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A B S T R A C T

Objectives: Enteric viruses are responsible for foodborne and waterborne infections affecting a large
number of people. Data on food and water viral contamination in the south of Italy (Sicily) are scarce and
fragmentary. The aim of this study was to evaluate the presence of viral contamination in food, water
samples, and surface swabs collected in Sicily
Methods: The survey was conducted on 108 shellfish, 23 water samples (seawater, pipe water, and torrent
water), 52 vegetables, one peach and 17 berries, 11 gastronomic preparations containing fish products
and/or raw vegetables, and 28 surface swabs. Hepatitis A virus (HAV), genogroup GI, GII, and GIV
norovirus (NoV), enterovirus (EV), rotavirus (RoV), hepatitis E virus (HEV), adenovirus (AdV), and
bocavirus (BoV) were detected by nested (RT) PCR, real-time PCR, and sequence analysis.
Results: The most frequently detected viruses in shellfish were HAV (13%), NoV (18.5%), and EV (7.4%).
Bocavirus was found in 3.7%, HEV in 0.9%, and AdV in 1.9% of the molluscs. Of the 23 water samples, 21.7%
were positive for GII NoV and 4.3% for RoV and HEV genotype 3. Of the 70 vegetable samples, 2.9% were
positive for NoV GI (GI.5 and GI.6), 2.9% for EV, and 1.4% for HEV. In the gastronomic preparations, only
one EV (9%) was detected. No enteric viruses were detected in the berries, fruit, or swabs analyzed.
Conclusions: Molecular surveillance of water and food samples clearly demonstrated that human
pathogenic viruses are widely found in aquatic environments and on vegetables, and confirmed the role
of vegetables and bivalve molluscs as the main reservoirs.
© 2019 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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Introduction

Numerous viruses of human or animal origin are found in the
environment and infect people via water and food: bivalve
molluscs, vegetables, and prepared foods are classified by the
World Health Organization (WHO) as priority hazards. According
to a report by the European Food Safety Authority (EFSA) (EFSA,
2016), viruses were, for the first time in 2014, the most commonly
detected (20.4%) causative agent in foodborne outbreaks. Environ-
mentally transmitted viruses include major etiological agents of
gastroenteritis, meningitis, and hepatitis. Most of these viruses
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belong to the families Adenoviridae,Caliciviridae, Hepeviridae,
Picornaviridae, and Reoviridae (Dubois et al., 1997; Muscillo
et al., 2001; Lodder and de Roda Husman, 2005). These pathogens
are excreted in large quantities in the faeces of infected individuals
(up to 1011 viral particles per gram of stool) (Fong and Lipp, 2005)
and are routinely introduced into the environment through the
discharge of treated and untreated waste that can be transported
through groundwater, estuarine water, seawater, and rivers (La
Rosa and Muscillo, 2012; La Rosa et al., 2012; Okoh et al., 2010).

The consumption of fish products, particularly edible lamelli-
branch molluscs (ELM), is a risk for human health because of their
capacity to filter, accumulate, and concentrate pathogens present
in the water. Vegetables and berries, if irrigated with contaminated
water, can retain microbial agents on their surfaces, including
enteric viruses (Petrinca et al., 2009; La Rosa et al., 2010a; Severi
et al., 2015; Scavia et al., 2017; Iaconelli et al., 2017), and therefore
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play an important role in the determination of environmental and
food contamination.

Hepatitis A virus (HAV), hepatitis E virus (HEV), adenovirus
(AdV), norovirus (NoV), and multiple strains of enterovirus (EV)
(echoviruses and coxsackievirus) are enteric viruses associated
with human wastewater (Lodder and de Roda Husman, 2005).
HAV, NoV, and rotavirus (RoV) have been found in shellfish,
especially oysters (Bellou et al., 2013), and EV contaminate and
survive in brackish and probably saltwater and in shellfish (Patel
et al., 2009).

