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We investigate the order of approximation of a real-valued function f by means of suitable
families of sampling type operators, which include both discrete and integral ones. We give
a unified approach, by means of which it is possible to consider several kinds of classical
operators, for instance Urysohn integral operators, in particular Mellin-type convolution
integrals, and generalized sampling series.

We deal with filter convergence, obtaining proper extensions of classical results.
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1. Introduction

We investigate, in the context of modular spaces, the rates of approximation of a real-valued function f by means of a
family of operators of type
ðTwf ÞðsÞ ¼
Z

Hw

Kwðs; t; f ðtÞÞdlwðtÞ; w 2W; s 2 G;
where W � R is a suitable directed set, ðG;þÞ is a locally compact abelian Hausdorff topological group endowed with its
Borel r-algebra B, ðHwÞw is a net of nonempty closed sets of B with G ¼

S
w2W

Hw; lw is a regular measure defined on the Borel

r-algebra Bw of Hw and f belongs to the domain of the operators Tw for each w 2W .
In this paper we continue the study in [4,20,21] and consider a unified approach which includes a wide class of nonlinear

integral operators of sampling type, among which both discrete and Mellin convolution operators.
We follow the approach given in [4,9], by examining particular choices of the subspaces Hw and the measures lw.
Here, we deal with the rates of approximation of Twf in the setting of modular spaces, which contain as particular cases Lp,

Orlicz and Musielak-Orlicz spaces (see also [2,8,18,19,28,33]). We extend some results obtained in [2,18] both to wider clas-
ses of operators and with respect to modular filter convergence. In the context of filter convergence, some computations of
rates of approximation were given in [26] for Korovkin-type theorems. A particular case of filter convergence is the statistical
convergence, introduced in [27,37].

As applications of our results, we consider both integral operators of Urysohn type (for instance Mellin convolution
operators), and discrete generalized sampling operators. These topics are useful in the reconstructions of signals, images
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and videos (see also [3,11–17,31,39,18,38] and their bibliography) and have also several applications in Computational
Analysis (see for instance [1,32,34]).

In the first case, for every w 2W we choose Hw ¼ G and lw ¼ l, where l is a suitable regular measure defined on all the
Borel subsets of G. In the second case we take G ¼ R or RN with the (N-dimensional) Lebesgue measure l, and Hw ¼ 1

w Z or
Hw ¼ 1

w ZN endowed with the counting measure lw.
The paper is structured as follows. In Sections 2 and 3 we present filter convergence, structural assumptions, the modular

spaces and some related basic concepts. In Section 4 we prove our main result, while in Section 5 we give some applications
both to Urysohn-type integral operators and to generalized sampling series.

2. Preliminaries

Let G ¼ ðG;þÞ be a locally compact abelian Hausdorff topological group with neutral element h. Let B be the r-algebra of
all Borel subsets of G;l : B ! R be a positive r-finite regular measure, and U be a base of l-measurable symmetric neigh-
borhoods of h. Let us denote by L0ðG;B;lÞ ¼ L0ðGÞ the space of all real-valued l-measurable functions with identification up
to sets of measure l zero.

Let W be any abstract infinite set. A nonempty class F of subsets of W is called a filter of W iff ;: 2 F , A \ B 2 F whenever
A;B 2 F and for each A 2 F and B � A we get B 2 F .

As classical examples of filters we recall the filter F cofin of all subsets of W whose complement is finite and, for W ¼ N, the
filter F s associated with the statistical convergence, namely the class of all subsets of N whose asymptotic density is 1. The
asymptotic density d of a set A � N is defined as
dðAÞ :¼ lim
n

]ðA \ f1; . . . ;ngÞ
n

;

where the symbol ] denotes the cardinality of the set in brackets (see also [27,37]).
A filter F of W is said to be free iff it contains F cofin. Observe that F s is a free filter of N.
A net xw;w 2W , in R is F -convergent to x 2 R (and we write x ¼ ðFÞlimw2W xw) iff
fw 2W : jxw � xj 6 eg 2 F for every e > 0:
Given two functions f1; f2 : W ! R and a filter F of W, we say that f1ðwÞ ¼ Oðf2ðwÞÞwith respect to F iff there exists a D > 0
with
fw 2W : jf1ðwÞj 6 D jf2ðwÞjg 2 F :
From now on we suppose that W ¼ ðW;�Þ is a directed set, and F is a free filter of W. Some examples used frequently in
the literature are ðW;�Þ ¼ ðN;PÞ, or W � ½a;w0½� R endowed with the usual order, where w0 2 R [ fþ1g is a limit point of
W (see for instance [18, Section 3.2]). We also will consider the above set G endowed with the filter Hh of all neighborhoods
of its neutral element h. For each w 2W , let Hw be a nonempty closed set of B, with

S
w2W

Hw ¼ G, and lw be a regular measure

defined on the Borel r-algebra Bw generated by the family fA \ Hw : A is an open subset of Gg. For every w 2W let Lw be the
set of all measurable non-negative functions Lw : G� G ! R, and suppose that Lw is F -homogeneous uniformly with respect to
w 2W , namely there is a set F� 2 F with
Lwðrþ s;uþ sÞ ¼ Lwðr;uÞ for every r; s; u 2 G and w 2 F� ð1Þ
(see also [18, Section 4.1]).
Let Rþ0 be the set of all non-negative real numbers and W be the class of all functions w : G� Rþ0 ! Rþ0 such that wðt; �Þ is

continuous, nondecreasing, wðt;0Þ ¼ 0 and wðt;uÞ > 0, for every t 2 G and u > 0. We consider a family ðwwÞw � W, with the
property that there exist two constants E1; E2 P 1 and measurable functions /w : G� G ! Rþ0 ;w 2W , with
wwðt;uÞ 6 E1wwðt � s; E2 uÞ þ /wðt; s� tÞ for all u 2 Rþ0 ; s; t 2 G; w 2 F�: ð2Þ
We now give the fundamental properties of the types of kernels, which we will use throughout the paper.
Let K be the class of all families of functions Kw : G� Hw � R ! R;w 2W , satisfying the following conditions:

	 Kw ð�; �;uÞ is measurable on G� Hw for each w 2W and u 2 R;
	 Kwðs; t;0Þ ¼ 0 for every w 2W; s 2 G and t 2 Hw;
	 for each w 2W there are Lw 2 Lw and ww 2 W, with
jKwðs; t;uÞ � Kw ðs; t; vÞj 6 Lwðs; tÞww ðt; ju� v jÞ ð3Þ
for all s 2 G; t 2 Hw and u;v 2 R.

