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We establish a formula for the distance to 𝐿∞ from the grandOrlicz space 𝐿Φ)(Ω) introduced in Capone et al. (2008). A new formula
for the distance to 𝐿∞ from the grand Lebesgue space 𝐿𝑛)(Ω) introduced in Iwaniec and Sbordone (1992) is also provided.

1. Introduction

Let Ω be a bounded open subset of R𝑛 and let 1 < 𝑝 < ∞.
The grand 𝐿

𝑝-space, denoted by 𝐿𝑝) = 𝐿
𝑝)

(Ω), consists of
functions ℎ ∈ ⋂

0<𝜀≤𝑝−1
𝐿
𝑝−𝜀

(Ω) such that

‖ℎ‖
𝑝)
= sup
0<𝜀<𝑝−1

(𝜀−∫

Ω

|ℎ (𝑥)|
𝑝−𝜀

𝑑𝑥)

1/(𝑝−𝜀)

< ∞, (1)

where −∫
Ω

= (1/|Ω|) ∫
Ω

denotes the average overΩ. Note that
‖ ⋅ ‖
𝑝)
is a norm and 𝐿𝑝)(Ω) is a Banach space. This space was

introduced by Iwaniec and Sbordone in connection with the
integrability of the Jacobian [1], and it comes into play in a
various number of problems (see, e.g., [2–15]).

It is worth pointing out that 𝐿∞(Ω) is not a dense
subspace of 𝐿𝑝)(Ω) (see [9]); it is proved in [16] that the
distance to 𝐿∞ in 𝐿𝑝) is given by

dist
𝐿
𝑝) (ℎ, 𝐿

∞

) = lim sup
𝜀→0
+

(𝜀−∫

Ω

|ℎ (𝑥)|
𝑝−𝜀

𝑑𝑥)

1/(𝑝−𝜀)

. (2)

A generalization of the grand Lebesgue space is the grand
Orlicz space 𝐿Φ)(Ω), introduced by Capone et al. in [17]. Let
us recall thatΦ : [0,∞) → [0,∞) is called anOrlicz function
if it is continuous, strictly increasing, and satisfies Φ(0) = 0

and lim
𝑡→∞

Φ(𝑡) = ∞. The Orlicz space 𝐿Φ(Ω) associated

with Φ consists of all measurable functions 𝑢 : Ω → R for
which there exists 𝜆 > 0 such that

∫

Ω

Φ(

|𝑢 (𝑥)|

𝜆

) 𝑑𝑥 < ∞. (3)

Let us introduce the Luxemburg functional defined as

‖𝑢‖
𝐿
Φ
(Ω)

= inf {𝜆 > 0 : −∫

Ω

Φ(

|𝑢 (𝑥)|

𝜆

) 𝑑𝑥 ≤ 1} . (4)

Because of the monotonicity of Φ we have

Φ ((1 − 𝛼) 𝑠 + 𝛼𝑡) ≤ [Φ (𝑠) + Φ (𝑡)]

for every 𝑠, 𝑡 ∈ (0,∞) , 𝛼 ∈ (0, 1) ,

(5)

and among Orlicz functions we will consider the ones
satisfying the following condition:

Φ (𝛼𝑡) ≤ 𝐶 (𝛼)Φ (𝑡)

for every 𝑡 ∈ (0,∞) , 𝛼 ∈ (0, 1) ,

(6)

for some constant 𝐶(𝛼) such that 𝐶(𝛼) → 0 as 𝛼 → 0. This
will be done in order to ensure that the functional in (4) is
a quasinorm. In what follows, we will lose no generality in
assuming that

Φ (1) = 1. (7)
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Suppose that

∫

∞

1

Φ (𝑡)

𝑡
𝑛+1

𝑑𝑡 = ∞, (8)

and let 𝑁
Φ

: [0, 1] → [0,∞) be the increasing weight
defined as

𝑁
Φ
(𝜎) =

1

∫

∞

1

([Φ (𝑡)]
1/(1+𝜎)

/𝑡
𝑛+1

) 𝑑𝑡

. (9)

Following a definition given in [18], we suppose that 𝑁
Φ
is

tempered; that is,

𝑐
1
𝑁
Φ
(𝜎) ≤ 𝑁

Φ
(2𝜎) ≤ 𝑐

2
𝑁
Φ
(𝜎)

for every 𝜎 ∈ (0, 𝜎
0
) , 𝜎
0
∈ (0,

1

2

)

(10)

for some 𝑐
1
, 𝑐
2
> 0.

