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ABSTRACT Agent-based models are now largely adopted to describe how opinions emerge in a group of
people. This survey provides an analysis of the literature on the subject, highlighting themajor characteristics
of suchmodels. Over the last decade, the number of papers has grown at an overall annual rate of 16%, though
not continually. Two communities contribute to the research effort: physics and control systems. However,
their mutual awareness and collaboration are rather low. The prevailing mechanism adopted to describe the
interaction among the agents is bilateral, but not symmetric. In most cases, the opinion is described by a
continuous variable. Just a few papers consider a utility function for the agents.

INDEX TERMS Agent-based modeling, decentralized control, multi-agent systems, opinion dynamics.

I. INTRODUCTION
The formation of opinions within a group of people has been
a subject of interest in many areas, e.g. psychology, sociol-
ogy, economics and finance. When group members’ actions
follow a set of rules, their behavior may be described by an
agent-based model. Agent-based models may be employed to
describe a variety of characteristics of the agents involved and
the way they interact, allowing us to understand the evolution
of the opinions of the individuals, and if and how they reach a
final consensus or whether the agents polarize around a small
number of different opinions.

This research area has spawned a large number of papers,
with a growing interest over the years. Since a number of
different research paths have been explored, it is now the
time to try to get an overall view of the research landscape in
this area. Although survey papers on the same research area
have been published, some of them focus on a particular class
of models or a specific application. For example, the review
in [1] is focused in the classical kinetic theory approach, while
that in [2] concerns bounded-confidence models. Instead,
the survey in [3] is limited to opinion propagation in online
social networks. Hence, a systematic review of the field
seems to be missing.

The associate editor coordinating the review of this manuscript and
approving it for publication was Guiwu Wei.

In this paper, we provide a bibliographic survey of the
research area on agent-based models for opinion forming.
Our aim is to classify the papers by their common modeling
features. In addition to providing a guide to the research liter-
ature on the subject, we can also identify themost investigated
cases and at the same time highlight the cases that have not
received an adequate coverage.

In Section II, we first provide information about the lit-
erature evolution over time, its relevance as measured by the
number of citations, and its scientific community collocation.
In Section III, we introduce several features to classify the
papers, and examine the presence of each feature in the
overall set of papers. Sections IV and V are devoted respec-
tively to get an atomic view of paper classes as resulting
from the classification of Section III, and to aggregate those
atomic classes into clusters of papers with similar modeling
characteristics.

II. LITERATURE META-STATISTICS
We examined more than 150 papers. This final number was
the result of a selection process arranged over three phases:

1) Search over major scientific databases;
2) Spanning through the citation tree;
3) Elimination of papers loosely related with the survey

theme.
The process started with the acquisition of the papers indexed
in Google Scholar, Web of Science and Scopus that were
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published from 1974 to 2018 on opinion dynamics. This
initial search was carried out using the keywords opinion
dynamics, opinion forming, opinion formation, and several
combinations thereof. For each paper in this initial list
we retrieved its citing papers and added them to the list.
We stopped at the second level of citations (i.e., we also
considered the papers citing a paper citing a paper in the
initial list). Finally, we went through each paper in this list
and examine its contents, eliminating those whose focus was
not opinion formation and those that did not employ an
agent-based model. Though we were primarily interested in
documents in the Article or Proceedings Paper class, we also
considered documents in the Review or Book Chapter class,
whenever these also included original results.

Before delving into the contents of the papers, analyzing
the characteristics of their opinion formation models, in this
section we report some meta-statistics of theirs, i.e. those
characteristics of the literature that do not explicitly concern
their content. In particular we consider the following features:
• time evolution;
• number of citations;
• prolific authors;
• number of authors per paper;
• publishing venues.

FIGURE 1. Number of papers per year.

A. TIME EVOLUTION
Though the seminal paper about the use of agents to describe
how a consensus emerges around an opinion dates back to
1974 [4], scientific papers have started to appear in signif-
icant numbers after 2000. The number of papers appearing
each year is an obvious measure of the interest for a topic.
In FIGURE 1we have plotted the number of papers appearing
each year. The plot shows a significantly non-monotonic
behavior, with several ups and downs. However, the gen-
eral trend is positive. If we compute the Compound Annual
Growth Rate (CAGR) over the period from 2003 to 2017
(we start with 2003, since the papers prior to 2003 were very
few and scattered through the years), we get a 16% annual
increase.

