai ‖ C) are the same.

Depending on the notion of observables one may refer to, one can obtain
different confinement properties. In particular, we can distinguish between
nondeterministic identity confinement if we base our analysis on the classical
nondeterministic I/O observables OC , and probabilistic identity confinement
if we look at the probabilistic I/O observables OP .

3.1 More on the War or Peace Example

The example described in Section 1.2 can be formulated in a (P)CCP frame-
work as follows. We introduce an agent P , P(entagon), defined as:

P ≡ ask(war) → 1 : A ask(peace) → 1 : B

which, depending if it is ‘war’ or ‘peace’ executes either of the two agents A
or B defined as:

A ≡ 1

2
: tell(c) ‖ 1

2
: tell(d) and B ≡ tell(c 
 d)

i.e. in times of ‘war’ we can tell only one constraint at a certain time, while
in ‘peace’ we can tell several in one step. The constraints ‘war’ and ‘peace’
are considered to be “hidden” or “private” to P , so they are deterministically
confined (no other agent can simply ask for them).

If we now look at nondeterministic confinement, we see that for an agent
C, representing the world C(ommunity), the whole system P ‖ C has the
same I/O behaviour in times of ‘war’ and ‘peace’:

OC(A ‖ C) = OC(B ‖ C)

i.e the nondeterministic observables A ‖ C and B ‖ C are identical.

The world community cannot decide if it is war or peace, simply because
the Pentagon still produce the same possible results. The identity of P ≡ A
or P ≡ B is protected, no C can test for the difference. The “high” level
information (‘peace’ or ‘war’) is therefore confined in a nondeterministic sense.

However, if we look at the probabilistic confinement we see that A ‖ C and
B ‖ C may have a slightly different behaviour (semantics). In fact, consider
the agent:

C ≡ ask(c) → 2

3
: tell(e) ask(d) → 1

3
: tell(f).

If we combine A and B with C we get the two derivation trees (according to
the operational semantics given in Table 2) depicted in Figure 1 and Figure 2.
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�
�

�
��✠

〈1
2

: A ‖ 1
2

: C, true〉

1
2

〈C, c 
 d〉

1
2

〈tell(d), c 
 e〉 tell(c), d 
 f〉

1
31

1
2

〈stop, c 
 d 
 e〉 stop, c 
 d 
 f〉

1
2

: tell(d) ‖ 1
2

: C, c〉 1
2

: tell(c) ‖ 1
2

: C, d〉

Fig. 1. The Execution of 1
2 : A ‖ 1

2 : C

�
�

�
�

�
�✠

〈C, c 
 d〉

1
2

: B ‖ 1
2

: C, true〉

1

2
3

〈stop, c 
 d 
 e〉 stop, c 
 d 
 f〉

Fig. 2. The Execution of 1
2 : B ‖ 1

2 : C

Thus, the corresponding probabilistic observables are respectively:

OP

(
1

2
: A ‖ 1

2
: C

)
= {〈c 
 d 
 e,

7

12
〉, 〈c 
 d 
 f,

5

12
〉}

OP

(
1

2
: B ‖ 1

2
: C

)
= {〈c 
 d 
 e,

2

3
〉, 〈c 
 d 
 f,

1

3
〉}

By repeated questioning of, or communication with P we are therefore
able to find out if it is ‘war’ or ‘peace’. For example, if we execute 120 times
P ‖ C we will get about 70 times c 
 d 
 e and 50 times c 
 d 
 f as result iff
P ≡ A (the Pentagon is preparing war), but about 80 times c 
 d 
 e and 40
times c 
 d 
 f as outcome iff P ≡ B (the Pentagon is keeping peace).
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Table 3
The Analysis for PCCP Agents

[[stop]] = ∅
[[tell(c)]] = {〈true, c, 1〉}
[[

n
i=1 ask(ci) → pi : Ai]] =

⊕
i(pi, ci, [[Ai]])

[[‖n
i=i qi : Ai]] =

⊗
i(qi, [[Ai]])

[[∃xA]] = ∃x[[A]]

[[p(x)]] = [[A]] p(x) : −A ∈ P

4 Transition Analysis

Our aim is to develop a framework for analysing confinement properties of
PCCP programs. Our analysis intends to construct the set of all possible
transitions for the program in order to detect different behavioural structures
of agents which will eventually allow us to reveal their identity. For this anal-
ysis we abstract the full semantics in as far as we ignore the concrete agents
involved in each computational step, and only record possible transitions be-
tween stores (constraints) together with their probabilities.