An example of function Φ satisfying (6)–(10) is Φ(𝑡) =

𝑡
𝑛

(1 + log(1 + 𝑡))−𝛼 for 0 ≤ 𝛼 ≤ 1, and in this case 𝑁
Φ
(𝜎) ≈

𝜎
1−𝛼 as 𝜎 → 0

+ when 0 ≤ 𝛼 < 1 and 𝑁
Φ
(𝜎) ≈ | log𝜎|−1 as

𝜎 → 0
+ when 𝛼 = 1 (see Section 5 for details).

The grand Orlicz space 𝐿Φ)(Ω) consists of all measurable
functions 𝑢 : Ω → R for which there exists 𝜆 > 0 such that

sup
0<𝜎<𝜎0

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡)

𝜆

) 𝑑𝑡 < ∞, (11)

where 𝑢∗ is the decreasing rearrangement of 𝑢

𝑢
∗

(𝑡) = inf {ℎ ≥ 0 : 𝜇
𝑢
(ℎ) ≤ 𝑡 for every 𝑡 ∈ [0, |Ω|]} (12)

and 𝜇
𝑢
is the distribution function of 𝑢

𝜇
𝑢
(ℎ) = |{𝑥 ∈ Ω : |𝑢 (𝑥)| > ℎ}| for every ℎ ≥ 0. (13)

The quasinorm denoted by ‖ ⋅ ‖
𝐿
Φ)
(Ω)

is defined as follows:

‖𝑢‖
𝐿
Φ)
(Ω)

= inf {𝜆 > 0 :

sup
0<𝜎<𝜎0

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡)

𝜆

) 𝑑𝑡 ≤ 1} .

(14)

We address that if we takeΦ(𝑡) = 𝑡
𝑛 also the grand Orlicz

space𝐿Φ)(Ω) reduces to the grand Lebesgue space𝐿𝑛)(Ω) (see
[17, Proposition 2.6], [6]).

Our main result provides a formula for the distance of a
function 𝑢 ∈ 𝐿Φ)(Ω) to 𝐿∞(Ω), defined by

dist
𝐿
Φ)
(Ω)

(𝑢, 𝐿
∞

(Ω)) = inf
𝜑∈𝐿
∞
(Ω)

󵄩
󵄩
󵄩
󵄩
𝑢 − 𝜑

󵄩
󵄩
󵄩
󵄩𝐿
Φ)
(Ω)
. (15)

Theorem 1. Let Ω be a bounded open set of R𝑛. Assume that
Φ : [0,∞) → [0,∞) is an Orlicz function verifying (6)–(10).
For every function 𝑢 ∈ 𝐿Φ)(Ω), one has

dist
𝐿
Φ)
(Ω)

(𝑢, 𝐿
∞

(Ω))

= inf {𝜆 > 0 :

lim sup
𝜎→0

+

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡)

𝜆

) 𝑑𝑡 ≤ 1} .

(16)

Our theorem is in the framework of the results of paper
[19], which cannot be directly applied to our context, without
a preliminary check that the grand Orlicz spaces 𝐿Φ) can be
characterized as interpolation or extrapolation spaces. We
also refer to [5, 16, 20–24] for the problem of finding formulae
for the distance to a subspace in a given function space.

Theorem 1 gives, as byproduct, a characterization of
the closure of 𝐿

∞

(Ω) in 𝐿
Φ)

(Ω) with respect to the
norm ‖ ⋅ ‖

𝐿
Φ)
(Ω)

, which will be denoted by 𝐿Φ)
𝑏
(Ω).

Theorem 2. A function 𝑢 belongs to 𝐿Φ)
𝑏
(Ω) if and only if

lim
𝜎→0

+
𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(𝛽𝑢
∗

(𝑡)) 𝑑𝑡 = 0 ∀𝛽 > 0. (17)

For the special choice Φ(𝑡) = 𝑡
𝑛, Theorem 1 also provides

new formula for the distance to 𝐿∞ in 𝐿𝑛) (see Theorem 5).

2. The Main Result

We start this section recalling few basic properties of the
decreasing rearrangement 𝑢∗ of a measurable function 𝑢 :

Ω → R defined in a bounded open set Ω of R𝑛. We refer
the reader to [25, Propositions 1.7 and 1.8] for details.

Lemma 3. Let 𝑢, V : Ω → R be measurable functions defined
in a bounded open set Ω of R𝑛:

(𝑢 + V)∗ (𝑡
1
+ 𝑡
2
) ≤ 𝑢
∗

(𝑡
1
) + V∗ (𝑡

2
)

𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑡
1
, 𝑡
2
≥ 0 𝑤𝑖𝑡ℎ 𝑡

1
+ 𝑡
2
≤ |Ω| ,

(18)

(𝑐V)∗ = 𝑐V∗ 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 c > 0, (19)

V∗ (0) = ‖V‖
𝐿
∞
(Ω)

𝑖𝑓 V ∈ L∞ (Ω) . (20)

We need a technical result providing a useful property of
the quantity

(𝑢)
𝐿
Φ)
(Ω)

= inf {𝜆 > 0 :

lim sup
𝜎→0

+

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡)

𝜆

) 𝑑𝑡 ≤ 1} .