B. CITATIONS
Not all the papers published on the subject are equally impor-
tant. A bibliometric measure of the relevance of a paper is
the number of citations it receives. In order to get an overall
view of the relevance of the papers examined in our survey,
in FIGURE 2 we show the rank-size distribution for those
papers. Though a long tail with few citations is present, there
is a significant number of papers with hundreds of citations.

FIGURE 2. Rank-size distribution of papers by number of citations.

TABLE 1. Top 10 papers as to the number of citations (from Google
Scholar).

In Table 1, we report the data for the 10 most cited papers.
Though the most cited paper dates back to more than forty
years ago, the most are millennials. Actually, just one has
appeared within the latest 5 years, but that’s expected since
the oldest papers have taken advantage of a longer stretch of
time to collect citations.

C. PROLIFIC AUTHORS
A number of authors contributed to the literature. However,
some of them contributed most and can therefore be consid-
ered as reference authors (if we except the very rare case of a
researcher publishing a seminal paper on the subject and then
nothing else). In Table 2, we report the most prolific authors.

We can correlate the status of prolific authors with the
list of most cited papers. Though the correspondence is not
perfect, we see that three of them (Deffuant, Amblard, and
Weisbuch) actually published 3 out of the 10 top papers,
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TABLE 2. Number of papers by author (Top 8).

FIGURE 3. Distribution of papers by the number of authors.

while Friedkin and Galam each have 1 of their papers in
the top list. Summing up, 5 among the top 8 prolific authors
provided half of the top 10 papers.

D. NUMBER OF AUTHORS PER PAPER
In addition to identifying the authors who have contributed
most to the subject so far, we may wish to see if the works
appeared in the literature are the product of individuals or
research teams instead.

For that purpose we look at the number of authors for
each paper. The resulting distribution is shown in FIGURE 3.
The distribution exhibits a mode at 2 authors, representing
roughly one third of the papers, with the cases of 3 authors
and a single author being less frequent. The cases of 5 or
more authors are very rare. Actually, this is quite in line with
the figures recorded for the papers both in general computer
science and specific areas, as reported in [14].

E. PUBLISHING VENUES
The last issue we consider is where papers have appeared.
In Table 3 the distribution of papers by journal or confer-
ence is shown. The publishing venues for this topic can be
roughly divided into two categories, corresponding to two
quite different communities: the physics community and the
control systems community. The former gathers, e.g., Phys-
ica A, Physical Review, the International Journal of Modern

TABLE 3. Most frequent publishing venues.

TABLE 4. Inbreed and cross-fertilization indices.

Physics, while the latter includes the IEEE Transactions on
Automatic Control, Automatica, and the SIAM Journal on
Control on Optimization. The contributions of the two com-
munities appear quite balanced.

However, we wish to see if the two communities interact in
some way or not. In order to examine that issue, we have first
selected the top 5 journals/conferences for each community
in the list of Table 3, which are respectively:
Physics community (PC)

1) Physica A: Statistical Mechanics and its Applications;
2) International Journal of Modern Physics C;
3) Physical Review E;
4) PLOS ONE;
5) The European Physical Journal B.

Control systems community (CSC)
1) IEEE Transactions on Automatic Control;
2) Automatica;
3) American Control Conference;
4) IEEE Conference on Decision and Control;
5) SIAM Journal on Control and Optimization.
Then, we have computed the number of citations falling

into either category, obtaining the following four figures:
• no. of PC papers cited in PC journals;
• no. of PC papers cited in CSC journals;
• no. of CSC papers cited in PC journals;
• no. of CSC papers cited in CSC journals.

We summarize the results in Table 4. In that table the
main diagonal elements represent the inbreeding compo-
nents, i.e., those pertaining to communities citing themselves.
Instead, the antidiagonal represent the cross-fertilization
component, i.e., communities citing each other. We can take
the ratio of the cross-fertilization component to the overall
number of papers as a cross-fertilization index I ∈ [0, 1]:

I =
16+ 7

56+ 7+ 16+ 91
= 0.135, (1)
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TABLE 5. Papers by category.

which is rather low. Cross-fertilization is poor, with the two
communities working mostly parallel without crossing each
other’s path.

