
JAISCR, 2019, Vol. 9, No. 3, pp. 205

SOLUTION OF LINEAR AND NON-LINEAR BOUNDARY
VALUE PROBLEMS USING POPULATION-DISTRIBUTED

PARALLEL DIFFERENTIAL EVOLUTION

Amnah Nasim1, Laura Burattini1,∗, Muhammad Faisal Fateh2, and Aneela Zameer2

1Department of Information Engineering (DII), Università Politecnica delle Marche,
Via Brecce Bianche, 60131 Ancona, Italy

2Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering
and Applied Sciences, Nilore, 44000 Islamabad, Pakistan

∗E-mail: l.burattini@univpm.it

Submitted: 18th October 2018; Accepted: 20th January 2019

Abstract

Cases where the derivative of a boundary value problem does not exist or is constantly
changing, traditional derivative can easily get stuck in the local optima or does not factu-
ally represent a constantly changing solution. Hence the need for evolutionary algorithms
becomes evident. However, evolutionary algorithms are compute-intensive since they
scan the entire solution space for an optimal solution. Larger populations and smaller step
sizes allow for improved quality solution but results in an increase in the complexity of the
optimization process. In this research a population-distributed implementation for differ-
ential evolution algorithm is presented for solving systems of 2nd-order, 2-point boundary
value problems (BVPs). In this technique, the system is formulated as an optimization
problem by the direct minimization of the overall individual residual error subject to the
given constraint boundary conditions and is then solved using differential evolution in
the sense that each of the derivatives is replaced by an appropriate difference quotient ap-
proximation. Four benchmark BVPs are solved using the proposed parallel framework for
differential evolution to observe the speedup in the execution time. Meanwhile, the statis-
tical analysis is provided to discover the effect of parametric changes such as an increase
in population individuals and nodes representing features on the quality and behavior of
the solutions found by differential evolution. The numerical results demonstrate that the
algorithm is quite accurate and efficient for solving 2nd-order, 2-point BVPs.
Keywords: parallel evolutionary algorithms, differential evolution, boundary value prob-
lems, optimization

1 Introduction

Several evolutionary algorithms have been pre-
sented in recent years because of the huge success
achieved in finding an optimum solution to prob-
lems for which traditional derivative-based methods
fail. In the case where a derivative of the prob-
lem does not exist or is constantly changing, the

traditional derivative solution can easily get stuck
in the local optima or does not factually represent
a constantly changing solution. To find a qual-
ity solution for such problems, derivative-free tech-
niques are used such as genetic algorithms (GAs),
genetic programming (GP) etc. Genetic or Evo-
lutionary algorithms use a metaheuristic approach
to find an optimum solution to a given problem by

  – 218
10.2478/jaiscr-2019-0004

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC



206 Amnah Nasim, Laura Burattini, Muhammad Faisal Fateh, and Aneela Zameer

generating a large population of individuals in the
possible solution space. However, due to an in-
crease in complexity and number of evaluations of
the objective function required to reach a termina-
tion criterion, its application to complex problems
or larger search spaces result in excessive algo-
rithm runtimes. To solve this problem, distributed
evolutionary algorithms (dEAs) [1, 2] were intro-
duced to speed up simple evolution-based compu-
tation strategies. Differential evolution (DE) pro-
vides such a genuine heuristic and is used for global
optimization in a variety of real-world problems in
both discrete and continuous domains [3, 4]. Dif-
ferential evolution is a multi-point, derivative-free
approach of scanning a solution space for global
optimization [5] introduced by Price and Storn in
1995. Like all other evolutionary algorithms (EAs),
DE performs population-based optimization target-
ing the starting point problem by sampling the fit-
ness function at randomly chosen multiple initial
points. However, DE is compute-intensive since
it scans the entire solution space for an optimal
solution. The fact that in classic DE algorithm
and its proposed variants, each individual in the
population is not compared against all the indi-
viduals in the current population, but only against
its counterpart in the current population which re-
places if better fitted, is a very important charac-
teristic concerning the parallelization of the DE al-
gorithm. This feature has been exploited and suc-
cessfully applied in numerous real-world applica-
tion areas such as large scale multi-criteria and
multi-population optimization problems [6, 7, 8],
digital filter design [3], industrial system design
[9, 10], computational systems biology [11], gene
regulatory networks [12, 13], identification of ex-
perimental data [14], transmission systems [15], de-
signing task scheduler for parallel operating sys-
tems [16] etc. Numerous distributed architectures
have been proposed for specified real-world appli-
cations to cater for this computation intensive prob-
lem. In terms of Flynn’s taxonomy [17], the paral-
lelization of an evolutionary algorithm can be made
at one of the following levels: objective function
evaluation level (master-slave model), population
level (multi-population model, called also an is-
land model or migration model) and elements level
(cellular model). The cellular model leads to fine-
grained parallelization while the former two mod-
els lead to coarse-grained parallelization. Two main

architectures [18] considered advantageous for par-
allel computation of the Differential Evolution al-
gorithm are first a population distribution strategy
which results in a significant reduction in process-
ing time but with near-optimum solution accuracy.
Second, an island topology, that provides a signifi-
cant improvement in finding the optimum solution
as the search space is increased due to the introduc-
tion of more islands and each island is configured
with a different initial seed. But the ring topology
was unable to provide any significant improvement
in the computation time. Hence, both architectures
suffer a trade-off in accuracy in finding an optimal
solution and the computation time.

In 2006, Ntipteni et al. [19] developed an asyn-
chronous parallel Differential Evolution framework
for a cluster of computers in Windows environment
using master-slave architecture. The information of
current population is stored in a common folder.
Every population individual evolves on a separate
machine independent from the rest of the popula-
tion and updates the information stored in the com-
mon global variable. The procedure is tested in two
airfoil optimization problems and the parallel code
is compared to a serial one, with respect to the con-
vergence behavior, the quality of the optimum so-
lution and the total computation time. Zaharie et
al. [6] proposed a coarse-grained parallel archi-
tecture for an adaptive differential evolution algo-
rithm based on the multi-population random con-
nection topology. The results show a significant
speedup for parallel execution on the cluster and
the global optimum is found with a higher prob-
ability even if more than one local optimum exist
in the solution space. Recently, Fateh et al. [20]
presented a nature-inspired framework for solving
second order two-point boundary value problems
(BVPs) using Differential Evolution (DE). They
evaluated the method using five benchmark bound-
ary value problems in linear and nonlinear regime
of BVPs and reported a marked improvement in
the quality and precision of their solution. The au-
thors conclusively suggested that a reduction in er-
ror can be further achieved by increasing the num-
ber of nodes and/or the accuracy of derivative ap-
proximation techniques. While smaller step size
yields more accurate answers, it entails higher com-
putational cost.