Let K ¼ ðKwÞw 2 K and T ¼ ðTwÞw2W be a net of operators defined by
ðTwf ÞðsÞ ¼
Z

Hw

Kwðs; t; f ðtÞÞdlwðtÞ; s 2 G; ð4Þ
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where f 2 Dom T ¼
T

w2W Dom Tw, and for every w 2W , Dom Tw is the subset of L0ðGÞ on which Twf is well-defined as a l-
measurable function of s 2 G.

For s 2 G;w 2W and Lw 2 Lw, set lwðsÞ :¼ Lwðh; sÞ, and suppose that

	 lw is a l-measurable function with lwð� � sÞ 2 L1ðHwÞ for every s 2 G;
	 there are D� > 0 and F 2 F with
Z

Hw

lwðt � sÞdlwðtÞ 6 D� ð5Þ
for each s 2 G and w 2 F.

Let now N be the class of all functions n : W ! Rþ0 such that ðFÞ limw2WnðwÞ ¼ 0.

Definition 2.1. Let n 2 N;K 2 K; lw be as before and pw : G ! Rþ0 ;w 2W , be l-measurable functions. We say that K is
ðF ; nÞ-singular with respect to lw and pw iff

(2.1.1) for each U 2 U ,
Z
GnU

lwðsÞ ðpwðsÞ þ 1ÞdlðsÞ ¼ OðnðwÞÞ with respect to F ;
(2.1.2) If rwðsÞ :¼ supu2Rnf0g
1
u

R
Hw

Kwðs; t;uÞdlwðtÞ � 1
��� ���; s 2 G, then sups2GrwðsÞ ¼ OðnðwÞÞ with respect to F ;

(2.1.3) there exist F� 2 F and D0 > 0 such that for every s 2 G and w 2 F� we get rwðsÞ 6 D0 and
Z
G

lwðsÞdlðsÞ 6 D0: ð6Þ
We now give the concept of regularity for families of measures with respect to a filter (for similar notions existing in the
literature, see also [2,4,9]).

A family mw : G� Bw ! Rþ0 , w 2W , is said to be F -regular iff it is of the type
mwðs;AÞ ¼
Z

A
cwðs; tÞdlwðtÞ; s 2 G; w 2W; A 2 Bw;
where cw : G� G ! R is measurable and the following properties are fulfilled:

	 there is a constant D1 > 0 such that, if b�wðsÞ :¼ mwðs;HwÞ for any w 2W and s 2 G, then
w 2W : 0 < b�wðsÞ 6 D1 for all s 2 G
� �

2 F ;
	 putting
xt
wðAÞ :¼

Z
A
cwðt; sþ tÞdlðsÞ; w 2W; t 2 Hw; A 2 Bw;
there is a family of measures xw;w 2W , such that
fw 2W : xt
wðAÞ 6 xwðAÞ for all t 2 Hw and A 2 BðGÞg 2 F : ð7Þ
Remark 2.2. (a) For some examples of regular families in the classical context see also [2,9].(b) Analogously as pointed out in
[2, Section 3], observe that, by virtue of our assumptions and taking into account (5), the family lw;w 2W , generates a family
of F -regular measures mw. Indeed, it is enough to set
cwðs; tÞ ¼ lwðt � sÞ;

mwðs;AÞ ¼
Z

A
lwðt � sÞdlwðtÞ; s 2 G; w 2W; A 2 Bw;

xt
wðAÞ ¼ xwðAÞ ¼

Z
A

lwðsÞdlðsÞ; w 2W; t 2 Hw; A 2 B:

ð8Þ
3. The modular spaces

We now give the basic properties of modular spaces (see also [18,28,33]).
A modular is a functional q : L0ðGÞ ! fRþ0 , satisfying the following properties:
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	 qðf Þ ¼ 0 () f ¼ 0 l-almost everywhere on G;
	 qð�f Þ ¼ qðf Þ for every f 2 L0ðGÞ;
	 qða1f þ a2gÞ 6 qðf Þ þ qðgÞ whenever f ; g 2 L0ðGÞ and a1 P 0; a2 P 0 with a1 þ a2 ¼ 1;
	 qðFðt; �ÞÞ is a measurable function of t 2 G for every measurable function F : G� G ! Rþ0 .

A modular q is said to be monotone iff qðf Þ 6 qðgÞ for each f ; g 2 L0ðGÞ with jf j 6 jgj.
A modular q is convex iff qða1f þ a2gÞ 6 a1qðf Þ þ a2qðgÞ for all f ; g 2 L0ðGÞ and whenever a1;a2 P 0 with a1 þ a2 ¼ 1.
A modular q is said to be quasi-convex iff there is an M > 0 with
qða1f þ a2gÞ 6 Mða1qðM f Þ þ a2qðM gÞÞ ð9Þ
for every choice of f ; g 2 L0ðGÞ and a1;a2 P 0 with a1 þ a2 ¼ 1.
The space
LqðGÞ :¼ f 2 L0ðGÞ : lim
k!0þ

qðkf Þ ¼ 0
� �
is the modular space associated with q, and the subspace
EqðGÞ :¼ ff 2 LqðGÞ : qðkf Þ < þ1 for all k > 0g
is the space of the finite elements of LqðGÞ.
Note that, if q is a quasi-convex modular, then
LqðGÞ ¼ ff 2 L0ðGÞ : there is k > 0 with qðkf Þ < þ1g
(see also [18]).
We now present a fundamental example of modular space. Let U (resp. eUÞ be the set of all continuous non-decreasing

