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We deal with filter convergence, obtaining proper extensions of classical results.
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1. Introduction

We investigate, in the context of modular spaces, the rates of approximation of a real-valued function f by means of a
family of operators of type

(Tuf)(s) = [ Kuls,t.F()dp,(t). weW, seG,

JHy

where W C R is a suitable directed set, (G, +) is a locally compact abelian Hausdorff topological group endowed with its

Borel g-algebra B, (Hy),, is a net of nonempty closed sets of 5 with G = |J Hw, W, is a regular measure defined on the Borel
weW

o-algebra B,, of H, and f belongs to the domain of the operators T,, for each w ¢ W.

In this paper we continue the study in [4,20,21] and consider a unified approach which includes a wide class of nonlinear
integral operators of sampling type, among which both discrete and Mellin convolution operators.

We follow the approach given in [4,9], by examining particular choices of the subspaces H,, and the measures .

Here, we deal with the rates of approximation of T,,f in the setting of modular spaces, which contain as particular cases L,
Orlicz and Musielak-Orlicz spaces (see also [2,8,18,19,28,33]). We extend some results obtained in [2,18] both to wider clas-
ses of operators and with respect to modular filter convergence. In the context of filter convergence, some computations of
rates of approximation were given in [26] for Korovkin-type theorems. A particular case of filter convergence is the statistical
convergence, introduced in [27,37].

As applications of our results, we consider both integral operators of Urysohn type (for instance Mellin convolution
operators), and discrete generalized sampling operators. These topics are useful in the reconstructions of signals, images
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and videos (see also [3,11-17,31,39,18,38] and their bibliography) and have also several applications in Computational
Analysis (see for instance [1,32,34]).

In the first case, for every w € W we choose H,, = G and pu,, = u, where p is a suitable regular measure defined on all the
Borel subsets of G. In the second case we take G = R or R" with the (N-dimensional) Lebesgue measure y, and H,, = 17 or
H,, = %Z” endowed with the counting measure ,,.

The paper is structured as follows. In Sections 2 and 3 we present filter convergence, structural assumptions, the modular
spaces and some related basic concepts. In Section 4 we prove our main result, while in Section 5 we give some applications
both to Urysohn-type integral operators and to generalized sampling series.

2. Preliminaries

Let G = (G, +) be a locally compact abelian Hausdorff topological group with neutral element 6. Let B be the g-algebra of
all Borel subsets of G, it : B — R be a positive o-finite regular measure, and ¢/ be a base of p-measurable symmetric neigh-
borhoods of 6. Let us denote by L°(G, B, u) = L°(G) the space of all real-valued y-measurable functions with identification up
to sets of measure u zero.

Let W be any abstract infinite set. A nonempty class F of subsets of W is called a filter of W iff )~ € 7, An B € F whenever
A,B € F and for each A€ F and B> A we get B € F.

As classical examples of filters we recall the filter F g, of all subsets of W whose complement is finite and, for W = N, the
filter F; associated with the statistical convergence, namely the class of all subsets of N whose asymptotic density is 1. The
asymptotic density d of a set A C N is defined as

n n
where the symbol # denotes the cardinality of the set in brackets (see also [27,37]).
A filter F of W is said to be free iff it contains F.q,. Observe that F; is a free filter of N.

A net x,,, w € W, in R is F-convergent to x € R (and we write x = (F)limyecwXw) iff
{weW:|x, —x|<e}eF foreverye>0.
Given two functions fi,f, : W — R and a filter F of W, we say that f;(w) = O(f,(w)) with respect to F iff there existsaD > 0
with
weW:ilw)| <Dla(w)|} € F.
From now on we suppose that W = (W, =) is a directed set, and F is a free filter of W. Some examples used frequently in

the literature are (W, >) = (N, =), or W C [a, wy[C R endowed with the usual order, where wy € R U {+oc} is a limit point of
W (see for instance [18, Section 3.2]). We also will consider the above set G endowed with the filter #, of all neighborhoods

of its neutral element 6. For each w € W, let H,, be a nonempty closed set of B, with |J Hw = G, and p,, be a regular measure
weW

defined on the Borel g-algebra B,, generated by the family {A n H,, : A is an open subset of G}. For every w € W let £,, be the
set of all measurable non-negative functions L,, : G x G — R, and suppose that L,, is F-homogeneous uniformly with respect to
w € W, namely there is a set F* € F with

Ly(o0+Ss,u+s)=Ly(o,u) forevery g,s,ueGandweF" (1)

(see also [18, Section 4.1]).