(21)
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We recall that the goal of Theorem 1 consists in proving
that (𝑢)

𝐿
Φ)
(Ω)

is equal to dist
𝐿
Φ)
(Ω)
(𝑢, 𝐿
∞

(Ω)). We notice that
if 𝜑 ∈ 𝐿

∞

(Ω), then (𝜑)
𝐿
Φ)
(Ω)

= 0, because from (8) and (10) it
is𝑁
Φ
(𝜎) → 0 as 𝜎 → 0

+ and the average remains bounded
for every 𝜎 > 0.

Lemma 4. Let Φ : [0,∞) → [0,∞) be an Orlicz function
satisfying the assumptions of Theorem 1. Assume that 𝑢 ∈

𝐿
Φ)

(Ω) and 𝜑 ∈ 𝐿
∞

(Ω). Then

(𝑢)
𝐿
Φ)
(Ω)

= (𝑢 − 𝜑)
𝐿
Φ)
(Ω)
. (22)

Proof. Let 𝜆 > (𝑢)
𝐿
Φ)
(Ω)

and let 𝜀 ∈ (0, 𝜆) so that

𝜆 > 𝜆 − 𝜀 > (𝑢)
𝐿
Φ)
(Ω)
. (23)

We use (18) with 𝑡
1
= 𝑡 ∈ [0, |Ω|] and 𝑡

2
= 0 and (20), and we

get

(𝑢 − 𝜑)
∗

(𝑡) ≤ 𝑢
∗

(𝑡) +
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩𝐿
∞
(Ω)
. (24)

We use (5) to get

Φ(

(𝑢 − 𝜑)
∗

(𝑡)

𝜆

) ≤ Φ(

𝑢
∗

(𝑡)

𝜆

+

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩𝐿
∞
(Ω)

𝜆

)

= Φ(

𝜆 − 𝜀

𝜆

𝑢
∗

(𝑡)

𝜆 − 𝜀

+

𝜀

𝜆

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩𝐿
∞
(Ω)

𝜀

)

≤ Φ(

𝑢
∗

(𝑡)

𝜆 − 𝜀

) + Φ(

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩𝐿
∞
(Ω)

𝜀

) .

(25)

We multiply by 𝑡𝜎 and we integrate over [0, |Ω|] to get

−∫

|Ω|

0

𝑡
𝜎

Φ(

(𝑢 − 𝜑)
∗

(𝑡)

𝜆

)𝑑𝑡 ≤ −∫

|Ω|

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡)

𝜆 − 𝜀

) 𝑑𝑡

+ Φ(

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩𝐿
∞
(Ω)

𝜀

)−∫

|Ω|

0

𝑡
𝜎

𝑑𝑡

= −∫

|Ω|

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡)

𝜆 − 𝜀

) 𝑑𝑡

+ Φ(

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩𝐿
∞
(Ω)

𝜀

)

|Ω|
𝜎

1 + 𝜎

.

(26)

We multiply by 𝑁
Φ
(𝜎), and since 𝑁

Φ
(𝜎) → 0 as 𝜎 → 0

+,
we have

lim sup
𝜎→0

+

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

(𝑢 − 𝜑)
∗

(𝑡)

𝜆

)𝑑𝑡

≤ lim sup
𝜎→0

+

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡)

𝜆 − 𝜀

) 𝑑𝑡.

(27)

From (23) we get

lim sup
𝜎→0

+

𝑁
Φ
(𝜎)Φ−∫

|Ω|

0

𝑡
𝜎

(

(𝑢 − 𝜑)
∗

(𝑡)

𝜆

)𝑑𝑡 ≤ 1. (28)

We apply the definition of (𝑢 − 𝜑)
𝐿
Ω)
(Φ)

, and we have

(𝑢 − 𝜑)
𝐿
Φ)
(Ω)

≤ 𝜆, (29)

and then, passing to the limit as 𝜆 → (𝑢)
𝐿
Φ)
(Ω)

, we have

(𝑢 − 𝜑)
𝐿
Φ)
(Ω)

≤ (𝑢)
𝐿
Φ)
(Ω)
. (30)

By replacing 𝑢 with 𝑢 − 𝜑 and 𝜑 with −𝜑 in (30), we obtain
the converse inequality

(𝑢)
𝐿
Φ)
(Ω)

≤ (𝑢 − 𝜑)
𝐿
Φ)
(Ω)
. (31)

Equality (22) is finally proved.

Now, we are in a position to proveTheorem 1.