III. CLASSIFICATION
Each paper has adopted several assumptions concerning the
behavior of the agents and the description of the opinion.
Some assumptions have found a wider acceptance, while oth-
ers may be relatively unexplored, which does not imply that
they are not valid. We have extracted the major features that
have been employed for the purpose of defining the agent-
based models. In this section, we describe those features and
review the authors’ preferences. The papers falling into each
category are shown in Table 5.

A. CATEGORIES
After reading the large number of papers selected for
our survey, we have extracted the following categories

that allow to characterize each agent-based model in this
context:
• Opinion domain;
• Interacting agents;
• Interaction direction;
• Interaction symmetry;
• Updating function;
• Updating frequency;
• Utility function.
In the following subsections, we consider separately each

category in the above list and examine the choices made by
the authors.

B. OPINION DOMAIN
The first choice that has to be made is the numeric value
chosen to represent the opinion. Though an opinion is intrin-
sically a qualitative and potentially multi-faceted feature,
its study through an agent-based model requires it to be
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described by a numeric variable. In addition, in all the papers
considered, the opinion has been represented by a scalar
variable.

The choices made in the papers as to the domain of the
opinion can be categorized as follows (the numbers between
brackets indicate the percentage of papers falling in that
category):
• Discrete (18.5%);
• Continuous over a bounded interval (45.7%);
• Continuous over R (35.8%).
As can be seen there is a large prevalence of the continuous

choice, since the latter two categories amount to 81.4% of the
total.

In the discrete case, the agent may opt for an opinionwithin
a limited set; though the opinion is anyway a numeric variable
in this framework, its value can be easily mapped to a qualita-
tive feature. For example, in the case of a binary opinion vari-
able, we could use the two values to represent respectively a
positive versus a negative opinion.Within the group of papers
opting for a discrete set of opinions, the majority (15 out
of 28, i.e., 53.5%) have employed a binary variable [7], [10],
[130]–[141], [148], while 4 (14.2%) have chosen a ternary
variable [142]–[145], and 9 (32.14%) have employed a vari-
able with more than 3 states [146], [147], [149]–[155].

When the authors have instead opted for a continuous but
bounded interval, the most frequent choices have been the
[0, 1] interval, chosen in 37 papers (53.6%) [5], [6], [11],
[96]–[129], and the [−1, 1] interval, chosen in 22 papers
(31.8%) [9], [65]–[85].

C. INTERACTION DIRECTION AND SYMMETRY
Another aspect we wish to analyze is the direction of the
influence that agents exert over each other. If any two agents
always influence each other mutually, we talk about a bilat-
eral interaction. Instead, if an agent may influence another
agent without being influenced by it, we talk about a unilat-
eral influence. The overwhelming majority of papers (88.1%)
adopts a bilateral model, though this is mitigated by the
possibility of having different weights in the opinion updating
equations, so that the actual impact of agent A on agent B is
different from that in the reverse direction: just 18% of the
bilateral models assume symmetry.

D. INTERACTING AGENTS
In addition to considering the symmetry of interaction,
the research has also differentiated as to the agents involved
in the interaction at each step.

We have the following three categories:
• Pairwise;
• Any-to-any;
• Closest neighbors.

In the first case, at each step there is just one pair of agents
interacting with each other; at the next time step it will be
the turn of another pair, and so on. Of course, the pairs are
not fixed, so that in the long term any agent has the chance

of interacting (influencing or being influenced by) with any
other agent.

In the any-to-any interaction case, instead, at each time
step all the agents change their opinion by being influenced
at once by the opinions of the other agents at the previous
time step. If the interaction is actually any-to-any depends of
course on the interaction rules as described in Section III-C.
For example, if the agents are the set {A,B,C,D} and a
unilateral model of interaction is in place, and the agent A
may be influenced just by agents C and D, at time step
t + 1 the opinion of A will change according to the opinions
of agents C and D only (in addition to its own previous
opinion, of course), though the interaction is potentially of
the any-to-any type.