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC



207Amnah Nasim, Laura Burattini, Muhammad Faisal Fateh, and Aneela Zameer

generating a large population of individuals in the
possible solution space. However, due to an in-
crease in complexity and number of evaluations of
the objective function required to reach a termina-
tion criterion, its application to complex problems
or larger search spaces result in excessive algo-
rithm runtimes. To solve this problem, distributed
evolutionary algorithms (dEAs) [1, 2] were intro-
duced to speed up simple evolution-based compu-
tation strategies. Differential evolution (DE) pro-
vides such a genuine heuristic and is used for global
optimization in a variety of real-world problems in
both discrete and continuous domains [3, 4]. Dif-
ferential evolution is a multi-point, derivative-free
approach of scanning a solution space for global
optimization [5] introduced by Price and Storn in
1995. Like all other evolutionary algorithms (EAs),
DE performs population-based optimization target-
ing the starting point problem by sampling the fit-
ness function at randomly chosen multiple initial
points. However, DE is compute-intensive since
it scans the entire solution space for an optimal
solution. The fact that in classic DE algorithm
and its proposed variants, each individual in the
population is not compared against all the indi-
viduals in the current population, but only against
its counterpart in the current population which re-
places if better fitted, is a very important charac-
teristic concerning the parallelization of the DE al-
gorithm. This feature has been exploited and suc-
cessfully applied in numerous real-world applica-
tion areas such as large scale multi-criteria and
multi-population optimization problems [6, 7, 8],
digital filter design [3], industrial system design
[9, 10], computational systems biology [11], gene
regulatory networks [12, 13], identification of ex-
perimental data [14], transmission systems [15], de-
signing task scheduler for parallel operating sys-
tems [16] etc. Numerous distributed architectures
have been proposed for specified real-world appli-
cations to cater for this computation intensive prob-
lem. In terms of Flynn’s taxonomy [17], the paral-
lelization of an evolutionary algorithm can be made
at one of the following levels: objective function
evaluation level (master-slave model), population
level (multi-population model, called also an is-
land model or migration model) and elements level
(cellular model). The cellular model leads to fine-
grained parallelization while the former two mod-
els lead to coarse-grained parallelization. Two main

architectures [18] considered advantageous for par-
allel computation of the Differential Evolution al-
gorithm are first a population distribution strategy
which results in a significant reduction in process-
ing time but with near-optimum solution accuracy.
Second, an island topology, that provides a signifi-
cant improvement in finding the optimum solution
as the search space is increased due to the introduc-
tion of more islands and each island is configured
with a different initial seed. But the ring topology
was unable to provide any significant improvement
in the computation time. Hence, both architectures
suffer a trade-off in accuracy in finding an optimal
solution and the computation time.

In 2006, Ntipteni et al. [19] developed an asyn-
chronous parallel Differential Evolution framework
for a cluster of computers in Windows environment
using master-slave architecture. The information of
current population is stored in a common folder.
Every population individual evolves on a separate
machine independent from the rest of the popula-
tion and updates the information stored in the com-
mon global variable. The procedure is tested in two
airfoil optimization problems and the parallel code
is compared to a serial one, with respect to the con-
vergence behavior, the quality of the optimum so-
lution and the total computation time. Zaharie et
al. [6] proposed a coarse-grained parallel archi-
tecture for an adaptive differential evolution algo-
rithm based on the multi-population random con-
nection topology. The results show a significant
speedup for parallel execution on the cluster and
the global optimum is found with a higher prob-
ability even if more than one local optimum exist
in the solution space. Recently, Fateh et al. [20]
presented a nature-inspired framework for solving
second order two-point boundary value problems
(BVPs) using Differential Evolution (DE). They
evaluated the method using five benchmark bound-
ary value problems in linear and nonlinear regime
of BVPs and reported a marked improvement in
the quality and precision of their solution. The au-
thors conclusively suggested that a reduction in er-
ror can be further achieved by increasing the num-
ber of nodes and/or the accuracy of derivative ap-
proximation techniques. While smaller step size
yields more accurate answers, it entails higher com-
putational cost.

SOLUTION OF LINEAR AND NON-LINEAR BOUNDARY VALUE . . .

Classical Differential Evolution performs ran-
dom search for an ideal candidate by scanning the
entire solution space populated by competing can-
didates. A fitness value is calculated for every
individual in the population to give a quantitative
measure of how accurately the candidate solves the
problem. Like other evolutionary algorithms, DE
method includes different steps as: population ini-
tiations, trial-vector generation, crossover, new fit-
ness evaluation and selection of the comparatively
fitter candidate. Preliminary tests indicate that the
fitness calculation for every population individual
once per generation takes up 80% of the total time.
Hence, in this work a multi-core implementation
based on master-slave [18] configuration for Differ-
ential Evolution algorithm is presented and tested
for selected 2nd order 2-point BVPs. Population-
distributed models include master-slave, island, cel-
lular, hierarchical, and pool models, which paral-
lelize an optimization task at population, individ-
ual, or operation levels. An increase in the size of
the population or features impairs the performance
of boundary value problems (BVPs) in terms of
application to real-world scenarios. To solve this
problem a population-based [1, 21] parallelization
scheme has been implemented using a fine-grained
master-slave architecture as shown in Figure 2. The
algorithm defines population as a single global data
storage variable. The fitness of individuals and the
genetic operations are carried out by the slave ma-
chines in parallel. Each machine updates one pop-
ulation individual in any two consecutive genera-
tions. The features of the proposed framework are:
Scalability for complex system modeling i.e. higher
number of nodes (small step-size), ability to search
highly accurate solutions in reduced time and adapt-
ability to different objective functions for differ-
ent benchmark BVPs. Population-distributed high-
performance implementation of the proposed algo-
rithm is done using MATLAB R⃝ parallel computing
toolbox. A performance evaluation is conducted on
4 selected benchmark BVPs to show the solution
accuracy of the proposed method. Finally, the run-
time for sequential program is compared with the
multicore implementation on a standalone machine
to assess computational efficiency.

The paper is organized as follows: Section 1
gives a summary of the previous work done to
achieve computational efficiency. Section 2 de-

scribes the methodology and architectural frame-
work used for the proposed PDDE algorithm. Sec-
tion 3 presents achieved results and a discussion on
the benefits realized through efficient implementa-
tion of Differential Evolution. Section 4 concludes
the research work with some possible future exten-
sions.

2 Population-Distributed Parallel
Differential Evolution

Population-Distributed parallel Differential
Evolution (PDDE) employs fine-grained paral-
lelism in which each individual and competing mu-
tated vector is assigned to a different processor and
the fitter individual is correspondingly updated in
the global population matrix by each processor.
The result of each generation depends upon the
population matrix gathered from the previous gen-
eration hence parallelism is rather achieved with
distribution of population individuals on numerous
processors than on generations.