Proof of Theorem 1. From Lemma 4 we know that

(𝑢)
𝐿
Φ)
(Ω)

= (𝑢 − 𝜑)
𝐿
Φ)
(Ω)
, (32)

for every 𝜑 ∈ 𝐿
∞

(Ω). This clearly proves that

dist
𝐿
Φ)
(Ω)

(𝑢, 𝐿
∞

(Ω)) ≥ (𝑢)
𝐿
Φ)
(Ω)

(33)

since (𝑢)
𝐿
Φ)
(Ω)

= (𝑢 − 𝜑)
𝐿
Φ)
(Ω)

≤ ‖𝑢 − 𝜑‖
𝐿
Φ)
(Ω)

for every 𝜑 ∈

𝐿
∞

(Ω).
Now, we want to show that

dist
𝐿
Φ)
(Ω)

(𝑢, 𝐿
∞

(Ω)) ≤ (𝑢)
𝐿
Φ)
(Ω)
. (34)

In order to achieve the claimed inequality, we prove that
if

𝜆
0
> (𝑢)
𝐿
Φ)
(Ω)
, (35)

then

dist
𝐿
Φ)
(Ω)

(𝑢, 𝐿
∞

(Ω)) < 𝜆
0
. (36)

Without loss of generality we may assume that 𝑢 ∉ 𝐿
∞

(Ω).
From (35) we find 𝜆 ∈ (0, 𝜆

0
) such that

lim sup
𝜎→0

+

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡)

𝜆

) 𝑑𝑡 ≤ 1. (37)

For each 𝜀 > 0 there exists 𝜎
𝜀
∈ (0, 𝜎

0
) such that

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡)

𝜆

) 𝑑𝑡 ≤ 1 + 𝜀 for every 𝜎 ∈ (0, 𝜎
𝜀
] .

(38)

Let ℎ∗ > 0 be such that

𝜇
𝑢
(ℎ
∗

) < 1, (39)

and let 𝜎 ∈ (𝜎
𝜀
, 𝜎
0
). From (38), we find some constant ℎ

𝜆

(depending on 𝜆), with ℎ
𝜆
> ℎ
∗, such that

𝑁
Φ
(1)

|Ω|

∫

𝜇𝑢(ℎ𝜆)

0

𝑡
𝜎𝜀
Φ(

𝑢
∗

(𝑡)

𝜆

) 𝑑𝑡 ≤ 1. (40)
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Using the monotonicity of weight 𝑁
Φ
, the fact that ℎ

𝜆
> ℎ
∗,

and (39), we deduce from (40) that

𝑁
Φ
(𝜎)

|Ω|

∫

𝜇𝑢(ℎ𝜆)

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡)

𝜆

) 𝑑𝑡 ≤ 1

for every 𝜎 ∈ (𝜎
𝜀
, 𝜎
0
) .

(41)

We set 𝑢
𝜆
(𝑥) = 𝑢(𝑥) if |𝑢(𝑥)| ≤ ℎ

𝜆
and, 𝑢

𝜆
(𝑥) = 0 if |𝑢(𝑥)| >

ℎ
𝜆
, and we show that

(𝑢 − 𝑢
𝜆
)
∗

(𝑡) = 𝑢
∗

(𝑡) for 𝑡 ∈ [0, 𝜇 (ℎ
𝜆
)) ,

(𝑢 − 𝑢
𝜆
)
∗

(𝑡) = 0 for 𝑡 ∈ [𝜇 (ℎ
𝜆
) , |Ω|] .

(42)

Let us observe that

𝜇
𝑢−𝑢𝜆

(ℎ) = 𝜇
𝑢
(ℎ
𝜆
) if 0 < ℎ ≤ ℎ

𝜆
, (43)

while

𝜇
𝑢−𝑢𝜆

(ℎ) = 𝜇
𝑢
(ℎ) if ℎ ≥ ℎ

𝜆
. (44)

Using the fact that the distribution function is decreasing, we
easily see that

𝜇
𝑢−𝑢𝜆

(ℎ) ≤ 𝜇
𝑢
(ℎ
𝜆
) for every ℎ ≥ 0. (45)

Therefore, if we let 𝑡 ∈ [𝜇(ℎ
𝜆
), |Ω|], we see that condition

𝜇
𝑢−𝑢𝜆

(ℎ) ≤ 𝑡 (46)

is verified for all ℎ ≥ 0. Thus (𝑢 − 𝑢
𝜆
)
∗

(𝑡) = 0 for 𝑡 ∈

[𝜇(ℎ
𝜆
), |Ω|]. On the other hand, if we let 𝑡 ∈ [0, 𝜇(ℎ

𝜆
)), we

see that condition (46) is the same as requiring

𝜇
𝑢
(ℎ) ≤ 𝑡. (47)