Let Ry be the set of all non-negative real numbers and ¥ be the class of all functions y : G x R} — Rj such that y(t,-) is
continuous, nondecreasing, y(t,0) = 0 and y(t,u) > 0, for every t € G and u > 0. We consider a family (y,,),, ¢ ¥, with the
property that there exist two constants E;,E; > 1 and measurable functions ¢, : G x G — R{,w € W, with

Uw(t,u) < Ep(t — S, Eau) + ¢, (t,s—t) forallueRy, s,teG, weF". (2)
We now give the fundamental properties of the types of kernels, which we will use throughout the paper.

Let K be the class of all families of functions K, : G x H, x R — R,w € W, satisfying the following conditions:

e K, (-,-,u) is measurable on G x H,, for each w e W and u € R;
e Ky(s,t,0) =0 forevery we W, se Gand t € Hy;
o for each w € W there are L, € £,, and y,, € ¥, with

Kw(s, t,u) — Ky (S, t, 0)] < Ly(s, )¢, (t,|u—v|) (3)

forallseG, teH,and u,v € R.
Let K = (Kw),, € K and T = (Tw),,,y be a net of operators defined by

(wa)(s) = Kw(s~, tvf(t))d:uw(t)> Se G> (4)

Hw
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where f € Dom T =, Dom T,,, and for every w € W, Dom T,, is the subset of LO(G) on which T,f is well-defined as a u-
measurable function of s € G.
For s e G,w e W and L, € Ly, set L,(s) := Ly(0,s), and suppose that

e I, is a y-measurable function with l,,(- — s) € L' (H,,) for every s € G;
e there are D* > 0 and F € F with

Ly(t —s)dp,,(t) <D (5)
Hu
for eachs € Gand w e F.

Let now E be the class of all functions ¢ : W — Ry such that (F) limyewé(w) = 0.

Definition 2.1. Let ¢ € E,K € K, I, be as before and 7, : G — R},w € W, be u-measurable functions. We say that K is
(F, &)-singular with respect to l,, and m,, iff

(2.1.1) for each U e U4,
/ Ly () (mw(s) + 1)du(s) = O(&(w))  with respect to F;
Jo\wu

(2.1.2) Ifrv(s) == Kw(s, t,u)du,(t) — 1|, s € G, then sup,_;r"(s) = O(¢(w)) with respect to F;
(2.1.3) there exist F* € F and D' > 0 such that for every s ¢ G and w € F* we get r*(s) < D’ and

/ Lo(s) du(s) (6)

We now give the concept of regularity for families of measures with respect to a filter (for similar notions existing in the
literature, see also [2,4,9]).
A family my, : G x B, — RJ, w € W, is said to be F-regular iff it is of the type

w(S,A) = / Yw(s t)du,(t), seGweW, A€ By,
A
where vy, : G x G — R is measurable and the following properties are fulfilled:

e there is a constant D; > 0 such that, if b}, (s) := my (s, Hy) for any w € W and s € G, then
{weW:0<b,(s) <D forall s e G} € F;
e putting
04 (A)i= [ 765 +0duS). WEW, teHy, A€ By,
A
there is a family of measures w,,,w € W, such that

{(weW: o (A) < wy(A) for all t € H, and A € B(G)} € F. (7)

Remark 2.2. (a) For some examples of regular families in the classical context see also [2,9].(b) Analogously as pointed out in
[2, Section 3], observe that, by virtue of our assumptions and taking into account (5), the family I,,, w € W, generates a family
of F-regular measures m,. Indeed, it is enough to set

Yw(s:t) = Lo(t — ),
w(s,A) = /l s)ydu,(t), se€eG weW, Aec By,

@, (A) = 0w(A) = /A lu(s)du(s), weW, teH,, AcB.

3. The modular spaces

We now give the basic properties of modular spaces (see also [18,28,33]).
A modular is a functional p : L°(G) — R, satisfying the following properties:
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e p(f) =0 < f =0 p-almost everywhere on G;

o p(=f) = p(f) for every f € L°(G);
o p(ouf 4+ 0ug) < p(f) + p(g) whenever f,g € L°(G) and o;; > 0, o > 0 with o + 0, = 1;
e p(F(t,-)) is a measurable function of t € G for every measurable function F: G x G — R{.

A modular p is said to be monotone iff p(f) < p(g) for each f,g € L°(G) with |f| < |g|.
A modular p is convex iff p(oif + %,8) < o p(f) + %2 p(g) for all f,g € L°(G) and whenever o4, &, > 0 with oy + 0o = 1.
A modular p is said to be quasi-convex iff there is an M > 0 with

plonf + 028) < M(oa p(Mf) + 02p(Mg)) 9)

for every choice of f,g € LO(G) and o, 0 = 0 with oy +o0p = 1.
The space

L’(G) = {f S(OF lim p(7f) = 0}

is the modular space associated with p, and the subspace
EP(G) :={f € L’(G) : p(/f) < +oo for all 4 > 0}
is the space of the finite elements of L”(G).
Note that, if p is a quasi-convex modular, then
L*(G) = {f € I°(G) : there is /. > 0 with p(Jf) < +oo}

(see also [18]). _

We now present a fundamental example of modular space. Let @ (resp. @) be the set of all continuous non-decreasing
(resp. convex) functions ¢ : Ry — Rj with ¢(0) = 0, ¢(u) > 0 for any u > 0 and ulim‘ @(u) = +oo.