The solution for BVPs is based on fitness func-
tion that approximates second-order derivatives and
consequently, the error decrements follows O(h2)
process. A vector population is generated such that
the allowed parameter region is entirely covered.
All vectors are indexed according to the number
of generation because each of them must compete
against the previous and maybe next generation too
if selected. The vector subscripts in the follow-
ing description represent first the number of gen-
eration to which the vectors belong and the row in-
dex in the population and trial matrix. The initial
unevolved population generated is indexed 000 and
the one after first evolution is indexed 111 so on un-
til the final generation nnn. Two vectors uuu01 and vvv01
are randomly selected from the initial vector pop-
ulation. sss01 is a third randomly picked vector dif-
ferent than uuu01 and vvv01 which yields the trial vec-
tor ttt01 using the weighted sum and mutation factor
(β = 0.5) and placed at row number 111 in the trial
matrix. Similarly, uuu02, vvv02 and sss02 are generated
anew and ttt02 is the trial vector that constitutes row
number 222 in the trial matrix until there is a separate
mutated trial vector generated to compete with ev-
ery population individual. Now the competing ini-
tial population matrix and mutated trial vector ma-

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC



208 Amnah Nasim, Laura Burattini, Muhammad Faisal Fateh, and Aneela Zameer

trix are distributed for the crossover, fitness calcula-
tion and replacement operation. The trial vector ttt01
competes with vector 111 of the population based on
fitness value on processor 111. ttt02 competes against
vector no. 222 of the population on processor num-
ber 222. Two operations can then occur at every pro-
cessor: replacement or survival. Each processor
updates the corresponding vector in the population
matrix according to the fitness value comparison.
Hence in the current hardware resource scenario, 8
processors make updates to the population matrix
simultaneously. A new evolved population matrix
enters the next generation and a corresponding trial
matrix is generated again. This process terminates
if the termination criteria are met (fitness, number
of generations etc.). The method is described step-
wise as follows:

Figure 1. Serial Differential Evolution Algorithm

Figure 2. Master-Slave architecture

2.1 Population Initialization

Initial population is generated using the bound-
aries for the given possible solution space. Mixed-
type population initiation scheme is chosen here
for all benchmarks due to its competitive nature
[20, 21]. A mixed-type population is defined as

half of the number of individuals generated through
tangent-hyperbolic function and rest half generated
using modified Gaussian function. Using the given
initial and final boundary values for all tested BVPs,
the mixed-type population matrix is generated as

Pop(i, f ) = a+0.5(b−a) [1+ tanh((i−µ)/σ)] ,
(1)

where,

i = 1− N
2
, j = 2− (N −2),

and

Pop(i, f ) = a+
b−a
N +1

i+exp
(
−(i−µ)2

/(
2σ2)) ,

(2)
where,

i =
(

N
2
+1

)
−N, j = 2− (N −2).

2.2 Trial Matrix Generation

A matrix of trial vectors using current to best
mutation strategy with scaling factor as β = 0.5 and
each trial vector calculated as

ti j = si j +β(ui j + vi j). (3)

In 3 ‘i’ is the number of current generation and
‘j’ is the row index for every vector ti j in the trial
matrix (total number of rows in the trial matrix
equals the number of population individuals), si j,
ui j and v ji are randomly picked vectors from the
feasible solution space in any given generation.

2.3 Scatter Population

The multicore implementation uses ‘parfor’ di-
rective from the MATLAB R⃝ Parallel Computing
Toolbox to divide and assign one population indi-
vidual and one trial vector to each core. Hence the
distributed algorithm utilizes all cores and calcu-
lates the next generation population matrix by it-
erating over all individuals in the population.

2.4 Crossover

Exponential crossover is performed at this stage
to produce offspring using individual population
and trial vectors. Each core carries out the calcu-
lation of one offspring at a time. A high crossover

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC



209Amnah Nasim, Laura Burattini, Muhammad Faisal Fateh, and Aneela Zameer

trix are distributed for the crossover, fitness calcula-
tion and replacement operation. The trial vector ttt01
competes with vector 111 of the population based on
fitness value on processor 111. ttt02 competes against
vector no. 222 of the population on processor num-
ber 222. Two operations can then occur at every pro-
cessor: replacement or survival. Each processor
updates the corresponding vector in the population
matrix according to the fitness value comparison.
Hence in the current hardware resource scenario, 8
processors make updates to the population matrix
simultaneously. A new evolved population matrix
enters the next generation and a corresponding trial
matrix is generated again. This process terminates
if the termination criteria are met (fitness, number
of generations etc.). The method is described step-
wise as follows:

Figure 1. Serial Differential Evolution Algorithm

Figure 2. Master-Slave architecture

2.1 Population Initialization

Initial population is generated using the bound-
aries for the given possible solution space. Mixed-
type population initiation scheme is chosen here
for all benchmarks due to its competitive nature
[20, 21]. A mixed-type population is defined as

half of the number of individuals generated through
tangent-hyperbolic function and rest half generated
using modified Gaussian function. Using the given
initial and final boundary values for all tested BVPs,
the mixed-type population matrix is generated as

Pop(i, f ) = a+0.5(b−a) [1+ tanh((i−µ)/σ)] ,
(1)

where,

i = 1− N
2
, j = 2− (N −2),

and

Pop(i, f ) = a+
b−a
N +1

i+exp
(
−(i−µ)2

/(
2σ2)) ,

(2)
where,

i =
(

N
2
+1

)
−N, j = 2− (N −2).

2.2 Trial Matrix Generation

A matrix of trial vectors using current to best
mutation strategy with scaling factor as β = 0.5 and
each trial vector calculated as

ti j = si j +β(ui j + vi j). (3)

In 3 ‘i’ is the number of current generation and
‘j’ is the row index for every vector ti j in the trial
matrix (total number of rows in the trial matrix
equals the number of population individuals), si j,
ui j and v ji are randomly picked vectors from the
feasible solution space in any given generation.

2.3 Scatter Population

The multicore implementation uses ‘parfor’ di-
rective from the MATLAB R⃝ Parallel Computing
Toolbox to divide and assign one population indi-
vidual and one trial vector to each core. Hence the
distributed algorithm utilizes all cores and calcu-
lates the next generation population matrix by it-
erating over all individuals in the population.

2.4 Crossover

Exponential crossover is performed at this stage
to produce offspring using individual population
and trial vectors. Each core carries out the calcu-
lation of one offspring at a time. A high crossover

SOLUTION OF LINEAR AND NON-LINEAR BOUNDARY VALUE . . .

probability (p= 0.99) is used in this work since em-
pirical study shows that it improves the convergence
rate.

2.5 Fitness Calculation and Replacement

Each core processes one population individual
calculates the fitness of the parent and offspring. If
the parent vector gives the highest objective func-
tion value, it survives to the next generation. If the
offspring produced after mutation and crossover has
better fitness function value, it replaces the parent
vector in the next generation.

2.6 Gather Population

Finally, every individual vector with fitness bet-
ter than or same as its parent is gathered from all
slave machines and sent to the master where this
population array is then processed further for the
next generation and a new trial matrix.

2.7 Termination Criteria

Two possible termination measures are used in
this algorithm. The program terminates if the re-
quired fitness of 10−5 is achieved or if the max-
imum number of generations 500 is reached. In
the current population-distributed differential evo-
lution implementation, mutation and crossover oc-
cur at every step. For every new generation, a new
trial matrix is generated. So, Mutation occurs after
every generation instead of once in 10 or 15 genera-
tions. In all implementations, the initial population,
and trial vectors are pre-calculated and stored in two
different matrices.

Figure 1 shows a straightforward flow diagram
for classical Differential Evolution with above-
mentioned functions being performed in a sequen-
tial manner for comparison. Figure 3 elucidates our
parallel approach in which the input initial popula-
tion is distributed to slave machines where most of
the computation is carried out. The slave machines
calculate fitness, perform crossover to create indi-
vidual offspring, calculate the fitness of offspring
and finally, update the best fitted population indi-
vidual in the global population variable. Following
the trend of sequential algorithm, each individual in
parallel process competes with any other (thus mu-
tation and crossover are global).