HAV is highly resistant in the environment and is typically
transmitted through contaminated foods (raw shellfish, strawber-
ries, etc.) or water (Pinto and Bosch, 2013). Outbreaks were
described in 1996–1997 and 2004 in regions of southern Italy
(Apulia and Campania) due to the consumption of raw shellfish
(Malfait et al., 1996); in 2013 an outbreak was linked to the
consumption of frozen mixed berries (Rizzo et al., 2013). Two
phylogenetically related but distinct HAV genotype 1A strains were
responsible for a small cluster in 2014 and an outbreak in 2015 in
Naples, caused by contaminated shellfish (unpublished data).

NoV are a major cause of acute gastroenteritis in children and
adults worldwide (Patel et al., 2008; Matthews et al., 2012). NoV
can be classified into seven genogroups, GI to GVII (Vinjé, 2015;
Zheng et al., 2006). More than 30 genotypes within genogroups GI,
GII, and GIV may infect humans (Kroneman et al., 2013), but a
single genotype, GII.4, has been associated with the vast majority
of NoV-related outbreaks and sporadic cases of acute gastroenter-
itis worldwide (Bok et al., 2009). Since 1996, there have been at
least six human NoV epidemic strains. Several routes of NoV
transmission have been identified in many well-documented
outbreaks. In general, person-to-person spread is the primary
mode of transmission. Foodborne transmission can also play an
important role, including infected food handlers. Several water-
borne outbreaks have been described, and there is indirect
evidence of potential airborne transmission (such as through
explosive vomiting occurring during the disease) (La Rosa et al.,
2012; Giammanco et al., 2014; Giammanco et al., 2018).

Four species of EV have been classified (A–D): human EV (hEV)
type A includes some coxsackievirus A strains; hEV B includes
coxsackievirus A9, coxsackievirus B1–6, and most of the echovi-
ruses; and hEV C includes poliovirus 1–3 and some coxsackievirus
A strains. The more recently identified hEV have been given
individual numbers, from EV68, and are classified amongst all four
genotypes (Stanway et al., 2005).

RoV infections are found worldwide and most children are
infected during the first 6–9 months of life; it is estimated to cause
more than 200 000 deaths annually (Soriano-Gabarró et al., 2006).

Four HEV genotypes are known to infect humans: genotype 1
(G1) and 2 (G2) viruses have been identified exclusively in humans,
whereas genotype 3 (G3) and 4 (G4) viruses have been isolated
from both humans and animals, mainly pigs and wild boar (Meng,
2009; Pavio et al., 2010). The WHO estimates that 20 million HEV
infections occur every year, with over three million acute cases and
57 000 hepatitis E-related deaths (http://www.who.int/media-
centre/factsheets/fs280/en/).

Human AdV (HAdV) are the only human enteric viruses to
contain DNA. They are slow growing and are often detected in
different environments with other hEV and/or HAV (Puig et al.,
1994; Pina et al., 1998). Symptoms of AdV infection include
gastroenteritis, pharyngitis, pneumonia, conjunctivitis, and
meningoencephalitis (Lenaerts et al., 2008). HAdV have been
detected widely in wastewater (both influent and effluent sewage),
in surface water, and in recreational water (marine and freshwater
samples), as well as in treated and disinfected drinking water
(Mena and Gerba, 2009). HAdV have been proposed as indicators
for the monitoring of human faecal contamination of water and the
efficacy of water purification (La Rosa et al., 2010a,b).

Human BoV (HBoV) is found worldwide in respiratory samples,
mainly from children with acute respiratory infections, and in stool
samples from patients with gastroenteritis. Four HBoV species are
currently included in the Bocavirus genus: HBoV-1, HBoV-2, HBoV-
3, and HBoV-4 (Arthur et al., 2009). HBoV has been suggested to
cause human disease (Wong-Chew et al., 2017). Water sources are
contaminated with HBoV from humans excreting HBoV (Iaconelli
et al., 2016; La Rosa et al., 2018).