(resp. convex) functions u : Rþ0 ! Rþ0 with uð0Þ ¼ 0;uðuÞ > 0 for any u > 0 and lim
u!þ1

uðuÞ ¼ þ1.
For every u 2 U (resp. eUÞ, put
quðf Þ ¼
Z

G
uðjf ðsÞjÞdlðsÞ; f 2 L0ðGÞ: ð10Þ
The functional qu is a (resp. convex) modular on L0ðGÞ, satisfying the given properties of the modulars, and the subspace
LuðGÞ ¼ ff 2 L0ðGÞ : quðkf Þ < þ1 for some k > 0g
is the Orlicz space generated by the function u (see also [33,35]).
A family ðfwÞw of functions in LqðGÞ is said to be F -modularly convergent to f 2 LqðGÞ iff there exists k > 0 with
ðFÞ lim
w2W

q½kðfw � f Þ
 ¼ 0:
Observe that the F cofin-modular convergence is equivalent to usual modular convergence (see also [18]).
For w 2W , let qw;gw be modulars on L0ðHw;Bw;lwÞ ¼ L0ðHwÞ. We denote by Lqw ðHwÞ; Lgw ðHwÞ the spaces of all functions

f 2 L0ðGÞ, whose restriction fjHw belongs to the modular spaces generated by qw;gw respectively.
An F -regular family ðmwÞw is F -compatible with the pair (q;qw) with respect to a net ðbwÞw in R iff there are two positive

real numbers N;Q and a set F1 2 F with
q
Z

Hw

gðt; �Þdmð�Þw ðtÞ
� �

6 Q
Z

G
qwðN gð�; sþ �ÞÞdxwðsÞ þ bw ð11Þ
for every measurable function g : G� G ! Rþ0 and for each w 2 F1.
Some examples of compatibility, in the classical setting, can be found in [2,9].
Let C ¼ ðwwÞw � W be as in (2). The triple ðqw;ww;gwÞ;w 2W , is said to be F -properly directed with respect to a net ðcwÞw

in R, iff for every k 2 ð0;1Þ there are Ck 2 ð0;1Þ and F2 2 F with
qwðCkwwðs; gð�ÞÞÞ 6 gwðkgð�ÞÞ þ cw whenever w 2W; s 2 G; 0 6 g 2 L0ðGÞ: ð12Þ
Let T be the class of all measurable functions s : G ! Rþ0 , continuous at h, with sðhÞ ¼ 0 and sðtÞ > 0 for all t – h. For a
fixed s 2 T , let LipðsÞ be the class of all functions f 2 L0ðGÞ such that there are k > 0 and eF 2 F with
sup
w2eF ½gwðk jf ð�Þ � f ð� þ tÞjÞ
 ¼ OðsðtÞÞ ð13Þ
with respect to the filter Hh of all neighborhoods of h.
A family of modulars gw;w 2W , is F -subbounded iff there are C P 1;pw : G ! Rþ0 , bF 2 F and a non-trivial linear sub-

space Yg of L0ðGÞ, with
gwðf ðsþ �ÞÞ 6 gwðC f Þ þ pwðsÞ for all f 2 Yg; s 2 G and w 2 bF : ð14Þ
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We say that f 2 Lgw ðHwÞ F -uniformly with respect to w 2W iff there are R� > 0 and m > 0 with
fw 2W : gwðm f Þ 6 R�g 2 F : ð15Þ
Let now /w;w 2W , be as in (2) and s 2 T . We say that ð/wÞw satisfies property ð�Þ iff there exist E3 > 0, k0 > 0 and F 2 F
with
qwðk
0/wð�; sÞÞ 6 E3 for each s 2 G and sup

w2F
qwðk

0/wð�; sÞÞ ¼ OðsðsÞÞ ð16Þ
with respect to the filter Hh of all neighborhoods of h.

4. The main result

We prove our main theorem about rates of approximation with respect to filter convergence for Twf � f , where Tw;w 2W ,
are defined in (4), and f 2 LipðsÞ for a fixed s 2 T .

Theorem 4.1. Let q be a quasi-convex and monotone modular on L0ðGÞ, qw;gw;w 2W, be monotone modulars on L0ðHwÞ, such
that the triple ðqw;ww;gwÞ is F -properly directed with respect to a net ðcwÞw in R, where cw ¼ OðnðwÞÞ with respect to F .

Let Kw; Lw; lw satisfy the assumptions in Section 2. Let n 2 N and s 2 T be fixed.

Assume that K is ðF ; nÞ-singular with respect to lw and pw, gw is F -subbounded, f 2 LqðGÞ \ LipðsÞ \ Yg, and f 2 Lgw ðHwÞ F -
uniformly with respect to w 2W.

Suppose that the family of measures ðmwÞw defined in (8) is F -compatible with the pair (q;qw) with respect to a net ðbwÞw, with
bw ¼ OðnðwÞÞ with respect to F , and let ð/wÞw satisfy property ð�Þ as in (16).

Finally, assume that there is a neighborhood U of h with U 2 U and
Z
U

lwðsÞsðsÞdlðsÞ ¼ OðnðwÞÞ with respect to F : ð17Þ
Then there is a constant c > 0 with
qðcðTwf � f ÞÞ ¼ OðnðwÞÞ with respect to F :
Proof. We first estimate the quantity jTwf � f j. Let E1; E2 be as in (2). We have:
jðTwf ÞðsÞ � f ðsÞj 6
Z

Hw

jKwðs; t; f ðtÞÞ � Kwðs; t; f ðsÞÞjdlwðtÞ þ
Z

Hw

Kwðs; t; f ðsÞÞdlwðtÞ � f ðsÞ
���� ���� ¼ I1 þ I2: ð18Þ
We now estimate the term I1. From (3), (1) and (2) with u ¼ f ðtÞ;v ¼ f ðsÞ;r ¼ h;u ¼ t � s and u ¼ jf ðtÞ � f ðsÞj respectively,
we get the existence of a set F0 2 F such that
I1 6

Z
Hw

Lwðs; tÞwwðt; jf ðtÞ � f ðsÞjÞdlwðtÞ ¼
Z

Hw

Lwðh; t � sÞwwðt; jf ðtÞ � f ðsÞjÞdlwðtÞ

¼
Z

Hw

lwðt � sÞwwðt; jf ðtÞ � f ðsÞjÞdlwðtÞ

6 E1

Z
Hw

lwðt � sÞwwðt � s; E2 jf ðtÞ � f ðsÞjÞdlwðtÞ þ
Z

Hw

lwðt � sÞ/wðt; s� tÞdlwðtÞ for each s 2 G and w 2 F0: ð19Þ
From (18) and (19), by applying the modular q, for every c > 0 and w 2 F0 we have
qðcðTwf � f ÞÞ 6 1
3
q 3c E1