2.8 Selected 222nd Order 2-point benchmark
Boundary Value Problems

Following are the selected second-order, two-
point boundary-value problems used to depict our
results:
Example 1:
d2y
dx2 = 2 dy

dx − y−3, 0 ≤ x ≤ 1
Boundary Condition: y(0)=-3, y(1)=-2.264241
Exact Solution: 2xe(x−2)−3 Source: [22]

Example 2:
d2y
dx2 = 4y, 0 ≤ x ≤ 1
Boundary Condition: y(0)=1, y(1)=0.1353
Exact Solution: e−2x Source: [22]

Example 3:
d2y
dx2 =

1
8(32+2x3 − y dy

dx), 1 ≤ x ≤ 2
Boundary Condition: y(1)=17, y(2)=12
Exact Solution: x2 + 16

x Source:[22]

Example 4:
d2y
dx2 =−(x+1) dy

dx +2y+(1− x2)e(− x),0 ≤ x ≤ 1
Boundary Condition: y(0)=-1, y(1)=0
Exact Solution: (x−1)e−x Source:[23]

2.9 Experimental Analysis

Computation of results include a mixed-type
population initiation scheme along with the expo-
nential crossover with a high crossover probability
of 0.99 for all four numerical problems. The num-
ber of node points tested are 11, 111 and 1111 for
sizes of population varying from 1000, 4000, 6000
and 10,000 individuals.

Hence the number of parameter combinations
for each of the four problems becomes 12 (3x4).
The population size of 1000 and 11 nodes are
least used for comparison of accuracy and achieved
speed up with the results presented by Fateh et al.
[20]. And the rest of the parameters are explored
additionally to study the benefits of parallel archi-
tecture for large-scale data. The parameters used
in the current PDDE algorithm are given in Table
1. The platform used for these calculations was an
Intel R⃝ Optiplex 9010 with four cores running at 3.4
GHz each. All the results presented correspond to
an average of 10 simulations for each example.

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC



210 Amnah Nasim, Laura Burattini, Muhammad Faisal Fateh, and Aneela Zameer

Figure 3. Framework for Population-Distributed parallel Differential Evolution

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC



211Amnah Nasim, Laura Burattini, Muhammad Faisal Fateh, and Aneela Zameer

Figure 3. Framework for Population-Distributed parallel Differential Evolution

SOLUTION OF LINEAR AND NON-LINEAR BOUNDARY VALUE . . .

3 Results and Discussion

The results and discussion section are divided
into two parts: 1) The residual error calculations
show the accuracy of the proposed algorithm and
2) Speed of execution uses runtime and speedup
achieved to show the performance of the parallelism
for each of the four benchmark BVP cases men-
tioned before. A summary of parameters used in
the current PDDE algorithm are given in Table 1.

Table 1. Parameter Values for PDDE

Parameters Values
Initialization Scheme Tan Hyperbolic
Crossover Probability 0.99

Mutation Scaling Factor 0.5
Mutation Strategy Current to Best
Number of Nodes 11, 111, 1111

Number of Population
Individuals

1000, 4000, 6000,
10,000

Maximum Number of
Generations

500

3.1 Residual Error

Tables 2, 3, 4 and 5 show detailed nodal solu-
tion and error statistics of the problem cases solved
using PDDE methodology.

The average residual error was found to be
2.7472×10−4 (PDDE 4) and 2.5474×10−4 (PDDE
8) for Example 1, 2.7900 × 10−4 (PDDE 4) and
2.7871× 10−4 (PDDE 8) for Example 2, 6.4435×
10−4 (PDDE 4) – 6.4380×10−4 (PDDE 8) for Ex-
ample 3 and 1.7180× 10−4 (PDDE 4) – 1.7082×
10−4 (PDDE 8) for Example 4. This error com-
parison of the nodal points is also represented in
Figure 4 as calculated by PDDE 4 and PDDE 8 in
comparison to residual error obtained at the same
points with sequential DE. Figure 5 represents the
true node point values of the solution achieved with
11 nodes using both PDDE 4 and PDDE 8 in com-
parison to residual error obtained at the same points
with sequential DE and exact solution for Example
1, 2, 3 and 4.

The accuracy of the solution as found by the
proposed algorithm calculated at 4 and 8 cores us-
ing PDDE presented in terms of nodal values and
nodal residual error in Figure 4 and Figure 5 re-
spectively is comparable to sequential DE and ex-

act solutions for all the selected boundary value
problems. This shows that the accuracy of the
proposed algorithm in finding an optimum for the
tested BVPs is high within and the convergence is
found in 95 – 110 generations.

3.2 Speed of execution

Keeping the residual nodal error intact as shown
in Figure 5 for the exact, sequential DE and PDDE
at 4 and 8 cores, the time required to achieve the re-
quired fitness value of 10−5 is decreased by PDDE.

Figure 6 shows the execution times achieved for
population array computation for all four numeri-
cal problems using DE and PDDE on 2, 4, 6 and
8 cores. The average runtime over the 12 param-
eter combinations (population sizes: 1000, 4000,
6000, 10000 and nodes: 11, 111, 1111) was found
to be 184.7287 (PDDE 4) and 129.4244 (PDDE
8) seconds for Example 1, 264.7667 (PDDE 4)
and 172.5014 (PDDE 8) seconds for Example 2,
296.4331 (PDDE 4) and 182.5171 (PDDE 8) sec-
onds for Example 3 and 362.5911 (PDDE 4) and
213.8212 (PDDE 8) seconds for Example 4. The
results show that the runtime has decreased for all
four numerical problems using PDDE on 4 and 8
cores. Highest runtime values are observed in Ex-
ample 4, which is due to the complex nature of the
objective value function of the said numerical prob-
lem.

Figure 7 shows the speedups achieved for pop-
ulation array computation for all four numerical
problems using DE and PDDE on 2, 4, 6 and 8
cores. The average speedup over the 12 param-
eter combinations (population sizes: 1000, 4000,
6000, 10000 and nodes: 11, 111, 1111) was found
to be 2.85× (PDDE 4) and 4.10× (PDDE 8) for
Example 1, 2.36× (PDDE 4) and 3.60× (PDDE
8) for Example 2, 2.69× (PDDE 4) and 4.08×
(PDDE 8) for Example 3 and 2.66× (PDDE 4)
and 4.62× (PDDE 8) for Example 4. An over-
all average of 2.64× speedup is achieved for 4
cores and 4.10× speedup is achieved for 8 cores
with the maximum of 6.08× for Example num-
ber 4 with population×nodes matrix 1000×111 and
minimum of 1.25× for Example number 2 with
population×nodes matrix 6000×111.

An increase in the runtime of the algorithm is
observed with corresponding increase in the popu-

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC



212 Amnah Nasim, Laura Burattini, Muhammad Faisal Fateh, and Aneela Zameer

Figure 4. Nodal values computed by PDDE at 4 and 8 cores compared with Exact and DE reported
solution plotted against node points for boundary-value problems, (a) Example 1 (b) Example 2 (c)

Example 3 (d) Example 4

Figure 5. Nodal error computed by PDDE at 4 and 8 cores compared with Exact and DE reported solution
plotted against node points for boundary-value problems, (a) Example 1 (b) Example 2 (c) Example 3 (d)

Example 4

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC



213Amnah Nasim, Laura Burattini, Muhammad Faisal Fateh, and Aneela Zameer

Figure 4. Nodal values computed by PDDE at 4 and 8 cores compared with Exact and DE reported
solution plotted against node points for boundary-value problems, (a) Example 1 (b) Example 2 (c)

Example 3 (d) Example 4

Figure 5. Nodal error computed by PDDE at 4 and 8 cores compared with Exact and DE reported solution
plotted against node points for boundary-value problems, (a) Example 1 (b) Example 2 (c) Example 3 (d)

Example 4

SOLUTION OF LINEAR AND NON-LINEAR BOUNDARY VALUE . . .