The objective of this study was to assess the presence of HAV,
NoV (GI, GII, and GIV), EV, RoV, HEV, AdV, and BoV in bivalve
mollusc shellfish, environmental water, food preparations con-
taining fish products and/or raw vegetables (sushi, sashimi, etc.),
vegetables, fruit, berries, and surface swabs in food preparation
areas by end-point and real-time PCR/RT-PCR and sequence
analysis.

Materials and methods

A total of 108 fresh and frozen shellfish, 70 vegetables, 23
environmental water samples, 11 samples of gastronomic prep-
arations, and 28 surface swabs were collected between 2012 and
2017. All of the samples were screened for HAV, HEV, NoV (GI, GII,
and GIV), EV, RoV, AdV, and BoV using molecular detection
methods.

Sampling

Shellfish samples were collected from three harvesting areas in
the province of Syracuse and five centres in Messina, and from
restaurants, fish markets, and shellfish markets, as part of official
control monitoring programmes in Sicily (Figure 1). They consisted
of 89 Mytilus galloprovincialis, one Mytilus edulis, 12 Tapes
semidecussatus, two Tapes decussatus, one Ensis directus, two
Crassostrea gigas, and one Venus verrucosa.

Water samples included 10 seawater samples, 11 pipe water
samples, one from a desalter, and one torrent water sample. They
included eight brackish water samples from the mussel farming
centre in Syracuse; three pipe water samples from Santo Stefano di
Quisquina (AG), where a NoV outbreak occurred in 2011
(Giammanco et al., 2014); three water samples from Lampedusa
island (AG), including one from a desalter and two seawater
samples where a HAV outbreak occurred in 2014; one torrent water
sample from the province of Caltanissetta; eight pipe water
samples from the province of Catania where a NoV outbreak
occurred in May 2016 (Giammanco et al., 2018) (Figure 1).

Vegetable samples consisted of 51 first range raw vegetables
and one fourth range ready-to-eat vegetable (belonging to
different brands and from supermarkets, local markets, and
farms), one peach, and 17 frozen berries, including two black-
berries and 15 mixed berries (composed of blackberries, blue-
berries, and raspberries). The vegetables included 19 mixed
salads, four Swiss chard (Beta vulgaris var. cicla), two chicory
(Cichorium intybus), one parsley (Petroselinum crispum), five celery
(Apium graveolens), two escaroles (Cichorium endivia), one endive
(Cichorium endivia crispum), nine local lettuces, three iceberg
(Lactuca sativa), five romaine lettuce (Lactuca sativa L. var.
longifolia), and one trocadero lettuce (Lactuca scariola sativa)
(Figure 1).

Food samples included two sea urchin eggs (huevas de erizo,
Paracentrotus lividus) from Morocco and nine raw vegetable, fish,
mollusc, and crustacean based food preparations from restaurants
in Palermo.
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Figure 1. Maps of Sicily showing the locations where the samples were collected.
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Finally, 28 swab samples were collected, including 19 surface
swabs from two canteens and two restaurants and nine swabs from
the hands of workers in restaurants in Palermo.

Preparation of molluscs, foods, gastronomic preparations, and swabs

Each batch of mollusc sample (consisting of 25 g of hepato-
pancreas), foods, and gastronomic preparations were homoge-
nized with 0.05 M glycine buffer (pH 9.2), processed with a double
1.5 M NaCl PEG 8000 (final concentration of 12.5%) precipitation,
followed by high-speed centrifugation (10 000 � g for 20 min at
+4 �C). The final pellet was resuspended in 3 ml of antibiotic
phosphate buffered saline (PBS) and stored at +4 �C overnight
(Croci et al., 1999). A parallel extraction from 2 g of hepatopancreas
was performed following the ISO technical specification (ISO
15216-2:2013), using treatment with a proteinase K solution. The
samples were spiked with 10 ml of titrated mengovirus process
control strain MC0 (1.6 � 104 TCID50/ml), to monitor extraction
efficiency following the ISO 15216 guidelines. They were digested
with 2 ml of proteinase K (0.1 mg/ml) at 37 �C with shaking for
60 min, and then maintained at 60 �C for 15 min to produce
inactivation of the enzyme. Finally, the samples were centrifuged
at 3000 � g for 5 min at room temperature and the supernatants
were collected and retained for genome extraction. The swabs
were squeezed and centrifuged at 3000 rpm (+4 �C).