Z
Hw

lwðt � �Þwwðt � �; E2 jf ðtÞ � f ð�ÞjÞdlwðtÞ
� �

þ 1
3
q 3c

Z
Hw

lwðt � �Þ/wðt; � � tÞdlwðtÞ
� �

þ 1
3
q 3c

Z
Hw

Kwð�; t; f ð�ÞÞdlwðtÞ � f ð�Þ
���� ����� �

¼ 1
3
ðJ1 þ J2 þ J3Þ: ð20Þ
We first estimate J1. If we choose
gðt; sÞ ¼ wwðt � s; E2 jf ðtÞ � f ðsÞjÞ; t; s 2 G; w 2W;
then, by the condition (11) of F -compatibility, there are two positive real constants N;Q and an element F1 2 F with
J1 ¼ q 3cE1

Z
Hw

lwðt � �Þwwðt � �; E2 jf ðtÞ � f ð�ÞjÞdlwðtÞ
� �

6 Q
Z

G
lwðsÞqwð3c E1 N wwð�s; E2 jf ð�Þ � f ðsþ �ÞjÞÞdlðsÞ þ bw

ð21Þ
whenever w 2 F0 \ F1, where ðbwÞw is as in (11).
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Take k as in (13) and put k0 :¼ k
E2

. Without loss of generality, we can suppose that k0 2 ð0;1Þ. Since the triple ðqw;ww;gwÞ is
F -properly directed, in correspondence with k0 there exist Ck0 2 ð0;1Þ, ðcwÞw in R and F2 2 F , satisfying (12).

Choose now c > 0 small enough, so that 3c E1 N 6 Ck0 . From (21) and monotonicity of qw it follows that
J1 6 Q
Z

G
lwðsÞqwðCk0 wwð�s; E2 jf ð�Þ � f ðsþ �ÞjÞÞdlðsÞ þ bw ð22Þ
for each w 2 F0 \ F1 \ F2. From (22), (12) and (6), we obtain the existence of a set F3 2 F , withZ Z

J1 6 Q

G
lwðsÞgwðk0 E2 jf ð�Þ � f ðsþ �ÞjÞdlðsÞ þ bw þ cw

G
lwðsÞdlðsÞ

6 Q
Z

G
lwðsÞgw ðkjf ð�Þ � f ðsþ �ÞjÞdlðsÞ þ bw þ D0 cw ð23Þ
for every w 2
T3
j¼0

Fj, where D0 is as (6). Since f 2 LipðsÞ, there are D > 0, U 2 U and F4 2 F with
gwðkjf ð�Þ � f ðsþ �ÞjÞ 6 DsðsÞ ð24Þ
for each s 2 U and w 2 F4. Without loss of generality, we can choose U small enough, so that the condition (17) is satisfied.
Thus from (23) we get:
J1 6 Q
Z

U
lwðsÞgwðkjf ð�Þ � f ðsþ �ÞjÞdlðsÞ þ Q

Z
GnU

lwðsÞgwðkjf ð�Þ � f ðsþ �ÞjÞdlðsÞ þ bw þ D0 cw ¼ QðJ1
1 þ J2

1Þ þ bw þ D0cw

ð25Þ
4

for every w 2
T
j¼0

Fj. From (17) and (24) it follows that there are A� > 0 and F5 2 F withZ Z

J1

1 ¼
U

lwðsÞgwðkjf ð�Þ � f ðsþ �ÞjÞdlðsÞ 6 D
U

lwðsÞsðsÞdlðsÞ 6 DA� nðwÞ ð26Þ
whenever w 2
T5
j¼0

Fj.

We now estimate the term J2
1. Proceeding analogously as in [2, p. 865], by monotonicity and F -subboundedness of gw, and

since f 2 Yg, there exists F6 2 F such that
gwðkjf ð�Þ � f ðsþ �ÞjÞ 6 1
2
gwð2k f Þ þ 1

2
gwð2kðf ðsþ �ÞÞÞ 6 1

2
gwð2k f Þ þ 1

2
gwð2kC f Þ þ 1

2
pwðsÞ

6 gwð2kC f Þ þ pwðsÞ for all s 2 G and w 2 F6; ð27Þ
where C P 1 and pw is as in (14). Hence, from (27) and 2.1.1) we obtain the existence of a constant B > 0 and a set F7 2 F
with
J2
1 ¼

Z
GnU

lwðsÞgwðkðf ð�Þ � f ðsþ �ÞÞÞdlðsÞ 6 gwð2kCf Þ
Z

GnU
lwðsÞdlðsÞ þ

Z
GnU

lwðsÞpwðsÞdlðsÞ

6 B ðgwð2kCf Þ þ 1ÞnðwÞ ð28Þ
for all w 2
T7
j¼0

Fj.

We now estimate the term J2. Again thanks to F -compatibility, we get
J2 ¼ q 3c
Z

Hw

lwðt � �Þ/wðt; � � tÞdlwðtÞ
� �

6 Q
Z

G
lwðsÞqwð3c N /wð�; sÞÞdlðsÞ þ bw ð29Þ
for each w 2 F0 \ F1, where N;Q , ðbwÞw; F0 and F1 are as in (22), and in (29) we have chosen
gðt; sÞ ¼ /wðt; s� tÞ; s; t 2 G; w 2W:
We choose c > 0 small enough, so that 3c N 6 k0, and use monotonicity of qw. From (29), condition 2.1.1) of ðF ; nÞ-singu-
larity and (17) we get
J2 6 Q
Z

G
lwðsÞqwðk

0/wð�; sÞÞdlðsÞ þ bw 6 Q E3

Z
GnU

lwðsÞdlðsÞ þ Q B0
Z

U
lwðsÞsðsÞdlðsÞ ¼ OðnðwÞÞ: ð30Þ
We now estimate the term J3. First of all, set
XwðsÞ :¼
Z

Hw

Kwðs; t; f ðsÞÞdlwðtÞ � f ðsÞ; s 2 G; w 2W:
For every w 2W , if f ðsÞ – 0, then
XwðsÞ ¼ f ðsÞ 1
f ðsÞ