The third category (closest neighbors) may appear when
we introduce a measure of distance among agents. This is
quite natural when the agents are actually part of a social
network. In that case, the measure of distance associated to
the social network is used: this may be the number of edges on
the shortest path connecting the two agents in a non-weighted
network, or the sum of the weights on the least costly path in a
weighted network. Even if the social network is not explicitly
formed, a measure of distance may anyway be introduced,
which in many cases is equivalent to embed a social network.

In the set of papers we have examined, the models are
split nearly evenly among the three types. Precisely, the most
employed interacting categories are the pairwise one (35.8%)
and the closest neighbors one (35.1%), while the any-to-any
type is slightly less used (29.1%).

E. UPDATING FUNCTION
Another important aspect concerns the mathematical nature
of the function that relates the opinion of an agent to the
opinions of the other agents. For that purpose, it is natural to
classify the papers into two categories, adopting respectively
a linear model or a nonlinear one.

In the linear class, the opinion of an agent is a linear
combination of the opinions of the other agents.

The nonlinear class is actually rather broad.
The distribution of papers between the two classes is

largely in favor of the nonlinear one, which includes 79.5% of
the papers, with the linear class getting the remaining 20.5%.

If we consider a populationN , composed of n individuals;
xi(t) is the opinion of agent i ∈ N at time t ∈ N. Then,
the opinion formation of agent i can be described by the
following averaging equation:

xi(t + 1) =
∑
j∈N

aij xj(t) , i ∈ N , t > 0 , (2)

(the same for continuous time version, i.e. having ẋi instead
of xi(t + 1)). The coefficient aij represents the influence that
agent i exerts on agent j. That is, agent i takes a weighted
average with weight aij of agents’ opinion at time t to update
his/her opinion in period t+1. Having these notations, we say
that influence is linear if aij does not depend on the state x,
∀i, j ∈ N .
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The advantage of having a linear model is that the approach
to the problem can be formulated in terms of powerful linear
techniques such as matrix theory, Markov chains and graph
theory. Actually, using matrix notation, a classical linear
model of fixed weights is

x(t + 1) = A x(t) , t > 0 , (3)

where A is a fixed stochastic matrix and x(t) is the column
vector of opinions at time t . This model has been proposed
to describe how a group of individuals who act together as a
team or committee, might reach agreement by pooling their
individual opinions [4], [63] (see also the popular generaliza-
tion of this model made in [8]).

A most general form of model (3) can be compactly
written as

x(t + 1) = A (t, x(t)) x(t) , t > 0 . (4)

If the weights depend on the opinions themselves, then the
model turns from linear to nonlinear, i.e.A (t, x(t)) = A (x(t))
and so it does not explicitly depend on time.

A widespread nonlinear model in literature incorporates
bounded confidence among the agents: fixing an agent i,
the set of agents that he/she takes into account is given by

I (i, x) = {1 ≤ j ≤ n : |xi − xj| ≤ εi} , (5)

i.e. those agents whose opinions differ from his/her own not
more than a certain confidence level εi. Symbol | · | in (5)
denotes the absolute value of a real number. The model with
bounded confidence is given by

xi(t + 1) = |I (i, x(t)) |−1
∑

j∈I (i,x(t))

xj(t), t > 0 , (6)

i.e. in the light of the general model (4) we have aij(x) = 0
for j 6∈ I (i, x) and aij(x) = |I (i, x) |−1 for j ∈ I (i, x).
Now symbol | · | in (6) denotes the cardinality of a set, i.e.
the number of its elements. This model has been developed
in [13] and the papers [5], [6], [11] can be considered to
belong in the same class.

A more general approach does not require to restrict the
influence weights aij(x) to specific functional forms, but
defines them through some general reasonable assumptions
(e.g., increasing function, other conditions on derivatives and
so on). According to this general framework, each opinion
evolves following the dynamics:

ẋi(t) =
∑
j

aij (xj − xi) , aij = φ
(
|xi − xj|

)
. (7)

Here, φ is the so-called influence function. By assumption,
it is equipped with certain properties depending on the prob-
lem framework, see for example [41], [88].