Preparation of water samples

Water samples (10 l each) were concentrated through a
tangential ultrafiltration system (Sartoflow Slice 200 Benchtop
Crossflow System; Sartorius AG, Goettingen, Germany), using
appropriate membranes (SG Hydrosart 10 kDa) pre-treated with
300 ml of 3% beef extract (BE) pH 7, by recirculating it for 10 min in
the system, at a pressure not higher than 1.30 bar. The elution and
recovery of viruses attached to the membranes was performed by
washing with 200 ml of 3% BE pH 9.5, to reduce the initial volume
to 10–12 ml. The pH of the eluate was then checked with litmus
paper and if necessary brought to pH 7 with HCl (Aulicino et al.,
1993; Giammanco et al., 2014). The use of ultrafiltration systems as
a concentration method to recover viruses from environmental
water samples combined with RT-PCR to detect viral genomes has
been demonstrated to provide a recovery rate of >50% of multiple
viruses (Olszewski et al., 2005) and is at present one of the most
sensitive approaches for viral detection.
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Preparation of vegetables and berries

Viruses were concentrated from vegetables as follows: 50 g of
each sample was coarsely chopped, spiked with 10 ml of titrated
mengovirus process control strain to monitor extraction efficiency
following the ISO 15216 guidelines, and homogenized with 80 ml
of elution buffer (Tris/glycine/BE (TGBE) buffer pH 9.5) (and
pectinase if the sample consisted of berries) using a mixer at
maximum speed for 1 min. This homogenate was agitated for
20 min at room temperature. Next, the homogenate was centri-
fuged at 10 000 � g for 30 min at 4 �C; the aqueous phase was
recovered and its pH was adjusted to 7.2 under constant agitation.
PEG 8000 (Sigma Chemical Co., St. Louis, MO, USA)/NaCl was added
at a ratio of 1:4 of the volume, and the solution was homogenized
by shaking for 1 min and incubated with constant rocking for
60 min (or overnight) at 4 �C. Viruses were concentrated by
centrifugation at 10 000 � g for 30 min at 4 �C. The supernatant was
decanted and discarded and the pellet was compacted by
centrifugation at 10 000 � g for 5 min at 4 �C. The supernatant
Table 1
Molecular methods, primers, and probes used in this study.

Molecular Methods Primers
Probes

Sequence 5’–3’ 

Semi-NestedRT-PCR
HAV

AV1 (Rev) 5’-GGAAATGTCTCAGGTACTTTCTTT
AV2 (Fw) 5’-GTTTTGCTCCTCTTTATCATGCTAT
AV3 (Rev): 5’-TCCTCAATTGTTGTGATAGC-3

Real-time RT-PCR HAV HAV68 (Fw) 5’- TCACCGCCGTTTGCCTAG -3’
HAV240 (Rev) 5’- GGAGAGCCCTGGAAGAAAG -

HAV150p (Probe) FAM 5’-CCTGAACCTGCAGGAATTAA-3

First RT-PCR GI-GII
NoV

JV12Y 1421-f (Fw) 5’-ATACCACTATGATGCAGAYTA-
JV13I 1422-r (Rev) 5’-TCATCATCACCATAGAAIGAG-3

Semi-NestedRT-PCR
GI NoV

GIc 1423-f (Fw) 5’-TCNGAAATGGATGTTGG-3’ 

JV13I 1422-r (Rev)
5’-TCATCATCACCATAGAAIGAG-3

Semi-NestedRT-PCR
GII NoV

JV12Y 1421-f (Fw) 5’-ATACCACTATGATGCAGAYTA-
NoroII-Rc 1424-r

(Rev)
5’-AGCCAGTGGGCGATGGAATTC-

Real-time RT-PCR GI
NoV

QNIF4 (Fw) 5’-CGCTGGATGCGNTTCCAT-3’
NF1LCR (Rev) 5’-CCTTAGACGCCATCATCATTTAC

NVGG1p (Probe) FAM 5’-TGGACAGGAGAYCGCRATCT-3’ 