Z
Hw

Kwðs; t; f ðsÞÞdlwðtÞ � 1
� �

;

while, if f ðsÞ ¼ 0, then XwðsÞ ¼ 0, since Kð�; �;0Þ ¼ 0. Hence, for each s 2 G and w 2W , we get
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jXwðsÞj 6 rwðsÞ jf ðsÞj; ð31Þ
where rwðsÞ is as in (2.1.2). From (31) it follows that
J3 ¼ q 3c
Z

Hw

Kwð�; t; f ð�ÞÞdlwðtÞ � f ð�Þ
���� ����� �

6 qð3c rw f Þ; w 2W:
As sups2GrwðsÞ ¼ OðnðwÞÞ with respect to F , there are P > 0 and F8 2 F with
J3 6 qð3c P f nðwÞÞ ð32Þ
for every w 2 F8. By quasi-convexity of q, from (32) we get
J3 6 Mqð3c M P f ÞnðwÞ; w 2 F8; ð33Þ
where M is as in (9), namely a constant related to quasi-convexity of q.
Finally, from (20), (25), (26), (28), (30) and (33) it follows that
qðcðTwf � f ÞÞ 6 1
3

DA�Q þ BQ gwð2kCf Þ þ BQ þMqð3c M P f Þð ÞnðwÞ þ bw þ D0 cw
� �

þ OðnðwÞÞ ð34Þ
for every w 2
T8

j¼0Fj. Observe that, since f 2 LqðGÞ, we get that qð3c M P f Þ < þ1 for c > 0 sufficiently small. Moreover, as
f 2 Lgw ðHwÞ F -uniformly with respect to w 2W , and since gw is monotone and k 6 m

2 C, where m is as in (15), we obtain the
existence of a set F9 2W with
gwð2kCf Þ 6 gwðm f Þ 6 R� ð35Þ
for all w 2 F9, where R� is as in (15). Thus, from (34) and (35), we deduce the existence of a c > 0 sufficiently small, so that
qðcðTwf � f ÞÞ ¼ OðnðwÞÞ with respect to F :
This concludes the proof. h
Remark 4.2.

(a) Observe that, in general, the hypothesis that
S

w2W
Hw ¼ G is essential (see also [7, Remark 4]).

(b) If G ¼ R or G ¼ Hw for every w 2W; sðtÞ ¼ jtja with a > 0, then LipðsÞ is the classical discrete Zygmund class (see also
[2,23]). If further W ¼ ½1;þ1½ and nðwÞ ¼ w�a, then we observe that condition (17) is linked to the existence of suit-
able moments of order a (see for instance [18, Example 3.9]).

5. Applications

5.1. Urysohn-type operators

As a first application, we deal with Mellin-type convolution operators (see also [12,13,20,21,30]).
Let ðG;þÞ be the multiplicative group ðRþ; �Þ;W � Rþ such that þ1 is a limit point for W;M1 be the class of all measur-

able subsets of Rþ, and set
lðAÞ ¼ lwðAÞ ¼
Z

A

dt
t
; A 2 M1; w 2W: ð36Þ
Let eL be the set of all families of measurable functions fLw : Rþ ! Rþ0 ;w 2W , such that fLw 2 L1ðlÞ.
Let ðwwÞw � W be as in Section 2, and denote by eK the set of all families of functions fKw : Rþ � R ! R;w 2W , such that:

(i) fKwð�;uÞ is measurable for all u 2 R and w 2W , and fKwðt;0Þ ¼ 0 for every w 2W and t 2 Rþ;
(ii) for each w 2W there are fLw � eL and ww � W, with
jfKwðt;uÞ � fKwðt; vÞj 6 fLwðtÞwwðju� vjÞ ð37Þ
whenever w 2W; t 2 Rþ and u;v 2 R.

Let eK ¼ ðfKwÞw 2 eK and fTw , w 2W , be a nonlinear Mellin-type operator defined as
ðfTw f ÞðsÞ ¼
Z þ1

0

fKw
t
s
; f ðtÞ

� �
dt
t
; s 2 Rþ; ð38Þ
where f 2Dom eT ¼ T
w2W

Dom fTw , and Dom fTw is the subset of L0ðRþ;B;lÞ on which fTw f is well-defined. Set� � � �

Lwðs; tÞ ¼ fLw

t
s
; Kwðs; t; uÞ ¼ fKw

t
s
; u ; s; t 2 Rþ; u 2 R; w 2W:
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If fKw ;fLw ;w 2W fulfil the above assumptions (i) and (ii), then Kw; Lw;w 2W , satisfy the assumptions in Section 2.
Note that the fLw ’s are homogeneous and fLwðsÞ ¼ Lwð1; sÞ for every w 2W and s 2 Rþ. In this setting, after a change of vari-

ables, condition (5) reduces to
Z þ1

0

fLw
t
s

� �
dt
t
¼
Z þ1

0

fLwðtÞ
dt
t
6 D�; s 2 Rþ; w 2 F; ð39Þ
for a suitable element F 2 F and a constant D� > 0, while, for n 2 N; ðF ; nÞ-singularity of eK ¼ ðfKwÞw (with respect to fLw and
pw) is formulated as follows:

(i) for each d > 1, putting Ud :¼ 1
d ; d
	 


, we have
Z
RþnUd

fLwðsÞ ðpwðsÞ þ 1Þds
s
¼ OðnðwÞÞ with respect to F ;
(ii) if frwðsÞ :¼ supu2Rnf0g
1
u

Rþ1
0

fKw
t
s ;u
� �

dt
t � 1

��� ���; s 2 Rþ, then sups2RþfrwðsÞ ¼ OðnðwÞÞ with respect to F ;

(iii) there are F� 2 F and D0 > 0 with frwðsÞ 6 D0 and
Z þ1

0

fLwðtÞ
dt
t
6 D0 ð40Þ
whenever s 2 Rþ and w 2 F�.

In particular, if fKwðt;uÞ ¼ fLwðtÞ � u, t 2 Rþ;u 2 R, then we have
frwðsÞ ¼
Z þ1

0

fLwðtÞ
dt
t
� 1

���� ����; s 2 Rþ: ð41Þ
Observe that, in this setting, Yg ¼ LgðRþÞ. Thus it is possible to give a version of Theorem 4.1 in the context of Mellin
operators.