For every ¢ € @ (resp. @), put o

p"0) = [ oWsdus). [ e L@, (10)
The functional p is a (resp. convex) modular on L°(G), satisfying the given properties of the modulars, and the subspace

L?(G) = {f € I%(G) : p?(if) < +oo for some /. > 0}

is the Orlicz space generated by the function ¢ (see also [33,35]).
A family (fw),, of functions in L?(G) is said to be F-modularly convergent to f € L*(G) iff there exists /. > 0 with

(F) limpli(fw - F)] = 0.

Observe that the Fs,-modular convergence is equivalent to usual modular convergence (see also [18]).

For w e W, let p,,,7,, be modulars on L°(Hy, Bw, it,,) = L°(Hy). We denote by L**(H,,), L™ (H,,) the spaces of all functions
f € L°(G), whose restriction fin, belongs to the modular spaces generated by p,,. 7, respectively.

An F-regular family (my,),, is F-compatible with the pair (p, p,,) with respect to a net (by),, in R iff there are two positive
real numbers N,Q and a set F; € F with

P< g(fw)dm&})(f)> < Q/pw(Ng(':s+'))dww(5)+bw (11)
Hw G

for every measurable function g: G x G — Ry and for each w € F;.

Some examples of compatibility, in the classical setting, can be found in [2,9].

Let T = (y,,), C ¥ be as in (2). The triple (p,,, ¥, %,),w € W, is said to be F-properly directed with respect to a net (cy),,
in R, iff for every 4 € (0,1) there are C; € (0,1) and F, € F with

Pu(Cith(s.8(-))) < 1, (A() + v Whenever we W, s€ G, 0<gelL’G). (12)

Let 7 be the class of all measurable functions 7: G — Ry, continuous at 0, with 7(0) = 0 and 1(t) > 0 for all t # 0. For a
fixed T € 7, let Lip(t) be the class of all functions f € L°(G) such that there are 2 > 0 and F € F with

sup(i,, (A1f(-) = f(- + O] = O(z(t)) (13)
weF

with respect to the filter H, of all neighborhoods of 6. R
A family of modulars #,,,w € W, is F-subbounded iff there are C > 1,m, : G — R{, F € F and a non-trivial linear sub-
space Y,, of [°(G), with

N(f(s+-) <n,(Cf)+mu(s) forallfeY, scGandwe F. (14)
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We say that f € L™ (H,,) F-uniformly with respect to w € W iff there are R* > 0 and v > 0 with
{weW:n,(vf)<R}eF. (15)
Let now ¢,,,w € W, be as in (2) and T € 7. We say that (¢,,),, satisfies property (x) iff there exist E3 >0,/ >0and F € F
with
02 &4, (-,5)) < E3 for each s € G and sup p,, (X' ¢, (+,5)) = O(T(s)) (16)

weF

with respect to the filter %, of all neighborhoods of 6.

4. The main result

We prove our main theorem about rates of approximation with respect to filter convergence for T,,f — f, where T,,,w € W,
are defined in (4), and f € Lip(t) for a fixed Tt € 7.

Theorem 4.1. Let p be a quasi-convex and monotone modular on L°(G), p,,, 11,,,w € W, be monotone modulars on L°(H,,), such
that the triple (p,,, ¥y, 1,,) is F-properly directed with respect to a net (cy),, in R, where c,, = O(&(w)) with respect to F.

Let Ky, Ly, ly satisfy the assumptions in Section 2. Let ¢ € E and t € T be fixed.

Assume that K is (F, ¢)-singular with respect to l,, and m, 1, is F-subbounded, f € L (G) nLip(t) NY,, and f € L'v(H,,) F-
uniformly with respect tow € W.

Suppose that the family of measures (my),, defined in (8) is F-compatible with the pair (p, p,,) with respect to a net (by),,, with
bw = 0(¢(w)) with respect to F, and let (¢,,),, satisfy property («) as in (16).

Finally, assume that there is a neighborhood U of 6 with U € U and
/ lw(s)T(s)du(s) = O(¢(w)) with respect to F. (17)
u

Then there is a constant ¢ > 0 with
p(c(Tuf —f)) = O(¢(w)) with respect to F.