Figure 6. Algorithm Runtimes (seconds) computed by PDDE at 2, 4, 6 and 8 cores with population sizes
and number of nodes ranging from 1000, 4000, 6000, 10,000 and 11, 111, 1111 respectively for

boundary-value problems, (a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Figure 7. Speedup Factor (x) computed by DE and PDDE at 2, 4, 6 and 8 cores with population sizes and
number of nodes ranging from 1000, 4000, 6000, 10,000 and 11, 111, 1111 respectively for

boundary-value problems, (a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC



214 Amnah Nasim, Laura Burattini, Muhammad Faisal Fateh, and Aneela Zameer

Table 2. Comparison of the exact, DE and PDDE-computed nodal values for Example 1

Accuracy
Node.

No
Exact

DE[20] PDDE 4 Cores PDDE 8 Cores
yi di yi di yi di

1 -3 -3 0 -3 0 -3 0
2 -2.9701 -2.9701888 1.03 x 10−4 -2.970189 1.03 x 10−4 -2.97019 1.03 x 10−4

3 -2.9339 -2.9340842 2.04 x 10−4 -2.934085 2.04 x 10−4 -2.934084 2.04 x 10−4

4 -2.8904 -2.8906887 2.99 x 10−4 -2.890689 3.00 x 10−4 -2.890689 2.99 x 10−4

5 -2.8385 -2.8388643 3.82 x 10−4 -2.838865 3.82 x 10−4 -2.838864 3.82 x 10−4

6 -2.7769 -2.7773139 4.44 x 10−4 -2.777315 4.45 x 10−4 -2.777314 4.44 x 10−4

7 -2.7041 -2.7045598 4.76 x 10−4 -2.70456 4.77 x 10−4 -2.70456 4.76 x 10−4

8 -2.6185 -2.6189208 4.65 x 10−4 -2.618921 4.66 x 10−4 -2.618921 4.66 x 10−4

9 -2.5181 -2.5184852 3.96 x 10−4 -2.518485 3.96 x 10−4 -2.518485 3.96 x 10−4

10 -2.4008 -2.4010807 2.49 x 10−4 -2.401081 2.49 x 10−4 -2.401081 2.49 x 10−4

11 -2.2642 -2.264241 0 -2.264241 0 -2.264241 0

Table 3. Comparison of the exact, DE and PDDE-computed nodal values for Example 2

Accuracy
Node.

No
Exact

DE[20] PDDE 4 Cores PDDE 8 Cores
yi di yi di yi di

1 1 1 0 1 0 1 0
2 0.8187 0.81897551 2.45 x 10−4 0.8189757 2.45 x 10−4 0.818975 2.45 x 10−4

3 0.6703 0.67071004 3.90 x 10−4 0.6707103 3.90 x 10−4 0.67071 3.90 x 10−4

4 0.5488 0.549272972 4.61 x 10−4 0.5492731 4.62 x 10−4 0.549273 4.62 x 10−4

5 0.4493 0.449806823 4.78 x 10−4 0.4498069 4.78 x 10−4 0.449807 4.78 x 10−4

6 0.3679 0.368332946 4.54 x 10−4 0.3683331 4.54 x 10−4 0.368333 4.54 x 10−4

7 0.3012 0.301592386 3.98 x 10−4 0.3015927 3.98 x 10−4 0.301593 3.99 x 10−4

8 0.2466 0.246915522 3.19 x 10−4 0.2469159 3.19 x 10−4 0.246916 3.19 x 10−4

9 0.2019 0.202115279 2.19 x 10−4 0.2021155 2.19 x 10−4 0.202115 2.19 x 10−4

10 0.1653 0.165399647 1.01 x 10−4 0.1653999 1.01 x 10−4 0.1654 1.01 x 10−4

11 0.1353 0.1353 0 0.1353 0 0.1353 0

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC



215Amnah Nasim, Laura Burattini, Muhammad Faisal Fateh, and Aneela Zameer

Table 2. Comparison of the exact, DE and PDDE-computed nodal values for Example 1

Accuracy
Node.

No
Exact

DE[20] PDDE 4 Cores PDDE 8 Cores
yi di yi di yi di

1 -3 -3 0 -3 0 -3 0
2 -2.9701 -2.9701888 1.03 x 10−4 -2.970189 1.03 x 10−4 -2.97019 1.03 x 10−4

3 -2.9339 -2.9340842 2.04 x 10−4 -2.934085 2.04 x 10−4 -2.934084 2.04 x 10−4

4 -2.8904 -2.8906887 2.99 x 10−4 -2.890689 3.00 x 10−4 -2.890689 2.99 x 10−4

5 -2.8385 -2.8388643 3.82 x 10−4 -2.838865 3.82 x 10−4 -2.838864 3.82 x 10−4

6 -2.7769 -2.7773139 4.44 x 10−4 -2.777315 4.45 x 10−4 -2.777314 4.44 x 10−4

7 -2.7041 -2.7045598 4.76 x 10−4 -2.70456 4.77 x 10−4 -2.70456 4.76 x 10−4

8 -2.6185 -2.6189208 4.65 x 10−4 -2.618921 4.66 x 10−4 -2.618921 4.66 x 10−4

9 -2.5181 -2.5184852 3.96 x 10−4 -2.518485 3.96 x 10−4 -2.518485 3.96 x 10−4

10 -2.4008 -2.4010807 2.49 x 10−4 -2.401081 2.49 x 10−4 -2.401081 2.49 x 10−4

11 -2.2642 -2.264241 0 -2.264241 0 -2.264241 0

Table 3. Comparison of the exact, DE and PDDE-computed nodal values for Example 2

Accuracy
Node.

No
Exact

DE[20] PDDE 4 Cores PDDE 8 Cores
yi di yi di yi di

1 1 1 0 1 0 1 0
2 0.8187 0.81897551 2.45 x 10−4 0.8189757 2.45 x 10−4 0.818975 2.45 x 10−4

3 0.6703 0.67071004 3.90 x 10−4 0.6707103 3.90 x 10−4 0.67071 3.90 x 10−4

4 0.5488 0.549272972 4.61 x 10−4 0.5492731 4.62 x 10−4 0.549273 4.62 x 10−4

5 0.4493 0.449806823 4.78 x 10−4 0.4498069 4.78 x 10−4 0.449807 4.78 x 10−4

6 0.3679 0.368332946 4.54 x 10−4 0.3683331 4.54 x 10−4 0.368333 4.54 x 10−4

7 0.3012 0.301592386 3.98 x 10−4 0.3015927 3.98 x 10−4 0.301593 3.99 x 10−4

8 0.2466 0.246915522 3.19 x 10−4 0.2469159 3.19 x 10−4 0.246916 3.19 x 10−4

9 0.2019 0.202115279 2.19 x 10−4 0.2021155 2.19 x 10−4 0.202115 2.19 x 10−4

10 0.1653 0.165399647 1.01 x 10−4 0.1653999 1.01 x 10−4 0.1654 1.01 x 10−4

11 0.1353 0.1353 0 0.1353 0 0.1353 0

SOLUTION OF LINEAR AND NON-LINEAR BOUNDARY VALUE . . .

lation size from 1000 to 10,000 individuals. Fig-
ures 6-7 shows that with an increase in data size,
the speedup factor achieved at 4 and 8 cores also
increases. Hence, the proposed algorithm is scal-
able with number of cores. Also, we studied the
performance of the algorithm with increasing num-
ber of nodes from 11 to 1111. The best speedups
achieved are for 111 nodes throughout all numeri-
cal examples and all population numbers as shown
in Figures 6-7.