Theorem 5.1. Let q;g be monotone modulars on L0ðRþÞ, assume that q is quasi-convex and that the triple ðq;ww;gÞ is F -properly
directed with respect to a net ðcwÞw in R, where cw ¼ OðnðwÞÞ with respect to F . Let fKw ;fLw be as above, and n 2 N; s 2 T be fixed.
Suppose that eK ¼ ðfKwÞw is ðF ; nÞ-singular with respect to fLw and pw, gw is F -subbounded, and f 2 LqþgðRþÞ \ LipðsÞ. Assume that
the family ðmwÞw, defined by
mwðs;AÞ ¼
Z

A

fLw
t
s

� �
dlðtÞ; s 2 Rþ; A 2 M1; w 2W;
is F -compatible with the modular q with respect to the identically zero net. Moreover, suppose that
Z b

a

fLw
t
�

� �
dt
t
2 EqðRþÞ
for every compact interval ½a; b
 � Rþ, and let ð/wÞw satisfy property ð�Þ as in (16).
Let there exist d0 > 1 with
Z

RþnUd0

fLwðsÞsðsÞdlðsÞ ¼ OðnðwÞÞ with respect to F : ð42Þ
Then there is a constant c > 0 with
qðcðfTw f � f ÞÞ ¼ OðnðwÞÞ with respect to F :
Observe that our theory, according to [2], includes also the case of multidimensional Mellin convolution operators, by set-
ting G ¼ Hw ¼ ððRþÞN; �Þ, where the operation � is defined as
s � t ¼ ðs1 t1; . . . ; sN tNÞ; s ¼ ðs1; . . . ; sNÞ; t ¼ ðt1; . . . ; tNÞ 2 ðRþÞN;
the neutral element of G is h ¼ ð1; . . . ;1Þ, the inverse element of ðt1; . . . ; tNÞ is 1
t1
; . . . ; 1

tN


 �
, and
lðAÞ ¼ lwðAÞ ¼
Z

A

ðdtÞNQN
j¼1tj

; A 2MN; w 2W;
where MN denotes the class of all measurable subsets of ðRþÞN .
A particular Mellin-type kernel is the moment kernel, defined by
MwðtÞ ¼ wtwvð0;1ÞðtÞ; t 2 Rþ; w 2W;
where vð0;1Þ is the characteristic function associated with ð0;1Þ. For each w 2W; t 2 Rþ;u 2 R, put
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fLwðtÞ ¼ MwðtÞ; fKwðt; uÞ ¼ fLwðtÞ � u: ð43Þ
Observe that for every d > 1 and w 2W we get
Z þ1

0

fLwðtÞ
dt
t
¼ w

Z 1

0
tw�1dt ¼ 1;

Z
RþnUd

fLwðtÞ
dt
t
¼ w

Z 1=d

0
tw�1 dt ¼ 1

dw : ð44Þ
Now, fix arbitrarily 0 < a 6 1, and choose sðtÞ ¼ j log tja, nðwÞ ¼ w�a. Then, s 2 T and n 2 N.
For every d > 1, putting v ¼ �w log t, we get:
0 6
Z d

1=d

fLwðtÞsðtÞ
dt
t
¼ w

Z d

1=d
tw�1j log tja vð0;1ÞðtÞdt ¼ w

Z 1

1=d
tw�1ð� log tÞa dt ¼ w�a

Z w log d

0
e�v va dv

6 w�a
Z þ1

0
e�v va dv: ð45Þ
From (44) and (45) we obtain
Z
RþnUd

fLwðtÞ
dt
t
¼ Oðw�aÞand

Z d

1=d

fLwðtÞsðtÞ
dt
t
¼ Oðw�aÞ for every d > 1: ð46Þ
Another Mellin-type kernel is the Mellin–Poisson–Cauchy kernel, defined by
fLwðtÞ ¼
2p�1ðp� 1Þ!
pð2p� 3Þ!!

w

ð1þw2log2tÞ
p ;

fKwðt;uÞ ¼ fLwðtÞ � u; ð47Þ
w 2W; p P 2; t 2 Rþ;u 2 R, where ð�1Þ!! ¼ 1!! ¼ 1 and ð2qþ 1Þ!! ¼ 1 � 3 � � � � � ð2qþ 1Þ for all q 2 N. It is known that
Z þ1

0

fLwðtÞ
dt
t
¼ 1 for every w 2W ð48Þ
(see also [21]). Moreover, for each p P 2; d > 1 and for w large enough (depending on d) we have:
w
Z

RþnUd

1

ð1þw2log2tÞ
p

dt
t
¼ 2

Z þ1

w log d

1
ð1þ y2Þp

dy 6 2
Z þ1

w log d

y

ð1þ y2Þ2
dy ¼ 2

Z þ1

w2log2d

1

ð1þ zÞ2
dz ¼ 1

1þw2log2d
: ð49Þ
Moreover, for every d > 1;w 2W and p we get:
0 6 w
Z d

1=d

1

ð1þw2log2tÞ
p j log tja dt

t
¼ w

Z 1

1=d

1

ð1þw2log2tÞ
p ð� log tÞa dt

t
þw

Z d

1

1

ð1þw2log2tÞ
p ðlog tÞa dt

t

¼ 2w�a
Z w log d

0

1
ð1þ v2Þp

va dv 6 2w�a
Z þ1

0

1
ð1þ v2Þp

va dv: ð50Þ
Since 0 < a 6 1 and p P 2, from (49) and (50) it follows that
Z
RþnUd

fLwðtÞ
dt
t
¼ Oðw�aÞ and w

Z d

1=d

1

ð1þw2log2tÞ
p j log tja dt

t
¼ Oðw�aÞ for any d > 1: ð51Þ
The Mellin–Gauss–Weierstrass kernel is defined by setting
fLwðtÞ ¼
w