Another popular nonlinear model is that employing kinetic
models of opinion formation, whose goal is to describe the
evolution of opinions in a society by means of microscopic
(usually binary) interactions among agents that exchange

information ( [68], [81] for example). From a microscopic
view point, the binary interaction is described by the rules:

x ′ = x − γP (|x|) (x − x∗)+ ηD (|x|)

x ′∗ = x∗ − γP (|x∗|) (x∗ − x)+ η∗D (|x∗|) , (8)

for a given constant γ and certain random variables η and η∗.
In (8), the pair (x, x∗) denotes the opinions of two arbitrary
individuals before the interaction and (x ′, x ′∗) their opinions
after exchanging information between them and with back-
ground; the functions P(·) and D(·) describe the local rele-
vance of the compromise and diffusion for a given opinion.

F. UPDATING FREQUENCY
In addition to themathematical function adopted to update the
state (opinion) of each agent, a relevant parameter for opinion
dynamics is the updating frequency.

In our classification we have defined two broad categories,
including respectively those models where all the agents may
change their opinion at each time step and those models
where that’s not the case. We call those categories respec-
tively periodic and aperiodic updating. The second category
encompasses several subcases, e.g., when just a couple of
agents changes their opinion at each time step (and it is
not known in advance when their turn comes again), when
opinions are updated just if a triggering event takes place,
or when the agents changing their opinion are a random
selection of all the agents.

The major category in the papers we have examined is
that of periodic updating, which accounts for 62.25% of
all papers, while the aperiodic class contains the remain-
ing 37.75%.

G. UTILITY FUNCTION
The last issue we consider concerns the adoption of a utility
function, which would signal the interest of agents to update
their opinion.

Among the papers considered here, there are few
cases [21], [26], [30], [32], [33], [35], [96], [105], [108],
[110], [149] where agents move maximizing an utility func-
tion or according to their expected payoff.

An interesting case is represented by [30]. Here, an agent
i ∈ N takes an opinion xi, which is compared with the opin-
ion of his/her reference group, qi, but expresses an opinion
si ∈ R which need not coincides with her true opinion xi.
In [30] the utility of agent i depends on both the opinion
distances, i.e. true opinion-stated opinion and stated opinion-
group opinion:

ui(si, xi) := −(1− δi)(si − xi)2 − δi(si − qi)2

where δi ∈ (−1, 1) represents the relative importance of
the preference for (counter-) conformity in relation to the
preference for truthfulness.

Another example, in which a quadratic utility function
is considered, is provided by [35]. Here, an agent i has an
internal opinion xi, which remains unchanged due to external
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influences, and an expressed opinion si which is updated by
choosing si to minimize

(si − xi)2 +
∑

j∈I (i,x(t))

aij(sj − si)2 ,

where ai,j ≥ 0 (recall that I (i, x) denotes the set of neighbors
of i).

Both papers, [35] and [30], are inspired by classical mod-
els due to DeGroot [4] and Friedkin-Johnsen [8]. Also [96]
consider a set of nonstrategic agents, N , which update their
opinion x(t) at discrete time instances as in the model of
DeGroot [4] (i.e. according the classical linear model of fixed
weights 3). Then, [96] consider two strategic agents a1 and a2,
each of which forms exactly one link with a nonstrategic
agent in order to influence the opinion formation in the net-
work. Each strategic agent ai chooses a strategy gi in N that
represents the nonstrategic agent he/she decides to influence
by creating a link with. The payoffs of agent a1 is

π (g) = 1′ · (I −1(g)A)−1
λ

dg1
1(g)eg1

while n−π (g) is that for a2 (N is composed of n individuals),
where: A is the interaction matrix which appears in (3); g =
(g1, g2) is the strategy profile; di is the number of outgoing
links of i; ej denotes the unit vector with coordinate 1 at j;1 is
a diagonal matrix whose diagonal entries depend on g and on
the impact of a1 and a2 on the network, which we denote by
λ > 0 and µ > 0, respectively.