These transitions — formally represented by triples 〈c, d, p〉 — can be seen
as arcs of a graph which represents an abstracted version of the true derivation
tree, as defined by the operational semantics in Table 2. An approximation
of the meaning of the program can be recovered by considering the maximal
acyclic paths through the graph. In general, the abstract graph will be larger
than the true semantics.

4.1 Abstract Semantics

In order to analyse a PCCP program, we associate to each agent a set of
triples 〈c, d, p〉. Each triple consists of two constraints and a probability. The
interpretation of such a triple is that there is a transition from a node labelled
with the first constraint to a node labelled by the second — the probability of
such a transition is the third component. A formal compositional definition
of such a semantics is given in Table 3. For the time being we will consider
only finite constraint systems.

The operations in Table 3 requires some auxiliary constructions which we
will introduce in the following.
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4.1.1 Initial Sets

For a triple 〈c, d, p〉 as well as a set of possible transitions {〈ci, di, pi〉}i we can
easily extract information on specific aspects by projection to only one of the
components, i.e.

ι(〈c, d, p〉) = c

τ(〈c, d, p〉) = d

π(〈c, d, p〉) = p

and

ι({〈ci, di, pi〉}) = {ci}
τ({〈ci, di, pi〉}) = {di}
π({〈ci, di, pi〉}) = {pi}.

For a set of triples {〈ci, di, pi〉} we define the initial, or prefix transitions
as those transitions whose first component never appears as a second one in
any other transition. Formally:

I({〈ci, di, pi〉}i) = {〈e, f, q〉 ∈ {〈ci, di, pi〉}i | ∃〈ci, di, pi〉 : e = ci and

� ∃〈ci, di, pi〉 : e = di}
By projection we can extract the initial stores, probabilities, etc. simply

as ι(I({〈ci, di, pi〉})), π(I({〈ci, di, pi〉})), etc.

4.1.2 Auxiliary Operations

Given a triple 〈c, d, p〉 (representing a possible transition from store c into
store d with probability p), we define its execution in the context of another
constraint e as:

e✄ 〈c, d, p〉 = 〈e 
 c, e 
 d, p〉
We can extend this concept to a set {〈ci, di, pi〉}i of possible transitions:

e✄ {〈ci, di, pi〉}i = {e✄ 〈ci, di, pi〉}i = {〈e 
 ci, e 
 di, pi〉}i

Analogously, it is also possible to change the transition probabilities for a
single triple:

q · 〈c, d, p〉 = 〈c, d, q · p〉
or a whole set:

q · {〈ci, di, pi〉}i = {q · 〈ci, di, pi〉}i = {〈ci, di, q · pi〉}i

For a set of transitions we can also define a prefix multiplication, where only
the initial probabilities are multiplied with q:

q × {〈ci, di, pi〉}i = q · I({〈ci, di, pi〉}i) ∪ {〈ci, di, pi〉}i \ I({〈ci, di, pi〉}i)

And finally, we need similar operations for introducing “hidden” transi-
tions:

∃x 〈c, d, p〉 = 〈∃x c, ∃x d, q〉
12
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and again for a whole set:

∃x {〈ci, di, pi〉}i = {∃x 〈ci, di, pi〉}i = {〈∃x ci, ∃x di, pi〉}i.

4.1.3 Set Constructions

For the choice operation, the set of possible transitions depends on the cur-
rent store. In particular, depending on how many guards are enabled we get
different normalisations. Therefore, choice is modelled by:

⊕
i

(pi, ci, Xi) =
⋃

G ∈ P({ci}i)

( ⋃
G � ci

p̃G
i × (G✄Xi)

)

i.e. the union over all sets representing possible guard combinations 4 . In
each such combination, look at all enabled guards, normalise their probability
(with respect to the other enabled guards in this combination), then ‘execute’
their corresponding agents in the context of the guard combination, where the
initial transitions are multiplied with the normalised probability. By abuse
of notation, we use G to denote both a set of constraints (or equivalently
their least upper bound) and the set of probabilities associated to the enabled
guards.