In the proposed PDDE algorithm for efficient
optimization of linear and non-linear boundary
value problems, all eight processors on the machine
are used to calculate number of threads equal to the
number of population individuals to evolve the pop-
ulation variable with increasing number of genera-
tions. In case where population size and number of
nodes is increased, the problem size becomes large
hence a significant speedup is achieved through par-
allelization.

Generally, the speedup increases when the num-
ber of processors increases. In some cases, be-
cause of the communication overhead, the increas-
ing speedup is not exactly linear. As a master-slave
model parallelizes its individual evaluation tasks as
well as some other operations (such as local search)
on the slave nodes, the model has an operation-level
of parallelism.

Distributed evolutionary algorithms (dEAs) im-
prove the efficiency of EAs, and on the other hand
they enhance the global search ability. In this sense,
the proposed PDDE technique improves the avail-
ability for solving real-world problems with large-
scale, high-dimensional, and complex features [24].

4 Conclusion

In this work, we proposed a population-
distributed approach to increase the performance of
differential evolution algorithm in solving boundary
value problems. The performance of distributed dif-
ferential evolution algorithm is evaluated in terms
of a comparison in computation time for sequen-
tial and parallel programs; convergence accuracy,
speedup and scalability. The data parallelization
methodology adopted assigns each population indi-
vidually, to a separate core. One thread of the com-
putation processed by one core consists of one indi-

vidual competing with an offspring, evaluating and
comparing fitness values for parent and offspring
and selection of the fittest individual for the next
generation. The computation time and accuracy of
the algorithm was evaluated on a multicore platform
with 2 to 8 cores for population sizes 1000 to 10,000
individuals and number of nodes 11, 111 and 1111.
Comparative testing shows that the average speedup
achieved for the four benchmark problems is 3.37×
while keeping the accuracy of the algorithm unaf-
fected for sequential and parallel architectures.

Acknowledgement

This work was partially funded by Fondazione
Cariverona, Italy.

References
[1] Gong, Y.J., Chen, W.N., Zhan, Z.H., Zhang, J., Li,

Y., Zhang, Q. and Li, J.J., 2015, Distributed evolu-
tionary algorithms and their models: A survey of
the state-of-the-art, Applied Soft Computing, 34,
pp. 286-300. DOI: 10.1016/j.asoc.2015.04.061

[2] Zelinka, I., 2015, A survey on evolutionary al-
gorithms dynamics and its complexity–Mutual re-
lations, past, present and future, Swarm and
Evolutionary Computation, 25, pp. 2-14. DOI:
10.1016/j.swevo.2015.06.002

[3] Price, K., Storn, R.M. and Lampinen, J.A., 2006,
Differential evolution: a practical approach to
global optimization, Springer Science Business
Media, ISBN: 978-3-540-20950-8

[4] Storn, R. and Price, K., 1997, Differential Evo-
lution–a simple and efficient heuristic for global
optimization over continuous spaces, Journal of
global optimization, 11(4), pp. 341-359. DOI:
10.1023/A:1008202821328

[5] Charles, A.J. and Parks, G.T., 2017, Mixed Ox-
ide LWR Assembly Design Optimization Using
Differential Evolution Algorithms, 2017 25th In-
ternational Conference on Nuclear Engineering,
Shanghai, China, 9, pp. V009T15A065. DOI:
10.1115/ICONE25-67936

[6] Zaharie, D. and Petcu, D., 2005, Parallel imple-
mentation of multi-population differential evolu-
tion, Proc. of the NATO Advanced Research Work-
shop on Concurrent information processing and
computing, Nicolau, A. and Grigoras, D., eds.,
Sinaia, Romania, pp. 223-232.

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC



216 Amnah Nasim, Laura Burattini, Muhammad Faisal Fateh, and Aneela Zameer

Table 4. Comparison of the exact, DE and PDDE-computed nodal values for Example 3

Accuracy
Node.

No
Exact

DE[20] PDDE 4 Cores PDDE 8 Cores
yi di yi di yi di

1 17 17 0 17 0 17 0
2 15.7555 15.7554545 5.79 x 10−4 15.754875 5.80 x 10−4 15.754875 5.79 x 10−4

3 14.7733 14.7733333 9.11 x 10−4 14.772422 9.11 x 10−4 14.772423 9.11 x 10−4

4 13.9977 13.9976923 1.07 x 10−4 13.996624 1.07 x 10−4 13.996625 1.07 x 10−4

5 13.3886 13.3885714 1.10 x 10−4 13.387473 1.10 x 10−4 13.387474 1.10 x 10−4

6 12.9167 12.9166667 1.03 x 10−4 12.915631 1.04 x 10−4 12.915632 1.03 x 10−4

7 12.56 12.56 9.04 x 10−4 12.559095 9.05 x 10−4 12.559096 9.04 x 10−4

8 12.3018 12.3017647 7.23 x 10−4 12.301041 7.24 x 10−4 12.301042 7.23 x 10−4

9 12.1289 12.1288889 5.05 x 10−4 12.128383 5.06 x 10−4 12.128384 5.05 x 10−4

10 12.0311 12.0310526 2.61 x 10−4 12.030791 2.61 x 10−4 12.030791 2.61 x 10−4

11 12 12 0 12 0 12 0

Table 5. Comparison of the exact, DE and PDDE-computed nodal values for Example 4

Accuracy
Node.

No
Exact

DE[20] PDDE 4 Cores PDDE 8 Cores
yi di yi di yi di

1 -1 -1 0 -1 0 -1 0
2 -0.8144 -0.8142 1.24 x 10−4 15.754875 1.24 x 10−4 15.754875 1.24 x 10−4

3 -0.655 -0.6548 2.11 x 10−4 14.772422 2.11 x 10−4 14.772423 2.11 x 10−4

4 -0.5186 -0.5183 2.64 x 10−4 13.996624 2.65 x 10−4 13.996625 2.64 x 10−4

5 -0.4022 -0.4019 2.88 x 10−4 13.387473 2.89 x 10−4 13.387474 2.87 x 10−4

6 -0.3033 -0.303 2.85 x 10−4 12.915631 2.86 x 10−4 12.915632 2.84 x 10−4

7 -0.2195 -0.2193 2.59 x 10−4 12.559095 2.61 x 10−4 12.559096 2.59 x 10−4

8 -0.149 -0.1488 2.15 x 10−4 12.301041 2.16 x 10−4 12.301042 2.14 x 10−4

9 -0.0899 -0.0897 1.54 x 10−4 12.128383 1.56 x 10−4 12.128384 1.54 x 10−4

10 -0.0407 -0.0406 8.22 x 10−4 12.030791 8.26 x 10−4 12.030791 8.19 x 10−4

11 0 0 0 0 0 0 0

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC



217Amnah Nasim, Laura Burattini, Muhammad Faisal Fateh, and Aneela Zameer

Table 4. Comparison of the exact, DE and PDDE-computed nodal values for Example 3

Accuracy
Node.