Real-time RT-PCR GII
NoV

QNIF2 (Fw) 5’-ATGTTCAGRTGGATGAGRTTCTCW
COG2R (Rev) 5’-TCGACGCCATCTTCATTCACA-3
QNIFs (Probe) FAM 5’-AGCACGTGGGAGGGCGATCG-3

NestedRT-PCR GIV
NoV

1531-f (Fw) 5’-GCACTCGGCATCATGACAAAATTC
1532-r (Rev) 5’-GTTTGGGTCCCAATTCCAA-3
1698-f (Fw) 5’-GTACTGGACCAAGGGCCCGA-3
1699-r (Rev) 5’-GAGGTTGCCCGCACCATCCG-3

NestedRT-PCR EV Ent 1-1246 (Fw) 5’-CGGTACCTTTGTACGCCTGT-3
Ent 2-1247 (Rev) 5’-ATTGTCACCATAAGCAGCCA-3
neEnt 1-1248 (Fw) 5’-TCCGGCCCCTGAATGCGGCTA-
neEnt 2-1249 (Rev) 5’-GAAACACGGACACCCAAAGTA-

NestedRT-PCR HEV ORF1F-1679-f (Fw) 5’-CCAYCAGTTYATHAAGGCTCC-
ORF1R-1680-r (Rev) 5’-TACCAVCGCTGRACRTC-3’
ORF1FN-1681-f (Fw) 5’-CTCCTGGCRTYACWACTGC-3

ORF1RN-1682-r
(Rev)

5’-GGRTGRTTCCAIARVACYTC-3

NestedPCR BoV ID_2028 (Fw) 5’-GAAATGCTTTCTGCTGYTGAAA
ID_2029 (Rev) 5’-GTGGATATACCCACAYCAGAA-
ID_2030 (Fw) 5’-GGTGGGTGCTTCCTGGTTA-3
I1_2030 (Rev) 5’-TCTTGRATTTCATTTTCAGACAT-

NestedPCR AdV ADE1–hexAA1885
(Fw)

5’-GCCGCAGTGGTCTTACATGCACAT
was discarded and the pellet was resuspended in 2 ml of PBS with
antibiotics and antimycotic (1000 U/ml penicillin G sodium salt,
1 mg/ml streptomycin sulphate, 2.5 mg/ml amphotericin B) and
centrifuged at 10 000 � g for 15 min. The supernatant was
decontaminated by incubating it for 2 h at 4 �C (or overnight).
The upper aqueous phase containing viruses was recovered and
used for analysis or kept frozen at �20 �C until use.

Nucleic acid extraction

For the extraction of the viral genomes (RNA and DNA), a
commercial kit based on the selective binding of nucleic acids to
silica magnetic beads was used (NucliSENS miniMAG extraction;
bioMérieux Italia S.p.A., Rome, Italy), as described by the
manufacturer. In order to compare the extraction results, spin
columns were also used for some samples, employing the QIAamp
Viral RNA Mini Kit (Qiagen, RNA), by varying the initial volume of
the sample to be extracted (560 ml) and the volume of the eluate
(100 ml).
Target PCR Product
(bp)

Reference

G-3’ VP1 First 247 bp
Semi-Nested

210 bp

Le Guyader et al., 1994
G-3’
’

 5’-NCR 173 bp Costafreda et al., 2006
ISO/TS 15216-2:20133’

’ MGB

3’ GI-GII NoV RNA
polymerase

First 327 bp Vinje & Koopmans, 1996
Green et al., 1998

Vennema et al., 2002
Boxman et al., 2006

’

GI NoV RNA
polymerase

Semi-Nested
188 bp

’

3’ GII NoV RNA
polymerase

Semi-Nested
237 bp3’

 ORF2 86 bp da Silva et al., 2007
ISO/TS 15216-2:2013-3’