Thus (𝑢 − 𝑢
𝜆
)
∗

(𝑡) = 𝑢
∗

(𝑡) holds if 𝑡 ∈ [0, 𝜇(ℎ
𝜆
)), and (42) is

proved.
It follows directly from (42) that

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

(𝑢 − 𝑢
𝜆
)
∗

(𝑡)

𝜆

) 𝑑𝑡

=

𝑁
Φ
(𝜎)

|Ω|

∫

𝜇𝑢(ℎ𝜆)

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡)

𝜆

) 𝑑𝑡,

(48)

for every 𝜎 ∈ (0, 𝜎
0
). Hence, wemake use of (38) if 𝜎 ∈ (0, 𝜎

𝜀
]

and of (41) if 𝜎 ∈ (𝜎
𝜀
, 𝜎
0
) to conclude that

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

(𝑢 − 𝑢
𝜆
)
∗

(𝑡)

𝜆

)𝑑𝑡 ≤ 1 + 𝜀

for every 𝜎 ∈ (0, 𝜎
0
) .

(49)

In particular,

sup
0<𝜎<𝜎0

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

(𝑢 − 𝑢
𝜆
)
∗

(𝑡)

𝜆

)𝑑𝑡 ≤ 1 + 𝜀. (50)

Since (50) holds for every 𝜀 > 0, we obtain that its left-
hand side is smaller than 1, and therefore ‖𝑢 − 𝑢

𝜆
‖
𝐿
Φ)
(Ω)

≤ 𝜆.
We get

dist
𝐿
Φ)
(Ω)

(𝑢, 𝐿
∞

(Ω)) ≤
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑢
𝜆

󵄩
󵄩
󵄩
󵄩𝐿
Φ)
(Ω)

≤ 𝜆 < 𝜆
0
. (51)

Hence (36) is established. Since𝜆
0
is any arbitrary number for

which (35) holds, we may pass to the limit as 𝜆
0
approaches

(𝑢)
𝐿
Φ)
(Ω)

in (36) to get

dist
𝐿
Φ)
(Ω)

(𝑢, 𝐿
∞

(Ω)) ≤ (𝑢)
𝐿
Φ)
(Ω)
. (52)

Combining (52) with (33) we obtain (16) as desired.

Proof of Theorem 2. As a consequence ofTheorem 1, it is clear
that 𝑢 ∈ 𝐿Φ)

𝑏
(Ω) if and only if

lim sup
𝜎→0

+

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡)

𝜆

) 𝑑𝑡 ≤ 1 ∀𝜆 > 0. (53)

We fix an arbitrary 𝛼 ∈ (0, 1) and we set 𝜆 = 𝛼/𝛽. Using
(6) we have

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(𝛽𝑢
∗

(𝑡)) 𝑑𝑡

= 𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(𝛼

𝑢
∗

(𝑡)

𝜆

) 𝑑𝑡

≤ 𝐶 (𝛼)𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡)

𝜆

) 𝑑𝑡.

(54)

Hence, using (53) we have

lim sup
𝜎→0

+

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(𝛽𝑢
∗

(𝑡)) 𝑑𝑡 ≤ 𝐶 (𝛼) , (55)

and (17) follows since 𝐶(𝛼) → 0 as 𝛼 → 0.

3. The Case of the Grand Lebesgue Space 𝐿𝑛)

We denote by (𝑢)
𝐿
𝑛)
(Ω)

the functional (𝑢)
𝐿
Φ)
(Ω)

as in (21) when
Φ(𝑡) = 𝑡

𝑛. In this case, (𝑢)
𝐿
𝑛)
(Ω)

takes the form

(𝑢)
𝐿
𝑛)
(Ω)

= lim sup
𝜎→0

+

(

𝑛𝜎

1 + 𝜎

−∫

|Ω|

0

𝑡
𝜎󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛

𝑑𝑡)

1/𝑛

. (56)

Our next result proves that the distance given by formula (2)
reduces to (𝑢)

𝐿
𝑛)
(Ω)

.

Theorem 5. Let Ω be a bounded open set of R𝑛. For every
function 𝑢 ∈ 𝐿𝑛)(Ω), one has

dist
𝐿
Φ)
(Ω)

(𝑢, 𝐿
∞

(Ω))

= lim sup
𝜎→0

+

(

𝑛𝜎

1 + 𝜎

−∫

|Ω|

0

𝑡
𝜎󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛

𝑑𝑡)

1/𝑛

.

(57)
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Proof. First we prove that

lim sup
𝜀→0
+

(𝜀−∫

Ω

|𝑢 (𝑥)|
𝑛−𝜀

𝑑𝑥)

1/(𝑛−𝜀)

≤ lim sup
𝜎→0

+

(

𝑛𝜎

1 + 𝜎

−∫

|Ω|

0

𝑡
𝜎󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛

𝑑𝑡)

1/𝑛

.