2
ffiffiffiffi
p
p e�

w2
4 log2t; fKwðt; uÞ ¼ fLwðtÞ � u; w 2W; t 2 Rþ; u 2 R: ð52Þ
We get
Z þ1

0

fLwðtÞ
dt
t
¼ 1 for all w 2W ð53Þ
(see also [20,21]). Moreover, for each d > 1 and for w large enough (depending on d), we have
Z
RþnUd

fLwðtÞ
dt
t
¼ 2ffiffiffiffi

p
p

Z þ1

w log d
2

e�v2
dv 6 2ffiffiffiffi

p
p

Z þ1

w log d
2

e�vdv ¼ 2ffiffiffiffi
p
p e�

w log d
2 : ð54Þ
Furthermore, for every d > 1 we get:
0 6 w
Z d

1=d
e�

w2
4 log2t j log tja dt

t
¼ w

Z 1

1=d
e�

w2
4 log2t ð� log tÞa dt

t
þw

Z d

1
e�

w2
4 log2t ðlog tÞa dt

t
¼ 2aþ2 w�a

Z w log d
2

0
e�v2 va dv

6 2aþ2 w�a
Z þ1

0
e�v2 va dv : ð55Þ
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From (54) and (55) we obtain
Z
RþnUd

fLwðtÞ
dt
t
¼ Oðw�aÞ and w

Z d

1=d
e�

w2
4 log2t j log tja dt

t
¼ Oðw�aÞ for any d > 1: ð56Þ
For other examples of kernels existing in the literature (for instance Féjer, Picard, box-spline, Abel-Poisson and Féjer-
Korovkin-type kernels), see also [2, Section 6].

Note that for every compact interval ½a; b
 � Rþ the function
s #

Z b

a

fLw
t
s

� �
dt
t

belongs to LqðRþ;lÞ, where l is as in (36), for every 1 6 q < þ1 and w large enough (depending on q), where fLw ;w 2W , is as
in (43), (47) or (52) (see also [21]).

Now, proceeding analogously as in [21, Example 2], it is possible to check that in general our results are proper extensions
of the corresponding classical ones.

More precisely, for a sake of simplicity let W ¼ N, and take any free filter F – F cofin of N and any infinite set H, with
N n H 2 F . Note that such a set H does exist, since N n H 2 F . As examples, let F :¼ F s be the filter of all subsets of N having
asymptotic density 1 and let H be the set of prime numbers, the Fibonacci set or the set of all perfect squares. Observe that
these three sets have asymptotic density zero (see also [25]).

For each t > 0 and n 2 N, set
L�nðtÞ ¼
fLnðtÞ if n 2 N n H;

e3n2fLnðtÞ if n 2 H;

(
ð57Þ
where fLnðtÞ is defined analogously as in (43), (47) or (52).
From (44) and (46) we get that the moment kernel satisfies (42) and all the ðF ; nÞ-singularity conditions, with

pw ¼ 0; sðtÞ ¼ j log tja and nðwÞ ¼ w�a, where 0 < a 6 1.
These properties are fulfilled also by the Mellin–Poisson–Cauchy kernel, thanks to (48) and (51), and by the Mellin–

Gauss–Weierstrass kernel, by virtue of (53) and (56).
Furthermore (see also [29, Proposition 1]) observe that the family of functions mn : Rþ �M1 ! Rþ0 defined by
mnðs;AÞ ¼
Z

A

fLn
t
s

� �
dt
t
; s 2 Rþ; A 2M1; n 2 N;
is F -regular and F -compatible with the modular qu defined as in (10) for every u 2 eU, where eU is as in Section 2.
Set now uðuÞ ¼ gðuÞ ¼ uq, where u 2 Rþ0 and q P 1 is taken arbitrarily. For each n 2 N, define wn : Rþ0 ! Rþ0 by setting

wnðuÞ ¼ u;u 2 Rþ0 . It is easy to check that the triple ðqu;wn;qgÞ is F -properly directed with cn ¼ 0 for all n 2 N. So the hypoth-
eses of Theorem 5.1 are fulfilled, and hence the kernels L�n satisfy our main results with respect to F -convergence.

We now see that the kernels L�n;n 2 N, do not fulfil the classical versions of theorems analogous to Theorem 5.1. Proceed-
ing as in [21], let S ¼ ½e�1=4; e1=4
, f be a positive continuous functions defined on Rþ, with f ðtÞ ¼ 1 for every t 2 ½e�3; e�2
 and
whose support is contained in ½e�4; e�1
. For every n 2 N and s > 0, put
ðT�nf ÞðsÞ ¼
Z þ1

0
L�n

t
s

� �
f ðtÞdt

t
:

In [21] it is proved that
lim
n2H
ðT�nf ÞðsÞ ¼ þ1 for every s 2 S: ð58Þ
From (58) we deduce that limn2Hqu½kðT�nf � f ÞvS
 ¼ þ1. Thus, we get that our results are proper extensions of the corre-
sponding classical ones.

5.2. Discrete operators

We now consider the case of generalized sampling-type operators, following the approach of [2,4,9]. Let W � Rþ be such
that þ1 is a limit point for W. In the literature one takes often W ¼ Rþ or W ¼ N (see also [4,9,18]). We consider nonlinear
discrete operators of type
ðTwf ÞðsÞ ¼
Xþ1

k¼�1
Kw s;

k
w
; f

k
w

� �� �
; w 2W; s 2 R; ð59Þ
where f 2 Dom T. In this setting, let G ¼ R endowed with the Lebesgue measure l, and for w 2W let Hw ¼ 1
w Z, Bw be the set

of all subsets of Hw;lw be the counting measure.
We assume that K ¼ ðKwÞw belongs to K, for a fixed family ðwwÞw � W, and identify L1ðHwÞ with l1.
For each w 2W , t ¼ k

w 2 1
w Z and s 2 R we get:
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Z
R

Lwðs; tÞdlðsÞ ¼
Z

R

Lw s;
k
w

� �
ds;

Z
1
wZ

Lwðs; tÞdlwðtÞ ¼
Xþ1

k¼�1
Lw s;

k
w

� �
:

For each s 2 R and w 2W , set lwðsÞ :¼ Lwðs;0Þ. The condition in (5) and those involving ðF ; nÞ-singularity, for n 2 N, are
expressed as follows.