IV. TAXONOMY
The categories proposed in Section III induce a partition
on the set of papers. We can describe that partition by a
taxonomy tree, whose leaves represent the atomic classes of
papers, each class featuring a unique combination of category
values. In this section, we report the resulting taxonomy

In building the tree we have defined the tree levels with
the aim of minimizing the overall number of branches. At the
same time, we have pruned the tree, cutting all the empty
branches and leaves, i.e. those combinations of category val-
ues that are not present in any paper. In the pruned tree, if a
node contains only one child node and is not a leaf of the tree,
that node and its child are collapsed to a single node whose
label is the concatenation of the labels of the constituent
nodes.

The resulting tree is shown in FIGURE 4. Each circle
represents a feature, and a child represents a feature adding to
those of its father and ancestors. The same number in a circle
can therefore appear in different branches. The meaning of
labels is as follows:
• Opinion domain: 1 = continuous in R; 2 = continuous
and bounded; 3 = discrete.

• Interaction direction: 4 = bilateral; 5 = unilateral.
• Interacting agents: 6 = pairwise; 7 = any-to-any; 8 =
closest neighbors.

• Interaction symmetry: 9 = symmetric; 10 = non sym-
metric.

FIGURE 4. Taxonomy of agent-based models for opinion formation.

• Updating function: 11 = linear; 12 = nonlinear.
• Updating frequency: 13 = periodic; 14 = non periodic.
• Utility function: 15 = yes; 16 = no.
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• Moreover: a = unilateral, non symmetric, no; b = peri-
odic, continuous and bounded, pairwise; c = non peri-
odic, discrete, pairwise; d = continuous and bounded,
pairwise; e= discrete, closest neighbors; f= continuous
on R, pairwise; g = yes, nonlinear, non periodic, con-
tinuous and bounded, pairwise; h = no, nonlinear; i =
linear, periodic; j= continuous on R, closest neighbors;
k= discrete, any-to-any; l= periodic, continuous on R.

For example, following through the leftmost branch,
the uppermost node represents the models with a bilateral
interaction domain (circle number 4), which has two child
nodes, representing those models that adopt at the same time
a bilateral interaction domain and either symmetric interac-
tion (circle number 9) or non symmetric interaction (circle
number 10).

As can be seen, the number of leaves, representing unique
combination of features, does not cover the whole set of
possible combinations. This is due in some cases to incom-
patibility, e.g. we cannot have an interaction that is symmetric
and unilateral at the same time. But the absence of compatible
combinations of features signals some cases that have not
been explored yet in the literature.

The top 5 leaves, i.e. the combinations of features with
the largest presence in the set of papers, are the following
(we describe them by the set of model features with dashes in
between):

1) Bilateral interaction direction - non symmetric interac-
tion - no utility function - nonlinear updating function -
periodic updating - continuous and bounded opinion
domain - nearest agents interaction (18 papers);

2) Bilateral interaction direction - non symmetric inter-
action - no utility function - linear updating func-
tion - periodic updating - continuous opinion domain in
R - any-to-any interaction (17 papers);

3) Bilateral interaction direction - symmetric interaction -
no utility function - nonlinear updating function - non
periodic updating - continuous and bounded opinion
domain - pairwise interaction (14 papers);

4) Bilateral interaction direction - non symmetric inter-
action - no utility function - nonlinear updating func-
tion - periodic updating - continuous opinion domain in
R - nearest agents interaction (14 papers);

5) Bilateral interaction direction - non symmetric inter-
action - no utility function - nonlinear updating func-
tion - non periodic updating - continuous and bounded
opinion domain - pairwise interaction (14 papers).

As can be seen, the commonest features in this Top 5 list
are
• Bilateral interaction direction (common to all);
• No utility function (common to all);
• Non symmetric interaction (common to 4 out of 5);
• nonlinear updating function (common to 4 out of 5).

V. FAMILIES OF MODELS
In Section IV, we have classified all the models pre-
sented in the literature, identifying the groups of papers that

propose models with identical characteristics, as defined in
Section III-A. Those groups are represented as leaves in the
tree of FIGURE 4. That representation allows us to recognize
papers that follow very closely the same modeling approach,
but may return an extremely atomic view of the subject.

It may result interesting as well to identify families of
models, which stem from a similar approach but differentiate
for minor variations. In this section, we pursue that task by
adopting a clustering approach.