(58)

To this aim, we consider 𝜀, 𝜎 > 0 and 𝑘 > 1 such that

𝑛 − 𝜀 =

𝑛

1 + 𝑘𝜎

. (59)

Using Hölder’s inequality we have

𝜀−∫

Ω

|𝑢 (𝑥)|
𝑛−𝜀

𝑑𝑥

=

𝑛𝑘𝜎

1 + 𝑘𝜎

−∫

|Ω|

0

𝑡
𝜎/(1+𝑘𝜎)󵄨

󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛/(1+𝑘𝜎)

𝑡
−𝜎/(1+𝑘𝜎)

𝑑𝑡

≤

𝑛𝑘𝜎

1 + 𝑘𝜎

(−∫

|Ω|

0

𝑡
𝜎󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛

𝑑𝑡)

1/(1+𝑘𝜎)

(−∫

|Ω|

0

𝑡
−1/𝑘

𝑑𝑡)

𝑘𝜎/(1+𝑘𝜎)

(60)

which in turn implies that

(𝜀−∫

Ω

|𝑢 (𝑥)|
𝑛−𝜀

𝑑𝑥)

1/(𝑛−𝜀)

≤ (

𝑘

(𝑘 − 1) |Ω|
1/𝑘

)

𝑘𝜎/𝑛

(

𝑛𝑘𝜎

1 + 𝑘𝜎

)

(1+𝑘𝜎)/𝑛

× ( −∫

|Ω|

0

𝑡
𝜎󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛

𝑑𝑡)

1/𝑛

= (

𝑘

(𝑘 − 1) |Ω|
1/𝑘

)

𝑘𝜎/𝑛

× (

𝑛𝑘𝜎

1 + 𝑘𝜎

)

(1+𝑘𝜎)/𝑛

(

1 + 𝜎

𝑛𝜎

)

1/𝑛

× (

𝑛𝜎

1 + 𝜎

−∫

|Ω|

0

𝑡
𝜎󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛

𝑑𝑡)

1/𝑛

= (

𝑘

(𝑘 − 1) |Ω|
1/𝑘

)

𝑘𝜎/𝑛

× (

𝑘

1 + 𝑘𝜎

)

(1+𝑘𝜎)/𝑛

(1 + 𝜎)
1/𝑛

(𝑛𝜎)
𝑘𝜎/𝑛

× (

𝑛𝜎

1 + 𝜎

−∫

|Ω|

0

𝑡
𝜎󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛

𝑑𝑡)

1/𝑛

.

(61)

Since (𝑛𝜎)𝑘𝜎/𝑛 → 1 as 𝜎 → 0
+, we deduce from (61) that

lim sup
𝜀→0
+

(𝜀−∫

Ω

|𝑢 (𝑥)|
𝑛−𝜀

𝑑𝑥)

1/(𝑛−𝜀)

≤ 𝑘
1/𝑛lim sup
𝜎→0

+

(

𝑛𝜎

1 + 𝜎

−∫

|Ω|

0

𝑡
𝜎󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛

𝑑𝑡)

1/𝑛

.

(62)

Since 𝑘 is any number strictly greater than 1, (62) immediately
implies (58).

We wish to prove the converse inequality

lim sup
𝜀→0
+

(𝜀−∫

Ω

|𝑢 (𝑥)|
𝑛−𝜀

𝑑𝑥)

1/(𝑛−𝜀)

≥ lim sup
𝜎→0

+

(

𝑛𝜎

1 + 𝜎

−∫

|Ω|

0

𝑡
𝜎󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛

𝑑𝑡)

1/𝑛

.

(63)

For each 𝑡 ∈ [0, |Ω|], we have

−∫

Ω

|𝑢 (𝑥)|
𝑛/(1+𝜎)

𝑑𝑥 = −∫

|Ω|

0

󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑠)
󵄨
󵄨
󵄨
󵄨

𝑛/(1+𝜎)

𝑑𝑠

≥

1

|Ω|

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑠)
󵄨
󵄨
󵄨
󵄨

𝑛/(1+𝜎)

𝑑𝑠

≥

1

|Ω|

𝑡
󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛/(1+𝜎)

.

(64)

Thus

−∫

|Ω|

0

𝑡
𝜎󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛

𝑑𝑡 = −∫

|Ω|

0

𝑡
𝜎󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛𝜎/(1+𝜎)󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛/(1+𝜎)

𝑑𝑡

≤ |Ω|
𝜎

(−∫

|Ω|

0

󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛/(1+𝜎)

𝑑𝑡)

1+𝜎

.