No
Exact

DE[20] PDDE 4 Cores PDDE 8 Cores
yi di yi di yi di

1 17 17 0 17 0 17 0
2 15.7555 15.7554545 5.79 x 10−4 15.754875 5.80 x 10−4 15.754875 5.79 x 10−4

3 14.7733 14.7733333 9.11 x 10−4 14.772422 9.11 x 10−4 14.772423 9.11 x 10−4

4 13.9977 13.9976923 1.07 x 10−4 13.996624 1.07 x 10−4 13.996625 1.07 x 10−4

5 13.3886 13.3885714 1.10 x 10−4 13.387473 1.10 x 10−4 13.387474 1.10 x 10−4

6 12.9167 12.9166667 1.03 x 10−4 12.915631 1.04 x 10−4 12.915632 1.03 x 10−4

7 12.56 12.56 9.04 x 10−4 12.559095 9.05 x 10−4 12.559096 9.04 x 10−4

8 12.3018 12.3017647 7.23 x 10−4 12.301041 7.24 x 10−4 12.301042 7.23 x 10−4

9 12.1289 12.1288889 5.05 x 10−4 12.128383 5.06 x 10−4 12.128384 5.05 x 10−4

10 12.0311 12.0310526 2.61 x 10−4 12.030791 2.61 x 10−4 12.030791 2.61 x 10−4

11 12 12 0 12 0 12 0

Table 5. Comparison of the exact, DE and PDDE-computed nodal values for Example 4

Accuracy
Node.

No
Exact

DE[20] PDDE 4 Cores PDDE 8 Cores
yi di yi di yi di

1 -1 -1 0 -1 0 -1 0
2 -0.8144 -0.8142 1.24 x 10−4 15.754875 1.24 x 10−4 15.754875 1.24 x 10−4

3 -0.655 -0.6548 2.11 x 10−4 14.772422 2.11 x 10−4 14.772423 2.11 x 10−4

4 -0.5186 -0.5183 2.64 x 10−4 13.996624 2.65 x 10−4 13.996625 2.64 x 10−4

5 -0.4022 -0.4019 2.88 x 10−4 13.387473 2.89 x 10−4 13.387474 2.87 x 10−4

6 -0.3033 -0.303 2.85 x 10−4 12.915631 2.86 x 10−4 12.915632 2.84 x 10−4

7 -0.2195 -0.2193 2.59 x 10−4 12.559095 2.61 x 10−4 12.559096 2.59 x 10−4

8 -0.149 -0.1488 2.15 x 10−4 12.301041 2.16 x 10−4 12.301042 2.14 x 10−4

9 -0.0899 -0.0897 1.54 x 10−4 12.128383 1.56 x 10−4 12.128384 1.54 x 10−4

10 -0.0407 -0.0406 8.22 x 10−4 12.030791 8.26 x 10−4 12.030791 8.19 x 10−4

11 0 0 0 0 0 0 0

SOLUTION OF LINEAR AND NON-LINEAR BOUNDARY VALUE . . .

[7] Ge, Y.F., Yu, W.J. and Zhang, J., 2016, Diversity-
Based Multi-Population Differential Evolution for
Large-Scale Optimization, Proc. of the 2016 on
Genetic and Evolutionary Computation Confer-
ence Companion, Denver, Colorado, USA, pp. 31-
32. DOI: 10.1145/2908961.2908995

[8] Cheng, J., Zhang, G., Caraffini, F. and Neri,
F., 2015, Multicriteria adaptive differential evolu-
tion for global numerical optimization, Integrated
Computer-Aided Engineering, 22(2), pp. 103-107.
DOI: 10.3233/ICA-150481

[9] Lobato, F.S., Steffen Jr, V. and Silva Neto, A.J.,
2010, A comparative study of the application of
differential evolution and simulated annealing in
radiative transfer problems, Journal of the Brazil-
ian Society of Mechanical Sciences and Engineer-
ing, 32(SPE), pp. 518-526. DOI: 10.1590/S1678-
58782010000500012

[10] Hartfield, R.J., Jenkins, R.M. and Burkhalter, J.E.,
2007, Ramjet powered missile design using a ge-
netic algorithm, Journal of Computing and Infor-
mation Science in Engineering, 7(2), pp. 167-173.
DOI: 0.1115/1.2738722

[11] Penas, D.R., Banga, J.R., González, P. and Doallo,
R., 2015, Enhanced parallel differential evolution
algorithm for problems in computational systems
biology, Applied Soft Computing, 33, pp. 86-99.
DOI: 10.1016/j.asoc.2015.04.025

[12] González-Álvarez, D.L., Vega-Rodrı́guez, M.A.
and Rubio-Largo, Á., 2014, Parallelizing and opti-
mizing a hybrid differential evolution with Pareto
tournaments for discovering motifs in DNA se-
quences, The Journal of Supercomputing, 70(2),
pp. 880-905. DOI: 10.1007/s11227-014-1266-y

[13] Kozlov, K. and Samsonov, A., 2011,
DEEP—differential evolution entirely parallel
method for gene regulatory networks, The Journal
of Supercomputing, 57(2), pp. 172-178. DOI:
10.1007/s11227-010-0390-6

[14] Maciejewski, Ł., 2007, Application of differen-
tial evolution algorithm for identification of exper-
imantal data, Archive of Mechanical Engineering,
54(4), pp. 327-337.

[15] Nayak, N., Routray, S.K. and Rout, P.K., 2016, De-
sign of Takagi-Sugeno fuzzy controller for VSC-
HVDC parallel AC transmission system using dif-
ferential evolution algorithm, International Jour-
nal of Computer Aided Engineering and Tech-
nology, 8(3), pp. 277-294. DOI: 10.1504/IJ-
CAET.2016.077605

[16] Mokhtari, H. and Salmasnia, A., 2015, A
Monte Carlo simulation based chaotic differen-
tial evolution algorithm for scheduling a stochas-
tic parallel processor system, Expert Systems
with Applications, 42(20), pp. 7132-7147. DOI:
10.1016/j.eswa.2015.05.015

[17] Acebrón, J.A. and Spigler, R., 2007, Supercom-
puting applications to the numerical modeling of
industrial and applied mathematics problems, The
Journal of Supercomputing, 40(1), pp. 67-80. DOI:
10.1007/s11227-006-0014-3

[18] Tardivo, M.L., Caymes-Scutari, P., Mendez-
Garabetti, M. and Bianchini, G., 2013, Two mod-
els for parallel differential evolution, Proc. of HP-
CLatAm, C. Garcia Garino and M. Printista, eds.,
Mendoza, Argentina, pp. 25-36.