For the parallel construct we have to look at a prefix construction which
stems from an implicit sequential composition:

〈c, d, p〉 ; 〈e, f, q〉= {〈c, d, p〉, d✄ 〈e, f, q〉}
= {〈c, d, p〉, 〈d 
 e, d 
 f, q〉}.

Then the prefix construction for a set of triples is:

〈c, d, p〉 ; {〈ei, fi, qi〉}i = {〈c, d, p〉, d✄ 〈ei, fi, qi〉}
= {〈c, d, p〉, 〈d 
 ei, d 
 fi, qi〉}

The main element of the parallel construct is then a merge operation.
The merge between two sets of possible transitions X = {〈ci, di, pi〉}i and
Y = {〈ej, fj, qj〉}j can be defined recursively by:

X ⊗ Y =


 ⋃

〈c,d,p〉 ∈ I(X)

〈c, d, p〉 ; (X \ {〈c, d, p〉} ⊗ Y )




∪


 ⋃

〈e,f,p〉 ∈ I(Y )

〈e, f, q〉 ; (X ⊗ Y \ {〈e, f, q〉})


 ,

where we have:

X ⊗ ∅ = X = ∅ ⊗X

as the base case.

4 In fact, only consistent combinations are to be considered, i.e. if a guard c entails another
guard d a set G which contains c must also contain d.
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It is easy to see how to generalise this binary operation to an n-ary oper-
ation:

⊗
i

Xi =
⋃
i


 ⋃

t ∈ I(Xi)

t ;

((⊗
j �=i

Xj

)
⊗ (Xi \ {t})

)
 .

As we consider only finite structures this recursive definition of the merge is
well defined.

In order to formulate the semantics for the parallel construct we need to
modify this general merge construction so as to allow for a weighted version:

⊗
i

(qi, Xi) =
⋃
i


 ⋃

t ∈ I(Xi)

(q̃i · t) ;

((⊗
j �=i

(qj, Xj)

)
⊗ (qi, Xi \ {t})

)
 ,

where we understand that the normalisation of qi is with respect to all qj’s
whose corresponding Xj �= ∅. The pair (q, ∅), for any q, gives us the base case
for the weighted merge operation. In the case of the merge between only two
elements this corresponds to the requirement:

(q1, X) ⊗ (q2, ∅) = (1, X) = (q1, ∅) ⊗ (q2, X) = X.

4.2 Semantical Approximation

The analysis specified in Table 3 may look at first glance nearly as an in-
strumented (full) semantics of PCCP. However, a closer inspection reveals
immediately that this is not the case. The semantical approximation we in-
troduce consists basically in removing information on the agents involved in
a transition, and recording only the possibility of a transition between two
stores together with the associated probability.

Very often it is possible to reconstruct the full semantics from this approx-
imated semantics by considering maximal paths. Intuitively, a maximal path
is a path which starting from the initial transition in the store true goes as
deep in the graph as possible. Formally this notion can be defined as follows.

Definition 4.1 Given a set of tuples S = {〈cj, dj, pj〉}j, a trace of S is any
sequence {〈ci, di, pi〉}i∈[0,n] ⊆ S, such that 〈c0, d0, p0〉 ∈ I(S) and for all 1 ≤
i ≤ n, ci = di−1.

We now define a prefix ordering, ≤, on traces as follows.

Definition 4.2 Let tr1 = {〈ci, di, pi〉}i∈[0,n1] and tr2 = {〈ei, fi, qi〉}i∈[0,n2] be
two traces in S. We define the prefix order ≤ by:

tr1 ≤ tr2 iff 0 ≤ n1 ≤ n2 and

〈ci, di, pi〉 = 〈ei, fi, qi〉 for all i ≤ n1.