(65)

We consider 𝜀, 𝜎 > 0 such that

𝑛 − 𝜀 =

𝑛

1 + 𝜎

. (66)

Then

(

𝑛𝜎

1 + 𝜎

−∫

|Ω|

0

𝑡
𝜎󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛

𝑑𝑡)

1/𝑛

≤ [(

𝑛𝜎

1 + 𝜎

)

−𝜎

|Ω|
𝜎

(

𝑛𝜎

1 + 𝜎

−∫

|Ω|

0

󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛/(1+𝜎)

𝑑𝑡)

1+𝜎

]

1/𝑛

= (

𝑛𝜎

1 + 𝜎

)

−𝜎/𝑛

|Ω|
𝜎/𝑛

(

𝑛𝜎

1 + 𝜎

−∫

|Ω|

0

󵄨
󵄨
󵄨
󵄨
𝑢
∗

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑛/(1+𝜎)

𝑑𝑡)

(1+𝜎)/𝑛

= (

𝑛𝜎

1 + 𝜎

)

−𝜎/𝑛

|Ω|
𝜎/𝑛

(𝜀−∫

Ω

|𝑢 (𝑥)|
𝑛−𝜀

𝑑𝑥)

1/(𝑛−𝜀)

,

(67)

which proves (63).

4. Few Properties of the Distance

In this concluding section we provide certain properties of
the functional (⋅)

𝐿
Φ)
(Ω)

.

Lemma 6. Let Φ : [0,∞) → [0,∞) be an Orlicz function
satisfying the assumptions of Theorem 1 and let V ∈ 𝐿

Φ)

(Ω).
Assume that

lim sup
𝜎→0

+

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

V∗ (𝑡)

𝜆

) 𝑑𝑡 ≤ 𝐿, (68)
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for some constants positive 𝜆 and 𝐿.Then, there exists a positive
constant 𝐶

0
depending only on 𝐿 such that

(V)
𝐿
Φ)
(Ω)

≤ 𝐶
0
𝜆. (69)

Proof. Let𝐶(𝛼) be the constant appearing in (6).Wemay take
𝛼
0
∈ (0, 1) such that

𝐶 (𝛼
0
) 𝐿 ≤ 1 (70)

since 𝐶(𝛼) → 0 as 𝛼 → 0. We use (6) to get

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(𝛼
0

V∗ (𝑡)

𝜆

) 𝑑𝑡

≤ 𝐶 (𝛼
0
)𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

V∗ (𝑡)

𝜆

) 𝑑𝑡.

(71)

We take the lim sup as 𝜎 → 0
+ and use (68) to get

lim sup
𝜎→0

+

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(𝛼
0

V∗ (𝑡)

𝜆

) 𝑑𝑡 ≤ 𝐶 (𝛼
0
) 𝐿. (72)

Therefore, from (72) and (70) we have

lim sup
𝜎→0

+

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(𝛼
0

V∗ (𝑡)

𝜆

) 𝑑𝑡 ≤ 1. (73)

The desired constant 𝐶
0
is obtained by setting 𝐶

0
= 1/𝛼

0
.

We address that 𝐶
0
is independent of V, and thus the proof is

completed.

Remark 7. It is clear from the definition of (𝑢)
𝐿
Φ)
(Ω)

that we
can pick 𝐶

0
= 1 if 𝐿 = 1.

Our next lemma provides a sort of triangle inequality
involving the functional (⋅)

𝐿
Φ)
(Ω)

.

Lemma 8. Let Φ : [0,∞) → [0,∞) be an Orlicz function
satisfying the assumptions of Theorem 1 and let 𝑢, V ∈ 𝐿Φ)(Ω).
Then, there exists a constant 𝐶

1
depending only onΦ such that

(𝑢 + V)
𝐿
Φ)
(Ω)

≤ 𝐶
1
[(𝑢)
𝐿
Φ)
(Ω)

+ (V)
𝐿
Φ)
(Ω)
] . (74)

Proof. Take

𝜆
1
> (𝑢)
𝐿
Φ)
(Ω)
, 𝜆

2
> (V)
𝐿
Φ)
(Ω)
. (75)

Let 𝑡∈[0, |Ω|].We use (18) with 𝑡
1
= 𝑡
2
=𝑡/2, themonotonicity

ofΦ, to obtain

Φ(

(𝑢 + V)∗ (𝑡)

𝜆
1
+ 𝜆
2

) ≤ Φ(

𝜆
1

𝜆
1
+ 𝜆
2

𝑢
∗

(𝑡/2)

𝜆
1

+

𝜆
2

𝜆
1
+ 𝜆
2

V∗ (𝑡/2)

𝜆
2

)

≤ [Φ(

𝑢
∗

(𝑡/2)

𝜆
1

) + Φ(

V∗ (𝑡/2)

𝜆
2

)] .