Proof. We first estimate the quantity |T.f — f|. Let E1,E; be as in (2). We have:

[(Tuf)(s) =f(S) < [ [Kw(S, E.F(6)) — Ku(s, £, f(5))| d i, (t) '/ Ko (s, t.f(s)) dph, () = f(5)| =l + L. (18)

JHw
We now estimate the term I,. From (3), (1) and (2) withu = f(t), v = f(s),0 = 6,u = t — s and u = [f(t) — f(s)| respectively,
we get the existence of a set Fy € F such that

I < /sttwwtlf —£(5)1) it (0 /LWOt—swwttf — £(5)]) it (0
— [l = 9l F(6) — £5)]) ity (0)

Hw

<E L(t =Sy, (E = s, Ex [f (£) = f(s)))dp,, (6) + | Lu(t —5)¢, (¢, s —t)du,(t) foreachseGandweFy,. (19)

Hw Hw

From (18) and (19), by applying the modular p, for every ¢ > 0 and w € F, we have
1 1 '
ple(tu ) < 3p(3cE [ (et — B0 ~FONAR,(0) + 30 (3¢ [ e = byttt )

JHy
+%p<3c

1
[ Kol SO iy 0) =0 ) =501+ 41 (20)
We first estimate J,. If we choose
g(tvs):l//w(tfstZ Uc(t) 7f(5)|)7 t75€G7 WGW,
then, by the condition (11) of F-compatibility, there are two positive real constants N,Q and an element F; € F with
Ji :P<3cE1/H lw(t =) (t = E2 [f(£) = fF()]) dp, (¢ > Q/l $)Pw(BCEI N, (=5, E2 |f (-) — f(s +)I)) duu(s) + b
(21)

whenever w € Fo N Fy, where (b,),, is as in (11).
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Take Aasin(13)and put /g := E’—Z Without loss of generality, we can suppose that 4 € (0, 1). Since the triple (p,,, ¥y, #,,) IS
F-properly directed, in correspondence with 4y there exist C;, € (0,1), (cw),, in R and F, € F, satisfying (12).
Choose now c¢ > 0 small enough, so that 3cE; N < C,,. From (21) and monotonicity of p,, it follows that

Ji < Q/G lw(8) P (Crg¥y (=S, E2 [f () — f(s +-)[)) du(s) + bw (22)
for each w € Fo N F; NF,. From (22), (12) and (6), we obtain the existence of a set F3 € F, with

h<Q / () 1y (o B () — F(s + I )AL(s) + bu + G / L(s) du(s)

<Q / ha(5) 1 (A () = s+ ))dps) + b +D'cy @3)
for every w € ﬂ F;, where D' is as (6). Since f € Lip(t), there are D > 0, U € & and F4 € F with
j=0
Nw(Alf () = f(s+)) < DT(s) (24)

for each s € U and w € F4. Without loss of generality, we can choose U small enough, so that the condition (17) is satisfied.
Thus from (23) we get:
Lu(

11 <@ [ WO, 0 S+ dis) + @ [ WO~ +)jts) +ba-+D'w = QUL D)+ bu + D
4 (25)
for every w € (N F;. From (17) and (24) it follows that there are A" > 0 and F5 € 7 with
j=0
Ji= /U Lw($)my (AUF () = f(s + / hw( DA™ ¢(w) (26)
whenever w € (5] F;.

j=0
We now estimate the term J3. Proceeding analogously as in [2, p. 865], by monotonicity and F-subboundedness of ,,, and
since f € Yy, there exists Fg € F such that

ML) =5+ )) < u(22) + 512266 +0) < 91, 22) + 1, 2ACF) + 5 Tou(s)
<N,(2ACf) + u(s) forallseGand w e Fg, (27)

where C > 1 and &, is as in (14). Hence, from (27) and 2.1.1) we obtain the existence of a constant B > 0 and a set F; € F
with

J= [ o Ga0) ~fs+0)du(s) < n220h) [ L6 du) + [ 1o m(s)duts)
G\U G\U G\U

< B(1,,(24.Cf) + 1) &(w) (28)
forall we ﬁFj.
j=0
We now estimate the term J,. Again thanks to F-compatibility, we get
b= (3¢ [ 1t=0u(t - 0d1,(0)) < Q [ L6puBeNby(5)duis) + by (29)

for each w € Fo N Fy, where N,Q, (bw),,, Fo and F; are as in (22), and in (29) we have chosen
g(t,s) = ¢, (t,s—t), steG weW.