For a trace tr ⊆ S we denote by ↓ (tr) the set {tr′ ⊆ S | tr′ ≤ tr}, of all
its prefixes.
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Definition 4.3 A trace tr ⊆ S is maximal iff tr = lub≤ ↓(tr).

We indicate by T (S) the set of all maximal traces of S.

Definition 4.4 We define the result of a maximal trace tr as

res(tr) =
⊔

τ(tr),

and its probability as

prob(tr) =
∏

p∈π(tr)

p.

The results of the maximal traces of A are defined as:

R([[A]]) = {〈res(tr), prob(tr)〉 | tr ∈ T ([[A]])}.

4.3 Computations and their Approximation

There are cases where our approximation is indeed less precise than the full
semantics, that is the maximal traces are more than the actual computational
paths. For example, consider the execution of the agent:

D≡ ask(true) → 1

4
: (

1

2
: tell(d) ‖ 1

2
: (ask(d) → 1 : tell(e)))

ask(true) → 3

4
: (

1

2
: tell(d) ‖ 1

2
: (ask(d) → 1 : tell(f))).

The semantics of this agent D, executed in store true, is given by the
transitions depicted in Figure 3. The set of possible transitions we obtain for
this agent is:

[[D]] = { 〈true, d, 1/4〉, 〈true, d, 3/4〉,
〈d, d 
 e, 1〉, 〈d, d 
 f, 1〉,
〈d 
 e, d 
 e, 1〉, 〈d 
 f, d 
 f, 1〉 }

from which it is impossible to reconstruct the actual semantics, (cf. Fig-
ure 4). We observe that the derivation tree representing the true semantics
is (isomorphic to) a sub-tree of the reconstructed tree corresponding to the
approximating semantics. This obviously implies that the observables given
by the true semantics is a sub-set of the observables constructed via maximal
paths in the approximating semantics. This reflects the fact that, as we will
show in Section 5, the approximating semantics is correct.

4.4 Analysing Declarative Confinement

As an example of the use of this transition semantics for analysing security
notions, let us look at “probabilistic confinement”.

Consider the PCCP agents from Section 3.1:

A ≡ 1

2
: tell(c) ‖ 1

2
: tell(d) and B ≡ tell(c 
 d)

15
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�
�

�
��✠

〈D, true〉

1
4

1

〈stop, d 
 f〉stop, d 
 e〉

ask(d) → 1 : tell(f), d〉ask(d) → 1 : tell(e), d〉

Fig. 3. The Execution of D

�
�

�
��✠

1
4

1

d 
 fd 
 e d 
 f d 
 e

true

d d

Fig. 4. The Failed Reconstruction of D

as well as:

C ≡ ask(c) → 2

3
: tell(e) ask(d) → 1

3
: tell(f).

The true semantics of the combination of respectively A and B with C
results in the probabilistic input/output observables:

OP

(
1

2
: A ‖ 1

2
: C

)
= {〈c 
 d 
 e,

7

12
〉, 〈c 
 d 
 f,

5

12
〉}

OP

(
1

2
: B ‖ 1

2
: C

)
= {〈c 
 d 
 e,

2

3
〉, 〈c 
 d 
 f,

1

3
〉}.

Therefore, the context C allows us to distinguish A and B. This information
can be precisely reconstructed using the semantics in Table 3. The analysis
of A gives

[[A]] = { 〈true, c, 1/2〉, 〈true, d, 1/2〉,
〈c, c 
 d, 1〉, 〈d, c 
 d, 1〉 },

while for B we get:

[[B]] = { 〈true, c 
 d, 1〉 }
and finally for C:
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[[C]] = { 〈c, c 
 e, 1〉, 〈d, d 
 f, 1〉,
〈c 
 d, c 
 d 
 e, 2/3〉,
〈c 
 d, c 
 d 
 f, 1/3〉 }.