TAMRA
GA-3’ ORF2 89 bp
’

’ TAMRA

A-3’ ORF1/ORF2 First 995 bp Muscillo et al., 2013
’

’ Nested 323 bp
’

’ 5’NTR First 540 bp Pina et al., 1998
’

3’ 5’NTR Nested 123 bp
3’

3’ ORF1 First 348 bp Fogeda et al., 2009

’ Nested172 bp
’

-3’ VP1/VP2 First 543 bp La Rosa et al., 2015
Iaconelli et al., 20163’

’ Nested 382 bp
3’

C-3’ hexon genes First 301 bp Formiga-Cruz et al., 2005
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Molecular detection and quantification

HAV, NoV (GI/GII/GIV), EV, RoV, HEV, AdV, and BoV were
analyzed by molecular methods: nested (RT) PCR and sequencing,
and real-time (RT) PCR. The molecular methods, primers, and
probes used in this study are shown in Table 1, along with target
regions, PCR amplicons, and references.

A semi-nested RT-PCR for HAV was performed using a
GeneAmp RNA PCR Core Kit (Applied Biosystems). Semi-nested
RT-PCR for GI and GII NoV and a nested RT-PCR for GIV NoV, EV,
BoV, and HEV were performed by MyTaq One-Step RT-PCR Kit and
MyTaq Red Mix Kit (Bioline). AdV nested PCR was performed using
the Taq PCR Core Kit (Qiagen).

The real-time RT-PCR for HAV and GI and GII NoV were prepared
using the UltraSense One-Step (Quantitative) qRT-PCR System
(Invitrogen) RNA kit, as described in ISO 15216-2:2013. The
genome of RoV was amplified by real-time RT-PCR using the
TaqMan Universal PCR Master Mix (Applied Biosystems).

Confidence intervals (95%) of the positive results were
calculated for proportions.

The positive RT-PCR/PCR products obtained were purified using
illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare)
and were subjected to direct automated sequencing on both
strands (BMR Genomics, Padova, Italy). The raw forward and
reverse ABI files obtained by sequencing were aligned and
assembled into a consensus sequence using MEGA 7 software,
and sequences were submitted to BLAST analysis for genotyping at
http://blast.ncbi.nlm.nih.gov/Blast.cgi.

Results

The results of the two nucleic acid extraction methods (method
of magnetic extraction and method employing spin columns) were
comparable, and the results obtained from virological analysis are
summarized in Table 2.

Of the 108 mollusc samples, 35 (32.4%, 95% CI 24.3–41.7%) were
positive for enteric viruses, showing a high positivity for HAV
(13%), NoV (18.5%; 10.2% GI (one GI.1, seven GI.2, two GI.3, one
GI.8), 5.6% GII, and 2.8% GIV), and EV (7.4%). BoV was found in 3.7%,
HEV in 0.9%, and Adv in 1.9% of the molluscs. No RoV was found in
shellfish.

The 14 HAV-positive shellfish (one HAV 1A and 13 HAV 1B) were
only detected by semi-nested RT-PCR. All 10 GI NoV-positive
shellfish were detected by semi-nested RT-PCR and only two of 10
GI NoV by real-time RT-PCR. All six GII NoV-positive shellfish were
detected by real-time RT-PCR GII NoV and three of six by semi-
nested RT-PCR. The recovery efficiency, determined on the process
control mengovirus, was >1% for all samples; thus the results are
Table 2
Detection of enteric viruses in shellfish, water, vegetables, food preparations, and swab

Number Number and percentage of positive samples

HAV GI NoV GII NoV 

Total 240 14
5.8%

14
5.8%

11
4.6%

Shellfish 108 14
13%

11
10.2%

6
5.6%

Water 23 0
–

0
–

5
21.7%

Vegetables 70 0
–

2
2.9%

0
–

Food 11 0
–

0
–

0
–

Swabs 28 0
–

0
–

0
–

HAV, hepatitis A virus; NoV, norovirus; EV, enterovirus; RoV, rotavirus; HEV, hepatitis 
considered valid according to ISO 15216-2:2013. Of the positive
shellfish, 16 were positive by both extraction methods used, while
the remaining were positive by either one or the other (13 with
proteinase K and 10 with glycine), confirming the results obtained
in previous investigations (La Rosa et al., 2012; Mohan et al., 2014),
and thus indicating that the positives would have been under-
estimated if a single method had been used. A Chi-square test was
used to examine their association. A p-value of <0.001 was deemed
significant.