We choose ¢ > 0 small enough, so that 3cN < //, and use monotonicity of p,,. From (29), condition 2.1.1) of (.F, &)-singu-
larity and (17) we get

J2 < Q [ 1Pl ) diis) + by < QE: [ 1(5)dpts) + QB [ 1(5)(5)du(s) = 0(E(w)) (30)
G G\U
We now estimate the term J;. First of all, set
QOY(s):= | Ku(s,t,f(s))du,(t) —f(s), s€G weW.
Hu

For every w € W, if f(s) # 0, then

Q"(s) = £(5) (,% [ Kals.£.59) diy(0) - 1),

while, if f(s) = 0, then Q"(s) = 0, since K(-,-,0) = 0. Hence, for each s € G and w € W, we get
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Q¥ (s)] < (s) If(5)] 31)

where 1(s) is as in (2.1.2). From (31) it follows that

s =p(3e| [ KuCtfn 0 -50)) < p3er), wew.
As sup,.r(s) = O(¢(w)) with respect to F, there are P > 0 and Fg € F with
I3 < p(3cPfé(w)) (32)
for every w € Fs. By quasi-convexity of p, from (32) we get
Js <MpQBcMPf)é(w), weFs, 33)

where M is as in (9), namely a constant related to quasi-convexity of p.
Finally, from (20), (25), (26), (28), (30) and (33) it follows that

pc(Tuf =) < % {(DA"Q +BQn,,(24Cf) + BQ + Mp(3cMPf))Z(w) + by + D' cw} + O(E(w)) (34)

for every w € ﬂfzon. Observe that, since f € L (G), we get that p(3cMPf) < +oo for ¢ > 0 sufficiently small. Moreover, as
f € L' (H,) F-uniformly with respect to w € W, and since #,, is monotone and / < 5%, where v is as in (15), we obtain the
existence of a set Fg € W with

Nw(22CF) <, (vf) <K (35)
for all w € Fy, where R" is as in (15). Thus, from (34) and (35), we deduce the existence of a ¢ > 0 sufficiently small, so that
p(c(Tuf —f)) = 0(é(w))  with respect to F.
This concludes the proof. O

Remark 4.2.

(a) Observe that, in general, the hypothesis that |J H, = G is essential (see also [7, Remark 4]).

weW
(b) If G = R or G = H,, for every w € W, t(t) = |t|* with o > 0, then Lip(7) is the classical discrete Zygmund class (see also
[2,23]). If further W = [1, +o00[ and ¢(w) = w™?%, then we observe that condition (17) is linked to the existence of suit-
able moments of order o (see for instance [18, Example 3.9]).

5. Applications
5.1. Urysohn-type operators

As a first application, we deal with Mellin-type convolution operators (see also [12,13,20,21,30]).
Let (G, +) be the multiplicative group (R*,-), W c R* such that +oo is a limit point for W, M" be the class of all measur-
able subsets of R", and set
dt
uA) = 8 = [ G AeM wew. (36)
A
Let £ be the set of all families of measurable functions Ly:R" — Ry, w € W, such that L, € L' ().
Let (,,),, C ¥ be as in Section 2, and denote by K the set of all families of functions K, : R* x R — R,w € W, such that:

(i) ICV(.,u) is measurable for all u € R and w € W, and KTN(t,O) =0 forevery we W and t € R*;
(ii) for each w € W there are L,, C £ and y,, C ¥, with

K (£,u) — Ky (£, )] < Lu (O, (|t — v)) 37)

whenever w ¢ W,t € R" and u, v € R.

Let K = (I?;,)W € K and T,,, w € W, be a nonlinear Mellin-type operator defined as

~ oo [t dt .
(wa)(s):/ Ky g,f(t) T seR", (38)
0
where f ecDom T = () Dom T,,, and Dom T,, is the subset of L°(R*, B, ) on which T.f is well-defined. Set

weW

Lw(s.,t)zi;(g)., Kw(s,t.,u)zlzv;(g,u), SSteRY, ueR, weW.
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If K, Ly, W e W fulfil the above assumptions (i) and (ii), then Ky, Ly, w € W, satisfy the assumptions in Section 2.
Note that the L,'s are homogeneous and L,, (s) =Ly(1,s) for every w € W and s € R*. In this setting, after a change of vari-
ables, condition (5) reduces to

Yoo oo __ _
I Lw(5>g:/ Lo%<p, ser, weF, 59
0 s/t 0 t

for a suitable element F € 7 and a constant D* > 0, while, for ¢ € =, (F, ¢)-singularity of K = (I?;,)W (with respect to L,, and
7,,) is formulated as follows:

(i) for each 6 > 1, putting U; := [}, 4], we have
/ L (5) (T(s) + 1)ds O(&(w))  with respect to F;
&\Us

(ii) if ™ (s) := * K (L, u) 4 — 1 ‘,s € R*, then sup, g " (s) = O(¢(w)) with respect to F;
(iii) there are F* € F and D' > 0 with r%(s) < D’ and

+oo __
/ Lu(t) de <D (40)
0 t

whenever s ¢ R™ and w € F".

In particular, if I?;,(t, u) = LNW(t) -u, t € R",u € R, then we have

r(s) =

/OMLA\,;(t)?—l', seR'. (41)

Observe that, in this setting, Y, = L"(R"). Thus it is possible to give a version of Theorem 4.1 in the context of Mellin
operators.