By combining these semantics with the parallel rule we obtain:

[[
1

2
: A ‖ 1

2
: C]] = { 〈true, c, 1/2〉, 〈true, d, 1/2〉,

〈c, c 
 d, 1/2〉, 〈d, c 
 d, 1/2〉,
〈c, c 
 e, 1/2〉, 〈d, d 
 f, 1/2〉,
〈c 
 d, c 
 d 
 e, 2/3〉, 〈c 
 d, c 
 d 
 f, 1/3〉,
〈c 
 e, c 
 d 
 e, 1〉, 〈d 
 f, c 
 d 
 f, 1〉 }

and

[[
1

2
: B ‖ 1

2
: C]] = { 〈true, c 
 d, 1〉,

〈c 
 d, c 
 d 
 e, 2/3〉,
〈c 
 d, c 
 d 
 f, 1/3〉 }.

The maximal paths through these graphs give the same results with the
same probabilities as the true semantics. As we found at least one context,
namely C, in which the two agents behave differently — as it is also revealed
by the analysis — we can assert that A and B are not identity confined.

Note that in the classical case of CCP (where all probability information
is removed) the nondeterministic observables are the same for both A ‖ C and
B ‖ C:

OC (A ‖ C) = OC (B ‖ C) = {c 
 d 
 e, c 
 d 
 f}.

5 Correctness of the Analysis

In order to show that the abstract semantics introduced in Section 4 provides
a safe base for a correct analysis of PCCP programs, we study the relation
between the concrete semantics given in terms of the transition system in
Table 2 and the semantics [[·]] defined in Table 3. In the correctness argument
we will focus on the choice and parallel constructs and abstract for the time
being from hiding and recursion.

As already mentioned, the semantics [[P ]] of a program P consists in col-
lecting all the possible transitions that P can make starting from store true.
Each transition is described by a tuple which record initial and final stores and
the probability of the transition, while the intermediate agents are abstracted
away. Intuitively, this makes the semantics “bigger” than the concrete one:
Some maximal traces can be re-constructed from the set of tuples, which do
not correspond to any of the computational paths in the concrete computa-
tional tree for P .

Definition 5.1 We define the maximal trace associated to a computational
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path

ψ = 〈A0, c0〉 −→p0 〈A1, c1〉 −→p1 . . . −→pn 〈An, cn〉,
as ψ = {〈c0, c1, p1〉, . . . , 〈cn−1, cn, pn〉}.

Definition 5.2 Given a set of computational paths C, we define the set of
maximal traces associated to C as

C = {tr | ∃ψ ∈ C with tr = ψ}.

We now show that given an agent A, any computational path for A corre-
sponds to a maximal trace of [[A]].

Proposition 5.3 For all agents A, if ψ ∈ Comp(A) then there exists a max-
imal trace tr ∈ T ([[A]]) such that tr = ψ, i.e.

T (Comp(A)) ⊆ T ([[A]]).

Proof. By induction on the structure of A.

[A = stop] Comp(A) = ∅ = [[A]].

[A = tell(c)] Comp(A) = {ψ}, where ψ is the computational path

〈tell(c), true〉 −→1 〈stop, c〉 �−→ .

On the other hand, [[tell(c)]] = T ([[tell(c)]]) = {〈true, c, 1〉}.
It is immediate to see that {〈true, c, 1〉} = ψ.

[A =
n

i=1 ask(ci) → pi : Ai] Every computation for A is of either of the two
forms:
(i) ψ∅ = 〈A, true〉 �−→.

In this case we have Comp(A) = ∅ ⊆ T ([[A]]).
(ii) ψj = 〈A, true〉 −→p̃j

〈Aj, true〉 · ψ′
j, where “·” is the composition oper-

ator defined in Definition 2.5.
This case occurs when at least one agent Aj is enabled. Then the

computational paths for A are exactly the computational paths for each
enabled agent Aj.

By inductive hypothesis, for all j there exists tr′j ∈ T ([[Aj]]) such that

tr′j = ψ′
j.

Then consider trj = p̃j × tr′j. Since p̃j is a normalised probability
with respect to the set G of enabled guards and tr′j ∈ [[Aj]], we have
that trj ∈

⋃
G � ci

p̃G
i × (G✄ [[Ai]]) . Therefore, trj ∈ [[A]]. Moreover, by

construction and the inductive hypothesis trj = ψj holds.