(i) There exist D� > 0 and F 2 F such that
Xþ1
k¼�1

lw
k
w
� s

� �
6 D� for every s 2 R and w 2 F:
(ii) For every d > 0,
Z
jsjPd

lwðsÞðpwðsÞ þ 1Þds ¼ OðnðwÞÞ with respect to F ;
(iii) Xþ1 � ���� ���
sup
s2R;u2Rnf0g

1
u

k¼�1
Kw s; k

w ;u � 1�� �� ¼ OðnðwÞÞ with respect to F ;
(iv) there exist F� 2 F and D0 > 0 such that
rwðsÞ 6 D0and
Z

R

Lw s;
k
w

� �
ds 6 D0 for each s 2 R and w 2 F�:
Let us take modulars g ¼ gR on L0ðRÞ and gw ¼ g1
wZ on L0ð1

w ZÞ. We consider the case when g and gw, w 2W , generate an Orlicz
space, that is � �� �� �
gRðf Þ ¼
Z þ1

�1
uðjf ðsÞjÞds; gw ¼ g1

wZ ¼
Xþ1

k¼�1
u f

k
w

��� ��� ;
where u 2 U. Note that, if u is convex, then it is possible to see that the space Yg in (14) contains the set of bounded real-
valued functions with compact support on R (see also [2]). So the theory in Sections 3 and 4 can be applied to the operators
in (59), dealing with the modulars qw :¼ q1

wZ;gw :¼ g1
wZ.

A particular case of operators (59) is given by the linear generalized sampling series, defined by
ðfTw f ÞðsÞ :¼
Xþ1

k¼�1
f

k
w

� �
jðws� kÞ; w 2W; s 2 R; ð60Þ
where j 2 L1ðRÞ is a kernel function, and f : R! R. These kinds of operators arise from the problem of reconstructing a real-
valued function f (signal) on the whole real line from its sampled values f k

w

� �
computed at the nodes k

w, where k varies in Z

and w > 0 is the rate of the sampling. Among the related literature, we quote for instance [18,22,38] and the bibliography
therein, and in particular [2,4,6,16,23,24]. In this setting we put
Kw s;
k
w
; f

k
w

� �� �
¼ jðws� kÞ � f k

w

� �
; Lw s;

k
w

� �
¼ jjðws� kÞj: ð61Þ
Note that lwðsÞ ¼ jjðwsÞj for each s 2 R and w 2W . Let us assume the classical hypotheses that
Xþ1
k¼�1

jðu� kÞ ¼ 1 uniformly with respect to u 2 R;

sup
u2R

Xþ1
k¼�1
jjðu� kÞj < þ1;

MaðjÞ :¼
Z þ1

�1
jjðsÞj jsja ds < þ1;
where MaðjÞ is the moment of order a of j, and 0 < a 6 1 (see also [23]). Under these assumptions it is possible to prove that
the condition in (17) and those of ðF ; nÞ-singularity are satisfied with respect to F ¼ F cofin; nðwÞ ¼ w�a and sðtÞ ¼ jtja (see
also [2, Proposition 3], [5, Lemma 3.1], [18, Theorem 8.1], [36, Lemma 1]). Indeed, for every d > 0 and w 2W , taking
s ¼ wt, we get
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w
Z d

�d
jjðwtÞj jtjadt ¼ w�a

Z w d

�w d
jjðsÞj jsja ds 6 w�a

Z þ1

�1
jjðsÞj jsja ds ¼ Oðw�aÞ; w

Z þ1

d
jjðwtÞjdt

¼ wd�a
Z þ1

d
jjðwtÞjda dt 6 wd�a

Z þ1

d
jjðwtÞj ta dt ¼ w�a d�a

Z þ1

w d
jjðsÞj jsja ds

6 w�a d�a
Z þ1

�1
jjðsÞj jsja ds ¼ Oðw�aÞ; w

Z �d

�1
jjðwtÞjdt ¼ wd�a

Z �d

�1
jjðwtÞjda dt

6 wd�a
Z �d

�1
jjðwtÞj ð�tÞa dt ¼ wd�a

Z þ1

d
jjð�wyÞjya dy ¼ Oðw�aÞ: ð62Þ
We now show that our results are proper extensions of the corresponding classical ones (see also [4, Section 6] and [9,
Corollary 4]).

Take W ¼ N, and pick the modulars q;g;gn;n 2 N, generating the Lebesgue spaces Lp, with p P 1. Let C1c ðRÞ be the space
of all real-valued functions, defined on the whole real line, having compact support and admitting derivatives of any order on
R. Pick f 2 C1c ðRÞ such that, for r large enough, f ðtÞP jtj�r for jtjP 1, and f ðtÞ ¼ 0 whenever jtj < 1. Let F and H be as in
Section 5.1.

Analogously as in [4], let ðvnÞn be a sequence of positive real numbers with limnvn ¼ 0 and B� be a set of positive Lebesgue
measure, independent of n, with

P2n
k¼nLn s; k

n

� �
P vn for any s 2 B�. Let ðynÞn be a sequence in Rþ, with limn vn yn ¼ þ1. For

each n 2 N, s 2 R and t 2 Hn, put
L�nðs; tÞ ¼
Lnðs; tÞ; if n 2 N n H;

ynLnðs; tÞ; if n 2 H;

�
ð63Þ
where Ln is analogously as in (61), and set
K�n s;
k
n
; f

k
n

� �� �
¼ L�n s;

k
n

� �
� f k

n

� �
: ð64Þ
In [4] it is shown that limnðTnf ÞðsÞ ¼ þ1 for every s 2 B�. Thus in this setting, taking into account (62), it is possible to see
that the hypotheses of Theorem 4.1 are satisfied, but the corresponding classical result, that is when F ¼ F cofin (see also [9,
Corollary 4]), does not hold.

Our general approach on discrete operators includes also the nonlinear multivariate sampling series, which have appli-
cations, for instance, in the reconstruction of images and videos (see also [2,10]).

In this case, G ¼ ðRN;þÞ;l is the N-dimensional Lebesgue measure, Hw ¼ 1
w ZN , Bw is the set of all subsets of ZN and lw is

the counting measure. In this setting the operators (59) and (60) are expressed by
ðVwf ÞðsÞ ¼
X
k2ZN

Kw s;
k
w
; f

k
w

� �� �
; w 2W; s 2 RN;

ðfVw f ÞðsÞ ¼
X
k2ZN

f
k
w

� �
jðws� kÞ; w 2W; s 2 RN
respectively, where j 2 L1ðRNÞ, s ¼ ðs1; . . . ; sNÞ;k ¼ ðk1; . . . ; kNÞ;ws ¼ ðws1; . . . ;wsNÞ and k
w ¼

k1
w ; . . . ; kN

w


 �
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