Theorem 5.1. Let p, 1 be monotone modulars on L°(R"), assume that p is quasi- convex and that the triple (p, ., 17) is F-properly
directed with respect to a net (cw),, in R, where c,, = O(&(w)) with respect to F. Let K. Ly, be as above, and ¢ € E, 7 € T be fixed.
Suppose that K = (Ky),, is (F, &)-singular with respect to Ly, and 7, 1,,, is F-subbounded, and f € L°*"(R*) N Lip(t). Assume that
the family (mw),,, defined by

my(s,A) = / LNWG) dut), seRt, AeM' weW,
A
is F-compatible with the modular p with respect to the identically zero net. Moreover, suppose that

/HLW<.)C? € E*(R")

for every compact interval [a,b] c R*, and let (¢,,),, satisfy property (x) as in (16).
Let there exist 5y > 1 with

/ Lo (s)T(s)du(s) = O(¢(w)) with respect to F. (42)
RF\Us,

Then there is a constant ¢ > 0 with
p(c(Tuf —f)) = O(&(w)) with respect to F.

Observe that our theory, according to [2], includes also the case of multidimensional Mellin convolution operators, by set-
ting G = H,, = ((R")",-), where the operation - is defined as

S-t=(s1ty,...,Sntn), S=(S1,...,Sn), t=(t1,...,tn) € (R+)N~,

the neutral element of G is 0 = (1,...,1), the inverse element of (t;,...,ty) is (% ... %) and
de)"
WA) =, (A = (N) . Ae MV wew,
A Hj:ltj

where MV denotes the class of all measurable subsets of (R*)".
A particular Mellin-type kernel is the moment kernel, defined by

Muw(t) = wt¥yoq(t), te€ RT, we W,

where ¥, ;) is the characteristic function associated with (0, 1). For each w € W,t € R*,u € R, put
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Lu(t) = My(t),  Ku(t,u) = Ly(t) -u

Observe that for every § > 1 and w € W we get

oo __ 1 . 1/
/ Lw(t)?:w/ tvldt = 1; / Lw(t)%:w/ twfldt:(slw.
0 0 RT\Us 0

Now, fix arbitrarily 0 < o < 1, and choose 7(t) = |logt|*, &(w) = w=* Then, T € 7 and ¢ € E.
For every § > 1, putting v = —w logt, we get:

S dt w logé
Og/ Lo (8)T(t) 7w/ " log t|” %04/ (t) dtfw/ tv1(—logt)*dt = w™ / e’ v*dv
1/6

< w’“/ e vv*dv.
0

From (44) and (45) we obtain

— dt ~ o — dt N .
/ L,(t)— = O(w *)and Ly(t)T(t) — = 0O(w™*) for every ¢ > 1.
R*\Us t 1/6 t

Another Mellin-type kernel is the Mellin-Poisson-Cauchy kernel, defined by

o 21! w _ _
L t = ) K t7u :L t -u,
0 m(2p=3)" (1 + w2log’t)’ w(t: ) = Lu(®)

weW,p>2teR" ueR where(-1)!=1!=1and 2q+1)!=1-3.....(2q+ 1) for all g € N. It is known that

+oo dt
/ Lw(f)T:1 for every w e W
0

(see also [21]). Moreover, for each p > 2,6 > 1 and for w large enough (depending on ¢) we have:

‘1 dt +00 1 +o0 y +00 l -l
R*\U; (] +W2]0g t) t wlog s (1 +Yy ) wlogs (l +y2) w2log?s (1 +Z) 1 +W210g )

Moreover, for every § > 1,w € W and p we get:

) 1 )
ng/ %Hogﬂ“gzw/ %(—logt)“g-s—w/ %(logt)“g
1/ (1 +w2log t) t 1/ (1 +w2log’t) t 1 (1+w?log’t)

wlogé
72w/ vdv<2w/ 70%17/.
1+ 22

Since 0 < 2 < 1 and p > 2, from (49) and (50) it follows that

—~ 9
/ Ly (t) de =0(w™*) and w/ % |log t\“g =0(w™*) for any ¢ > 1.
B*\Us t 175 (1 4+ w2log’t) t

The Mellin-Gauss-Weierstrass kernel is defined by setting

i w w2 > T

Lo(t) = 7&6710g2t7 Ko(tu)=L,(t) - u, weW, teR" ueR.
We get

+oo dt
/ L"”(t)T: 1 forallweWw
0

(see also [20,21]). Moreover, for each 6 > 1 and for w large enough (depending on &), we have

dt 2 teo 2 wlogs
Ly(t) — e dv < eldv=-—"=e"2 .
/u;e*\uo w(®) t \/— wiogs \/_/”g” VT i