[A =‖n
i=1 pi : Ai] For the sake of simplicity, consider the case A = p0 : A0 ‖

p1 : A1. We show that for any computational path ψ ∈ Comp(A),

ψ ∈ T ((p0, ψ0) ⊗ (p1, ψ1))

holds, where ψ0 ∈ Comp(A0) and ψ1 ∈ Comp(A1).
Since T ((p0, ψ0) ⊗ (p1, ψ1)) ⊆ T ([[A]]), this will show the assertion of

Proposition 5.3.
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The proof is by induction on the length m of ψ. Note that if n0 and n1

are the lengths of ψ0 and ψ1 respectively, then m ≤ n0 and m ≤ n1.
[m = 0] This is the case in which both A0 and A1 are not active. Then

Comp(A) = ∅ ⊆ T ((p0, ψ0) ⊗ (p1, ψ1)).
[m ≥ 1] Suppose that for i = 0, 1

ψi = 〈Ai, true〉 −→qi
〈A′

i, ci〉 · ψ′
i,

where ψ′
i ∈ Comp(A′

i, ci), and 〈Ai, true〉 −→qi
〈A′

i, ci〉 is the first transi-
tion step of ψi (with possibly A′ = stop).

Then any computational path for A is of the form

ψ(i) = 〈A, true〉 −→p̃i·qi
〈A′

i, ci〉 · ψ′,

where ψ′ ∈ Comp(pj : Aj ‖ pi : A′
i, ci) and j = [i + 1]2 (i.e. i + 1 the sum

modulo 2).
Without loss of generality we can assume i = 1.
Since the length of ψ′ is m− 1, we have by inductive hypothesis that

ψ′ ∈ T ((p0, ψ0) ⊗ (p1, ψ′
1)). (∗)

Then define ψ = {〈true, c1, p̃1 · q1〉} ∪ ψ′.
By definition of the merge operator ⊗,

(p0, ψ0) ⊗ (p1, ψ1) =
⋃

t ∈ I(ψ0)
(p̃0 · t) ;

(
(p1, ψ1) ⊗ (p0, ψ0 \ {t})

)
∪⋃

t ∈ I(ψ1)
(p̃1 · t) ;

(
(p0, ψ0) ⊗ (p1, ψ1 \ {t})

)
.

Now observe that

ψ = p̃1 · I(ψ1) ; ψ′,

and that

ψ′
1 = ψ1 \ I(ψ1).

Then conclude by the inductive hypothesis (∗) that ψ ∈ T ((p0, ψ0) ⊗
(p1, ψ1)).

✷

In order to relate the analysis of PCCP agents to the problem of their
identity confinement we introduce the notion of re-constructibility.

Definition 5.4 An agent A is re-constructible iff

Comp(A)) = T ([[A]]).

Lemma 5.5 An agent A is re-constructible iff

RP (A) = R([[A]])

Proof. Obvious. ✷

Proposition 5.6 Let {Ai}n
i=1 be a set of re-constructible agents. If

[[Ai]] = [[Aj]]

for all i, j ∈ {1, . . . , n} then

OP (Ai) = OP (Aj)
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for all i, j ∈ {1, . . . , n}.

Proof. From [[Ai]] = [[Aj]] it follows that T ([[Ai]]) = T ([[Aj]]).

Since Ai and Aj are re-constructible by Lemma 5.5 we can conclude that
RP (Ai) = RP (Aj) and thus OP (Ai) = OP (Aj). ✷

A useful criterion to decide if an agent A is re-constructible which is based
only on its analysis [[Ai]] is stated the following.

Proposition 5.7 An agent A is re-constructible if for all d ∈ ι([[A]]) the fol-
lowing condition holds: ∑

〈d,ci,pi〉∈[[A]]

pi = 1.

Proof. Suppose by contradiction that A is not re-constructible. Then we
have that Comp(A) ⊂ T ([[A]]), i.e. there exists at least one trace tr in T ([[A]])
which does not correspond to any computational path of A. Therefore, there
exists at least one triple 〈d, d0, p0〉 ∈ tr which does not belong to any trace in
Comp(A).

