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Introduction
In a recent investigation by our group, subjects with Alzhei-

mer’s disease (AD) exhibited low plasma lactate and pyruvate 
concentrations, indicating altered skeletal muscle metabolic ener-
gy-generating pathways. This was particularly evident in subjects 
with a longer diagnosis time (> 5 years). However, the plasma con-
centrations of ketone bodies (KBs, β-hydroxybutyrate and acetoac-
etate) were normal [1]. In the present article we point out the met-
abolic mechanisms underlying both the deficit in circulating lactate 
and pyruvate, and normal KB concentrations. This could potentially 
be important for clinical practice in the non-pharmacological treat-
ment of the disease.

Potential Mechanisms Underlying Altered Circulating 
Lactate and Pyruvate Levels 

Abnormalities in glucose breakdown both through the glycolytic 
and aerobic pathways may account for the changes in plasma 
lactate and pyruvate. With respect to glycolysis, several steps 
might be interrupted in the muscles of AD subjects. For example, 
a reduction in myocyte glucose availability may occur following 
reduced glycogen store, as a consequence of the activation of the 
enzyme glycogen synthase kinase 3 β [2] in AD patients. This 
enzyme inhibits the enzyme glycogen synthase which normally 
catalyses the synthesis of glycogen. Moreover, other potential 
glycolytic defects may be decreased levels of glucose transport  

 
[3], decreased phosphofructokinase activity [4] (which catalyses 
the irreversible phosphorylation of fructose-6-phosphate to 
fructose-1,6 bisphosphate), and increases in oxidatively modified 
glycolytic enzymes including enolase [5] (which catalyses the 
conversion of 2-phosphoglycerate to phosphoenolpyruvate). These 
enzyme defects have been described in neurons. However, in the 
light of the results of our previous study [1], we postulate that they 
might also be present in the skeletal muscle of the AD patients in 
our study. 

Our hypothesis may be supported by two factors. Firstly, 
neurons and myocytes produce energy using the same enzyme 
activities. Secondly, the pathogenic β-AP, which is present in skeletal 
muscle [6], also exerts its toxicity on the production of pyruvate 
through glycolysis [7].

The fact that muscle hypometabolism depends on the diagnosis 
time of the disease suggests that the deterioration of the glycolytic 
pathway for energy production is progressive. The low plasma 
pyruvate level in subjects with a longer diagnosis time does not 
only mean reduced synthesis through glycolysis but also impaired 
utilisation of an important glucose by-product in mitochondrial 
reactions for aerobic energy generation. Some of the muscle 
pyruvate may be transaminated to the gluconeogenic amino acid 
alanine. We cannot exclude the possibility that impaired energy 
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provision to extramuscular tissues from low pyruvate may be 
compensated for by partial transformation of the pyruvate into 
alanine, one of the most important gluconeogenic amino acids. In 
any case, low plasma pyruvate means reduced liver availability of 
an important metabolite for energy production and other metabolic 
processes. Low/blocked mitochondrial utilisation of pyruvate 
impairs mitochondrial efficiency in energy production. This 
could be catastrophic for AD subjects, should they have intrinsic 
mitochondrial defects that have been reported in other body cells 
such as the dysregulated tricarboxylic chain acid (TCA) cycle [8] 
and changes in oxidative phosphorylation systems [9]. This has 
been experimentally demonstrated both in brain and peripheral 
cells such as fibroblasts [10] and platelets [11].

Plausible Explanations For Normal Circulating KBs
With respect to KBs, the normal plasma concentrations, an 

expression of a normal liver ketogenesis, may be due to the fact 
that the AD subjects were not starving and their dietary intakes, 
including fat ingestion and plasma glucose, were normal. We cannot 
exclude the possibility that skeletal muscle may partly contribute to 
normal plasma levels of KBs. Indeed, muscle tissue can synthesise 
KBs from Acetyl-CoA via direct deacylation [12]. This can occur 
whenever the release of free fatty acids by adipose tissue is higher 
than the fatty acid oxidation capacity of the muscle [12].

Potential Implications For Clinical Practice
Altered glucose metabolism might have a negative impact on the 

efficacy of physical rehabilitation that aims to maximise activities 
of daily living, function and mobility and reduce peripheral fatigue 
and the risk of injuries and falls. Moreover, this energy deficit can 
have unfavourable effects on the performance of physical activities, 
for example deambulation, in which the integrated metabolic work 
of vital visceral organs requires prompt adequate extra-energy 
availability. All these aspects involving the relationship between 
energy metabolism and complex physical activities of daily 
living, which have an impact on the quality of life of AD patients, 
should be investigated further. Another negative effect of altered 
glucose metabolism may be the impairment of several organs. 
Low plasma lactate, especially if associated with concomitant low 
pyruvate, reduces the rate of liver and kidney glucose production 
(gluconeogenesis). In this condition, the brain and the cells with 
obligatory anaerobic metabolism (red cells, leukocytes and kidney 
medulla) receive less glucose. Reduced gluconeogenesis aggravates 
brain glucose hypometabolism [13], which leads to a progression of 
synaptic dysfunction [14].

The low levels of lactate in AD patients cause its reduced 
utilisation as a fuel in the heart, since the myocardium normally 
uses circulating lactate as an important energy source. One practical 
consequence of our study [1] is that an adequate nutrition intake 
by subjects with a longer diagnosis time of AD may not be enough 
to ensure normal metabolic pathways of glucose breakdown. 
Consequently, nutrition intakes of AD subjects should be monitored 
in order to ensure that there is at least adequate peripheral 
availability of nutrients. Another potential consequence for clinical 
practice is that AD subjects with muscle hypometabolism may 

increase muscle amino acid release from protein breakdown to 
ensure adequate gluconeogenesis processes. This requires a well-
planned investigation.  

Conclusion
The previous study [1] and the underlying metabolic alterations 

pointed out here suggest a need for future investigations to address 
whether and how to limit altered energy metabolism that could 
help to improve physical performance in AD subjects.
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