Furthermore, for every 6 > 1 we get:

) wlogo
0< w/ 102t | Jog ¢|” _w/ 1ot (_ Jog t)* +w/ o8t (og )" dtt ZHZW”‘/ e v*dv
J1/s

9 0

2
gz“*zw*“/ e vdv.
0

(43)

(44)

(45)

(47)

(48)

(49)

(50)

(51)

(52)

(55)
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From (54) and (55) we obtain
. . d
[ B =ow s andw [ e loge § = o) forany 5> 1. (56)
RH\Us 1/6

For other examples of kernels existing in the literature (for instance Féjer, Picard, box-spline, Abel-Poisson and Féjer-
Korovkin-type kernels), see also [2, Section 6].
Note that for every compact interval [a,b] Cc R* the function

b— 1\ dt
St /a Ly (E) ra
belongs to L/(R", 1), where p is as in (36), for every 1 < g < +co and w large enough (depending on q), where Ly, we W, isas
in (43), (47) or (52) (see also [21]).
Now, proceeding analogously as in [21, Example 2], it is possible to check that in general our results are proper extensions
of the corresponding classical ones.
More precisely, for a sake of simplicity let W = N, and take any free filter 7 # F, of N and any infinite set H, with
N\ H € F. Note that such a set H does exist, since N \ H € F. As examples, let 7 := F;, be the filter of all subsets of N having
asymptotic density 1 and let H be the set of prime numbers, the Fibonacci set or the set of all perfect squares. Observe that
these three sets have asymptotic density zero (see also [25]).
Foreacht >0 and n € N, set

L) = {L:(zt)~ ?f neN\H, (57)
e L,(t) ifneH,

where Z(t) is defined analogously as in (43), (47) or (52).

From (44) and (46) we get that the moment kernel satisfies (42) and all the (F,¢)-singularity conditions, with
ny =0,7(t) = | logt|* and é(w) = w%, where 0 < o < 1.

These properties are fulfilled also by the Mellin-Poisson-Cauchy kernel, thanks to (48) and (51), and by the Mellin-
Gauss—-Weierstrass kernel, by virtue of (53) and (56).

Furthermore (see also [29, Proposition 1]) observe that the family of functions m, : R* x M' — R{ defined by

my(s,A) = /Ln< ) ?, seRT, AeM! neN,
is F-regular and F-compatible with the modular p? defined as in (10) for every ¢ € ®, where @ is as in Section 2.

Set now ¢(u) = n(u) = u9, where u € R} and q > 1 is taken arbitrarily. For each n € N, define y,, : Rj — R by setting
v, (u) = u,u € R{. It is easy to check that the triple (p?, y,, p") is F-properly directed with ¢, = 0 for all n € N. So the hypoth-
eses of Theorem 5.1 are fulfilled, and hence the kernels L; satisfy our main results with respect to F-convergence.

We now see that the kernels L, n € N, do not fulfil the classical versions of theorems analogous to Theorem 5.1. Proceed-
ing as in [21], let S = [e~1/4,e!/4], f be a positive continuous functions defined on R*, with f(t) = 1 for every t € [e~3,e2] and
whose support is contained in [e~4,e"]. For every n € N and s > 0, put

s - [ n(5)roT

In [21] it is proved that
lirE(T;f)(s) =+4o0c foreveryses. (58)
ne

From (58) we deduce that lim,cy p? [A(T,f — f)ys] = +oo. Thus, we get that our results are proper extensions of the corre-
sponding classical ones.

5.2. Discrete operators

We now consider the case of generalized sampling-type operators, following the approach of [2,4,9]. Let W c R* be such
that +oo is a limit point for W. In the literature one takes often W = R* or W = N (see also [4,9,18]). We consider nonlinear
discrete operators of type

(Tuf)(s ZKW< (")), weW, seR, (59)

k=—o00

where f € Dom T. In this setting, let G = R endowed with the Lebesgue measure (i, and for w € W let H,, = 1 Z, B,, be the set
of all subsets of H,, 1, be the counting measure.

We assume that K = (K,,),, belongs to k., for a fixed family (y,,),, € ‘P, and identify L' (H,,) with I'.

Foreachwe W,t=kel7ands e R we get:
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/RLW(s,t)d,u(s):/ ( )ds /sttd,uw Zwa< )

k=—00

For each s € R and w € W, set [,,(s) := Ly (s, 0). The condition in (5) and those involving (F, ¢)-singularity, for ¢ € E, are
expressed as follows.

(i) There exist D* > 0 and F € F such that

Zl <——s> < D foreveryse Rand w e F.

k=—00

(ii) For every § > 0,
/ Lu(s)(mw(s) + 1)ds = O(¢(w)) with respect to F;
[s|=0

(iii)

SER, ueR\{O}

Z Kw(s — 1| = 0(¢(w)) with respect to F;

k=—o00

(iv) there exist F* ¢ F and D’ > 0 such that

and/Lw( )ds<D’ for eachs e Rand w € F*.