Now two things can happen:

• There exists a configuration 〈A′, d〉 in a computational path in Comp(A). As
all transitions and triples which correspond to actual computational paths
are already normalised we have∑

〈d,ci,pi〉∈[[A]]

pi ≥
∑

〈d,ci,pi〉∈Comp(A)

pi + p0 = 1 + p0 > 1.

• There is no configuration 〈A′, d〉 in any computational path in Comp(A).
The initial part of tr might correspond to the initial part of a computational
path. However since tr does not correspond to a computational path, there
must be a configuration 〈A′′, e〉 from where it started to differ. The compu-
tational transitions from this configuration are already normalised. Then
consider the triple〈e, e0, q0〉 ∈ tr, which corresponds to the first difference
of tr from the computational path. We have that:∑

〈e,ei,qi〉∈[[A]]

qi ≥
∑

〈e,ei,qi〉∈Comp(A)

qi + q0 = 1 + q0 > 1.

✷

6 Conclusion and Further Work

We introduced the notion of identity confinement which characterises non-
interference and allows us to distinguish between nondeterministic and prob-
abilistic confinement in a declarative setting. The important point we have
stressed is that agents which appear to be nondeterministically indistinguish-
able — because they have the same possible observables — may well violate a
probabilistic notion of confinement — as one can distinguish them by analysing
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the probabilities corresponding to possible outcomes. This result is closely re-
lated to the work on confinement in [19,17,13,14] where the setting is the one
of imperative languages and a type-system based approach to the analysis.

It is important to notice that the notion of probabilistic confinement as
discussed in this paper is — even when formulated in terms of probabilistic
observables — in itself still a “classical” notion: A set of agents is proba-
bilistically confined if for all contexts they have exactly the same probabilistic
observables. Our aim for future work is to investigate “truly probabilistic”
notions of confinement. One such notion can be obtained by weakening the
notion of identity confinement so as to require that observables are similar
rather than identical in all contexts, according to an appropriate notion of
similarity. For example, in the probabilistic semantics of PCCP, where observ-
ables are normalised vectors (i.e. distributions), we can express the concept
of similarity in two closely related ways:

• via the norm difference, i.e. by looking at

‖O(A ‖ C, d) −O(B ‖ C, d)‖,
• via the inner product, i.e considering

〈O(A ‖ C, d),O(B ‖ C, d)〉 .
Clearly both of these similarity measures describe for normalised vectors about
the same situation: If the norm of the difference of two vectors is small then
so is the angle between them, that is their inner product.

The relevance of such a notion comes from the fact that the information
on the similarity of two agents can be exploited to estimate, e.g. by using
statistical methods, the number of test runs which are needed to distinguish
them. Typically, the more similar (in either of ways mentioned above) the
observables of two agents are, the more difficult it becomes to distinguish
them by an experiment. In the War and Peace example discussed in this
paper, we argued that about 120 repetitions would allow us to distinguish
A ‖ C from B ‖ C, as we would get a distribution on the observables of about
70 to 50 as opposed to 80 to 40. Since the difference between the observables
is about 1

12
, an experimental result obtained by only, let’s say, 12 test runs

would distinguish A ‖ C and B ‖ C with a low probability.

Other important issues remain to be investigated. Among them, there
is the issue of extending our analysis which allows for detecting whether a
confinement property is violated, so as to be able to eventually construct an
agent — a “spy” — which can discriminate among several agents and thus
reveal their identity. In particular, we are interested in a simple, single step
test agent able to achieve this aim.

A possible way to attack this problem we are currently considering is to
look at the set of possible traces and their probability. The test agent could
be executed at every step (chosen by the scheduler) resulting eventually in
different outcomes depending on the current intermediate store. The analysis
of the average outcome of the test agent over all traces utilising the information
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on their probability should give us the possibility to observe the different
behaviour of the “spy” agent. Thus, if two agents have different traces and/or
different probability distributions on the set of traces, it should be possible to
determine their identity.

Finally, further work will be devoted to develop our analysis so as to be able
to deal with recursion. A possible direction is the use of an abstract interpre-
tation approach and, in particular, of the probabilistic abstract interpretation
framework introduced in [5,7].
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