(76)

Fix 𝜎 ∈ (0, 1). Wemultiply by 𝑡𝜎 andwe integrate over [0, |Ω|]
to get

∫

|Ω|

0

𝑡
𝜎

Φ(

(𝑢 + V)∗ (𝑡)

𝜆
1
+ 𝜆
2

)𝑑𝑡 ≤ [∫

|Ω|

0

𝑡
𝜎

Φ(

𝑢
∗

(𝑡/2)

𝜆
1

)𝑑𝑡

+∫

|Ω|

0

𝑡
𝜎

Φ(

V∗ (𝑡/2)

𝜆
2

)𝑑𝑡] .

(77)

With the aid of two changes of variables in the integrals
appearing at the right-hand side of (77) we have

∫

|Ω|

0

𝑡
𝜎

Φ(

(𝑢 + V)∗ (𝑡)

𝜆
1
+ 𝜆
2

)𝑑𝑡

≤ 2
𝜎+1

[∫

|Ω|/2

0

𝑠
𝜎

Φ(

𝑢
∗

(𝑠)

𝜆
1

)𝑑𝑠

+∫

|Ω|/2

0

𝑟
𝜎

Φ(

V∗ (𝑟)

𝜆
2

)𝑑𝑟] ,

(78)

which in turn implies

−∫

|Ω|

0

𝑡
𝜎

Φ(

(𝑢 + V)∗ (𝑡)

𝜆
1
+ 𝜆
2

)𝑑𝑡

≤ 4 [−∫

|Ω|

0

𝑠
𝜎

Φ(

𝑢
∗

(𝑠)

𝜆
1

)𝑑𝑠 + −∫

|Ω|

0

𝑟
𝜎

Φ(

V∗ (𝑟)

𝜆
2

)𝑑𝑟] .

(79)

We multiply both sides of (79) by 𝑁
Φ
(𝜎), and we take the

lim sup as 𝜎 → 0
+ and use (75) to get

lim sup
𝜎→0

+

𝑁
Φ
(𝜎) −∫

|Ω|

0

𝑡
𝜎

Φ(

(𝑢 + V)∗ (𝑡)

𝜆
1
+ 𝜆
2

)𝑑𝑡 ≤ 8. (80)

We appeal to Lemma 6 to conclude that there exists a constant
𝐶
1
such that

(𝑢 + V)
𝐿
Φ)
(Ω)

≤ 𝐶
1
(𝜆
1
+ 𝜆
2
) . (81)

Finally, (74) follows letting 𝜆
1

→ (𝑢)
𝐿
Φ)
(Ω)

and 𝜆
2

→

(V)
𝐿
Φ)
(Ω)

, respectively.

5. An Example

In this section we study the behaviour of weight 𝑁
Φ
(𝜎) as

𝜎 → 0
+ when Φ(𝑡) = 𝑡

𝑛

(1 + log(1 + 𝑡))−𝛼 with 0 ≤ 𝛼 ≤ 1.
We follow closely the lines of Example 3.6 in [17].

Example 9. Let Φ(𝑡) = 𝑡
𝑛

(1 + log(1 + 𝑡))−𝛼 and let 0 ≤ 𝛼 ≤ 1.
We start by proving that

𝑁
Φ
(𝜎) ≈ 𝜎

1−𝛼 as 𝜎 → 0
+ when 0 ≤ 𝛼 < 1. (82)
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To see this, let 𝜃 > 0. Then

∫

∞

1

Φ(𝑡)
1−𝜃

𝑡
𝑛+1

𝑑𝑡 ≈ ∫

∞

1

𝑡
−𝑛𝜃−1

(1 + log 𝑡)−𝛼(1−𝜃)𝑑𝑡

≈ ∫

∞

1

𝑒
−𝑛𝜃𝑢

𝑢
−𝛼(1−𝜃)

𝑑𝑢

≈ ∫

∞

𝜃

𝑒
−𝑛V

(

V

𝜃

)

−𝛼(1−𝜃)
𝑑V

𝜃

≈ 𝜃
𝛼−1

∫

∞

𝜃

𝑒
−𝑛VV−𝛼(1−𝜃)𝑑V

≈ 𝜃
𝛼−1

(1 + ∫

1

𝜃

V−𝛼(1−𝜃)𝑑V) .

(83)

We pick 𝜃 = 𝜎/(1 + 𝜎) in such a way that

𝑁
Φ
(𝜎) =

1

∫

∞

1

([Φ(𝑡)]
1/(1+𝜎)

/𝑡
𝑛+1

) 𝑑𝑡

≈ 𝜎
1−𝛼

. (84)

A similar argument leads to

𝑁
Φ
(𝜎) ≈

󵄨
󵄨
󵄨
󵄨
log𝜎󵄨󵄨󵄨

󵄨

−1 as 𝜎 → 0
+ when 𝛼 = 1. (85)
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