[19] Ntipteni, M.S., Valakos, I.M. and Nikolos, I.K.,
2006, An asynchronous parallel differential evo-
lution algorithm, Proc. of the ERCOFTAC confer-
ence on design optimisation: methods and applica-
tion.

[20] Fateh, M.F., Zameer, A., Mirza, N.M., Mirza,
S.M. and Raja, M.A.Z., 2017, Biologically in-
spired computing framework for solving two-point
boundary value problems using differential evolu-
tion, Neural Computing and Applications, 28(8),
pp. 2165-2179. DOI: 10.1007/s00521-016-2185-z

[21] Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P.
and Vrahatis, M.N., 2004, Parallel differential evo-
lution, Proc. of the 2004 Congress on Evolutionary
Computation, Portland, Oregon, USA, pp. 2023-
2029. DOI: 10.1109/CEC.2004.1331145

[22] Abo-Hammour, Z.S., Yusuf, M., Mirza, N.M.,
Mirza, S.M., Arif, M. and Khurshid, J., 2004, Nu-
merical solution of second-order, two-point bound-
ary value problems using continuous genetic algo-
rithms, International Journal for Numerical Meth-
ods in Engineering, 61(8), pp. 1219-1242. DOI:
10.1002/nme.1108

[23] Tat, C.K., Majid, Z.A., Suleiman, M. and Senu, N.,
2012, Solving Linear Two-Point Boundary Value,
Applied Mathematical Sciences, 6(99), pp. 4921-
4929.

[24] Zurita, N.F.S., Colby, M.K., Tumer, I.Y., Hoyle,
C. and Tumer, K., 2018, Design of Complex En-
gineered Systems Using Multi-Agent Coordina-
tion, Journal of Computing and Information Sci-
ence in Engineering, 18(1), pp. 011003. DOI:
10.1115/1.4038158

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC



218 Amnah Nasim, Laura Burattini, Muhammad Faisal Fateh, and Aneela Zameer

Table 4. Comparison of the exact, DE and PDDE-computed nodal values for Example 3

Accuracy
Node.

No
Exact

DE[20] PDDE 4 Cores PDDE 8 Cores
yi di yi di yi di

1 17 17 0 17 0 17 0
2 15.7555 15.7554545 5.79 x 10−4 15.754875 5.80 x 10−4 15.754875 5.79 x 10−4

3 14.7733 14.7733333 9.11 x 10−4 14.772422 9.11 x 10−4 14.772423 9.11 x 10−4

4 13.9977 13.9976923 1.07 x 10−4 13.996624 1.07 x 10−4 13.996625 1.07 x 10−4

5 13.3886 13.3885714 1.10 x 10−4 13.387473 1.10 x 10−4 13.387474 1.10 x 10−4

6 12.9167 12.9166667 1.03 x 10−4 12.915631 1.04 x 10−4 12.915632 1.03 x 10−4

7 12.56 12.56 9.04 x 10−4 12.559095 9.05 x 10−4 12.559096 9.04 x 10−4

8 12.3018 12.3017647 7.23 x 10−4 12.301041 7.24 x 10−4 12.301042 7.23 x 10−4

9 12.1289 12.1288889 5.05 x 10−4 12.128383 5.06 x 10−4 12.128384 5.05 x 10−4

10 12.0311 12.0310526 2.61 x 10−4 12.030791 2.61 x 10−4 12.030791 2.61 x 10−4

11 12 12 0 12 0 12 0

Table 5. Comparison of the exact, DE and PDDE-computed nodal values for Example 4

Accuracy
Node.

No
Exact

DE[20] PDDE 4 Cores PDDE 8 Cores
yi di yi di yi di

1 -1 -1 0 -1 0 -1 0
2 -0.8144 -0.8142 1.24 x 10−4 15.754875 1.24 x 10−4 15.754875 1.24 x 10−4

3 -0.655 -0.6548 2.11 x 10−4 14.772422 2.11 x 10−4 14.772423 2.11 x 10−4

4 -0.5186 -0.5183 2.64 x 10−4 13.996624 2.65 x 10−4 13.996625 2.64 x 10−4

5 -0.4022 -0.4019 2.88 x 10−4 13.387473 2.89 x 10−4 13.387474 2.87 x 10−4

6 -0.3033 -0.303 2.85 x 10−4 12.915631 2.86 x 10−4 12.915632 2.84 x 10−4

7 -0.2195 -0.2193 2.59 x 10−4 12.559095 2.61 x 10−4 12.559096 2.59 x 10−4

8 -0.149 -0.1488 2.15 x 10−4 12.301041 2.16 x 10−4 12.301042 2.14 x 10−4

9 -0.0899 -0.0897 1.54 x 10−4 12.128383 1.56 x 10−4 12.128384 1.54 x 10−4

10 -0.0407 -0.0406 8.22 x 10−4 12.030791 8.26 x 10−4 12.030791 8.19 x 10−4

11 0 0 0 0 0 0 0

Amnah Nasim is currently doing her 
Ph.D. in Information Engineering at 
Universita Politecnica delle Marche, 
Ancona, Italy. She received her Mas-
ter’s Degree in Computational Sci-
ences and Engineering and has worked 
as a research assistant from 2015 to 
2017 with the Human Factors Re-
search Group at the National Univer-

sity of Sciences and Technology, Islamabad, Pakistan. Since 
2018 she is a student Member of IEEE and National Group of 
Bioengineering. Her main research interest is the automatic 
processing of digital cardiovascular signals (electrocardio-
grams), particularly signal processing of cardiovascular data 
acquired through wearable sensors.

Laura Burattini is a Professor at Uni-
versità Politecnica delle Marche, An-
cona, Italy. She earned her master’s 
degree in electrical/Biomedical Engi-
neering from Politecnico di Milano, 
Itay in 1993 and Ph.D. in Electrical/
Biomedical Engineering in 1998 from 
University of Rochester, USA. She 
is the author of more than 60 jour-

nal papers and 100 proceedings. She is also the co-founder 
of B.M.E.D. Bio-Medical Engineering Development srl, an 
academic spin-off  for which she has served as a CEO and 
President from 2012 to 2016. Her research interests relate to 

processing and modelling of biomedical data, especially of 
the cardiovascular, metabolic and motor systems.

Muhammad Faisal Fateh is currently 
working as a research offi  cer at the Na-
tional Academy of Young Scientists 
(NAYS), Islamabad, Pakistan. He re-
ceived his Master’s Degree in Systems 
Engineering from Pakistan Institute 
of Engineering and Applied Sciences, 
Pakistan in 2015. His main research 
interests are metaheuristic and evolu-

tionary algorithms, boundary value problems specifi cally in 
the fi eld of fl uid dynamics.

Aneela Zameer is a Professor at the 
Department of Computer and Infor-
mation Sciences, Pakistan Institute of 
Engineering and Applied Sciences, 
Islamabad, Pakistan. She has a basic 
degree in Physics from Quaid-e-Azam 
University, Islamabad, Pakistan in 
1997 and Ph.D. from University of 
West of Scotland, UK on Computa-

tional Physics in 2005. She has a Post-Doctoral experience 
from University of Glasgow in 2007-8. She has a strong 
research experience in areas of machine learning, artifi cial 
intelligence, parallel computing, computational physics and 
mathematics.

Unauthentifiziert   | Heruntergeladen  11.02.20 19:41   UTC