Let us take modulars 7 = 17, on L°(R) and 17, = 1z ON L° (L Z). We consider the case when 7 and #,,, w € W, generate an Orlicz
space, that is

N[ "ewenas. n-m.- S o(f(y)).

k=—

where ¢ € ®. Note that, if ¢ is convex, then it is possible to see that the space Y, in (14) contains the set of bounded real-
valued functions with compact support on R (see also [2]). So the theory in Sections 3 and 4 can be applied to the operators
in (59), dealing with the modulars p,, := p,;,1,, = 11

A particular case of operators (59) is given by the linear generalized sampling series, defined by

Zf() (ws—k), weW, scR, (60)

k=—00

where k € L' (R) is a kernel function, and f : R — R. These kinds of operators arise from the problem of reconstructing a real-
valued function f (signal) on the whole real line from its sampled values f(X) computed at the nodes X, where k varies in Z
and w > 0 is the rate of the sampling. Among the related literature, we quote for instance [18,22,38] and the bibliography
therein, and in particular [2,4,6,16,23,24]. In this setting we put

Kw(s,lv—;,f<v—’;>> = K(ws — k) -f(’\%), Lw(s,lv—;) = |K(ws — k)|. (61)

Note that I,,(s) = |k(ws)| for each s € R and w € W. Let us assume the classical hypotheses that

+00
Z K(u — k) = 1 uniformly with respect to u € R,

k=—00

+oo
sup > [K(u — k)| < +oo,

ueR k=

+o0
M, (k) ::/ lxc(s)||s|* ds < +oo,
where M, (k) is the moment of order o of x, and 0 < o < 1 (see also [23]). Under these assumptions it is possible to prove that
the condition in (17) and those of (F, ¢)-singularity are satisfied with respect to F = Fofin, ¢ (W) = w* and 1(t) = |t|* (see
also [2, Proposition 3], [5, Lemma 3.1], [18, Theorem 8.1], [36, Lemma 1]). Indeed, for every 6 >0 and w € W, taking
s =wt, we get
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wo
w/ [K(wt)||t|*dt = w™ / (s)||s|*ds < w~ / [Kc(s)||s|*ds = O(w™), w/ K(wt)|dt

+oo
7w5/ le(wt)| 8 dt < w *“/ re(wt)|t*dt = w 5/ 1re(s)| Is|* ds
) wa
-5

+oo
cwra [k srds=ow ), w [ ikwolde=wa* [ pewoistar

<w57“[ (Wb ()" dt = wo~ / (—wy)y*dy = O(w™). (62)

We now show that our results are proper extensions of the corresponding classical ones (see also [4, Section 6] and [9,
Corollary 4]).

Take W = N, and pick the modulars p, n,#,,n € N, generating the Lebesgue spaces L?, with p > 1. Let C°(R) be the space
of all real-valued functions, defined on the whole real line, having compact support and admitting derivatives of any order on
R. Pick f € C*(R) such that, for r large enough, f(t) > |t|™" for |t| > 1, and f(t) = 0 whenever |t| < 1. Let F and H be as in
Section 5.1.

Analogously as in [4], let (v,), be a sequence of positive real numbers with lim, », = 0 and B” be a set of positive Lebesgue
measure, independent of n, with 32" L, (5,%) > v, for any s € B". Let (¥,), be a sequence in R*, with lim, v, y, = +oc. For
eachneN,se Rand t € H,, put

Ly(s,t), ifneN\H,

Yala(s,t), if neH, (63)

Lis.0 = {

where L, is analogously as in (61), and set

(et 8)-564) )

In [4] it is shown that lim, (T,f)(s) = +oc for every s € B". Thus in this setting, taking into account (62), it is possible to see
that the hypotheses of Theorem 4.1 are satisfied, but the corresponding classical result, that is when F = F g, (see also [9,
Corollary 4]), does not hold.

Our general approach on discrete operators includes also the nonlinear multivariate sampling series, which have appli-
cations, for instance, in the reconstruction of images and videos (see also [2,10]).

In this case, G = (R, +), u is the N-dimensional Lebesgue measure, H,, = 1L Z", B, is the set of all subsets of Z" and p,, is
the counting measure. In this setting the operators (59) and (60) are expressed by

(Vuf)(s ZKW< (k>)7 weW, seRr,

kezN

Zf() kK(ws—K), weW, seRr"

kezN

w? *w

respectively, where k € L'(RY), s = (s1,...,5v), k= (ki,...,kn),ws = (Ws1,...,wsy) and X = ("—1 k—”)
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