Of the 23 water samples, six (26%, 95% CI 12.6–46.5%) were
positive for enteric viruses. Five water samples (21.7%) were
positive for GII NoV (GII.2 and GII.4), only by real-time RT-PCR GII
NoV. The superficial freshwater sample was found positive for GII.4
and also for RoV. Only one water sample (4.3%) was positive for
HEV (G3). None of the other tested enteric viruses were detected in
the water samples.

Of the 70 vegetable samples, five (7.1%, 95% CI 3.1–15.7%) were
positive for enteric viruses. Two samples (2.9%) were positive for GI
NoV (GI.5 and GI.6), only by semi-nested RT-PCR. EV were detected
in two samples (2.9%) and HEV in one sample (1.4%). The recovery
efficiency, determined on the process control mengovirus, was >1%
for all the samples and thus the results were considered valid
according to ISO 15216-2:2013.

In the gastronomic preparations, only one EV (9%) was detected.
No enteric viruses were detected in the berries, fruit, or swabs
analyzed.

Eleven samples (4.6%) were positive for two or three viruses: 10
ELM and one torrent water sample.

Discussion

Viruses are recognized as a cause of foodborne and waterborne
disease transmitted by faecal–oral cycle. Among the main foods
involved in the transmission of human enteric viruses are molluscs
and fruits and vegetables irrigated with wastewater and/or washed
with non-potable water or contaminated by contact with surfaces
or the hands of infected personnel during preparation. Also, viral
waterborne disease outbreaks associated with contaminated
drinking water or recreational water are reported worldwide.

The last decade has seen a succession of health alarms
regarding ‘foodborne diseases’ and ‘waterborne diseases’, increas-
ing attention to food and water safety (Pintó et al., 2009; EFSA,
2011; Sánchez and Bosch, 2016). However, data on viral
contamination of food and water in Sicily are scarce and
fragmentary. This is the first study to analyze both matrices for
a panel of enteric viruses.

Among the wide range of enteric viruses, seven groups – HAV,
NoV, EV, RoV, HEV, AdV, and BoV – were selected for this study due
 samples.

GIV NoV EV RoV HEV AdV BoV

3
1.2%

11
4.6%

1
0.4%

3
1.2%

2
0.8%

4
1.7%

3
2.8%

8
7.4%

0
–

1
0.9%

2
1.9%

4
3.7%

0
–

0
–

1
4.3%

1
4.3%

0
–

0
–

0
–

2
2.9%

0
–

1
1.4%

0
–

0
–

0
–

1
9%

0
–

0
–

0
–

0
–

0
–

0
–

0
–

0
–

0
–

0
–

E virus; AdV, adenovirus; BoV, bocavirus.
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to their epidemiological significance as foodborne and waterborne
pathogens (EFSA, 2011; La Rosa et al., 2012; Sánchez and Bosch,
2016). The study found an abundance of viruses in samples from
shellfish, water, and vegetables and provided information on the
presence of contamination in the environment, chiefly in shellfish
production areas, which is useful for generating a picture of the
circulation of viral pathogens able to infect humans.

Across all samples, HAV showed the highest percentage of
presence (5.8%), followed by GI NoV (5.8%), EV (4.6%), and GII NoV
(4.6%). Low percentages of BoV (1.7%), HEV (1.2%), GIV NoV (1.2%),
AdV (0.8%), and RoV (0.4%) were found. In particular, high positivity
for HAV (13%) was identified in bivalve mollusc shellfish samples,
which were investigated as sentinel surveillance for marine
pollution. No HAV was detected in the other matrices studied.

A recent outbreak of HAV in Korea had a reported attack rate of
14.6% (12/82); 11% (9/82) were symptomatic and one person died
(Shin et al., 2017). Iaconelli et al. (2015) assessed the occurrence of
HAV in shellfish samples and detected the virus in 23.2% of
samples: 12 genotype IB and one genotype IA. La Rosa et al. (2014)
investigated the spread of HAV in Italy through the monitoring of
raw urban sewage and detected several variants, with prevalence
of the IB strain having a countrywide distribution.

Of the 23 water samples in the present study, 21.7% were
positive for GII NoV. Several studies have reported the detection of
enteric viruses in water samples worldwide (La Rosa et al., 2010a,b;
La Rosa et al., 2014; Kamel et al., 2011; Prado et al., 2012; Osuolale
and Okoh, 2015), suggesting the contamination of aquatic
environments. In a study of five municipal wastewater treatment
plants located in central Italy, the concentration of AdV was highest
in both raw and treated water compared with EV and NoV (GI and
GII) (La Rosa et al., 2010b). During March 2011, an outbreak of
gastroenteritis occurred in Agrigento, Sicily and NoV was identified
in stool samples and in water samples from the public water
system (Giammanco et al., 2014). In May 2016, a NoV gastroenter-
itis outbreak occurred at a seaside resort near Taormina (Mascali,
Sicily), which originated from the municipal water distribution
system (Giammanco et al., 2018).

In the present study NoV were also detected in shellfish (9.3%
GI, 5.6% GII), and at a low percentage in vegetables (2.9%). NoV
repeatedly cause outbreaks, either waterborne or associated with
lettuce or shellfish probably contaminated with human faecal
material used as fertilizer (Müller et al., 2016). However, the source
is not identified in many outbreaks. In a meta-analysis of NoV
outbreaks in nursing homes, foodborne introduction was de-
scribed for 7%, and only 0.7% of outbreaks were reported to be
foodborne, 28.5% person-to-person, and 70.8% remained unknown
or not mentioned (Petrignani et al., 2015).

HBoV was detected in 3.7% of shellfish. Recently, the presence of
HBoV in environmental samples has also been reported in Italy and
worldwide (Iaconelli et al., 2016; La Rosa et al., 2017). La Rosa et al.
(2018) detected HBoV in bivalve shellfish with a relevant
prevalence, and reported the presence of HBoV in bivalve molluscs
for the first time. In particular, the PCR products of three Mytilus
galloprovincialis and one Tapes decussates were sequenced and
characterized as HBoV-2 (three samples) and HBoV-3 (one sample
previously detected positive for HAV IB).

The genetic heterogeneity of the viral strains from the positive
Sicilian samples was particularly interesting, highlighting the
presence of HAV IA and IB, of six different genotypes of GI NoV
(GI.1, GI.2, GI.3, GI.5, GI.6, GI.8), and of three genotypes of GII NoV
(GII.1, GII.2, GII.4) in the food matrices. A single genotype was
detected for GIV NoV (GIV.1), HEV (G3), and AdV (AdV40). The
present study detected the presence of HBoV in bivalve molluscs,
confirming the results obtained in a previous investigation by our
group (La Rosa et al., 2018).
This is the first surveillance study to show representative data
from Sicily regarding food and environmental contamination by
human enteric viruses. The information is essential for informed
risk assessment of foodborne and waterborne diseases and the
development of risk management decisions.

The study findings clearly demonstrate that human pathogenic
viruses are widely found in aquatic environments and on
vegetables. The results could be used as scientific support for
defining appropriate strategies and methodologies to assess the
public health risk linked to contamination and to implement
regulations and systemic virological controls that can guarantee a
high protection level applicable to the entire food supply chain. An
integrated surveillance system including food safety and environ-
mental and clinical human cases is clearly needed. It is important
to obtain molecular data on virus isolated from humans and the
environment. Such an integrated alert system would help rapidly
understand possible future outbreaks and epidemics.
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