In order to identify the clusters, we consider each paper
(i.e., its model) as described by the attributes listed in
Section III-A and reported in the first column of Table 5. For
each of the n papers we have then 7 attributes. As we can see,
all attributes are categorical in nature and take either two or
three values. For example, the opinion domain is a ternary
variable, while the utility function is binary. Without loss of
generality we may identify the j-th attribute (following the
order of the bullet list of Section III-A) of the i-th paper by
the variable sij and adopt the categorical values it takes as
listed in the second column of Table 5. For example, if we
consider the Interaction direction attribute for the i-th paper,
and the value of that attribute is bilateral, we have si,3 = 1.

In order to carry out a cluster analysis of our sets of papers,
we need to introduce a distance matrix between any two
papers on the sets of attributes. An established metric for
categorical variables is defined in Section 3.2 of [156]: the
distance between any two papers i and m is the number of
different attribute values they have

d(i,m) =
7∑
j=1

δ(sij, smj), (9)

where

δ(x, y) =

{
0 if x = y
1 if x 6= y

(10)

After defining the distance metric, we have to choose a
clustering algorithm. We have adopted the k-mode clustering
algorithm, which is an extension of the well known k-means
algorithm, as defined in [157]. The final aim is to get the
n papers classified into c clusters. We introduce some nota-
tion to describe the algorithm. We identify the set of papers
belonging to the i-th cluster as Ci and the whole set of papers
as P. The set of clusters forms a partition of P, so that P =⋃

i Ci and Ci ∩ Cj = ∅ for i, j ∈ {1, 2, . . . , c} and i 6= j.
We then define the subsets Xijk = {x ∈ Ci|sxj = k}. For the
generic cluster Ci we introduce its medoid Qi, whose generic
j-th attribute is qij.

The papers are first assigned to the clusters, e.g. in a
random fashion.

For each cluster a medoid is then computed. According
to the k-mode algorithm, each attribute of the medoid is
assigned the most frequent value in its cluster (i.e., its mode,
hence the k-mode name). For example, if the attribute val-
ues in the Utility function category for the papers of a
cluster are such that 30 paper employ a utility function
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(attribute value = Yes) and 20 do not (attribute value = No),
themost frequent value is Yes, and we set the attribute value of
the medoid for the Utility function category as Yes. We have
therefore the following medoid attribute assignment rule

qij = argmax
k

|Xijk | (11)

with i = 1, 2, . . . , c and j = 1, 2, . . . , 7.
The papers are then reassigned to the cluster whose medoid

is the closest, i.e.

paper m ∈ Ci if d(m,Qi) ≤ d(m,Qj) j 6= i (12)

The algorithm then goes iteratively through the medoid
computation and paper assignment phases till the cluster
composition does not change anymore.

There are two issues with the k-mode algorithm. First,
the solution provided depends on the initial assignment of
nodes (papers) to clusters. Second, the k-mode algorithm
provides a clustering partition where the number of clusters
is set at the beginning, but does not provide the optimal
number of clusters by itself. In order to deal with the first
issue, we have considered 1000 different starting assignment,
obtaining 1000 clustering solutions, among which we have
selected the best one. In order to select the best clustering
solution for a given number of cluster and the best number
of clusters, we have adopted a clustering goodness metric
as suggested in [156]. In that book, two different metrics
are considered to measure the (lack of) homogeneity and
the separation properties, aiming at minimizing the lack of
homogeneity within a cluster and maximizing the separation
between the clusters. The metrics proposed in Section 5.2
of [156] for those purposes for the generic i-th cluster are
respectively

h(i) =
ni∑
l=1

ni∑
v=1
v 6=l

dil,iv

s(i) =
ni∑
l=1

∑
k 6=i

nk∑
v=1

dil,kv (13)

We can now sum over the number c of clusters to get the
overall metrics H and S. Since the values of the sums in
Equation (13) depend also on the number of terms in the
sum, we have introduced a normalization factor to take into
account the number of terms involved in the computation of
h and s, so that the overall metrics for the lack of homogeneity
and separation are

H (c) =
c∑
i=1

h(i)
ni(ni − 1)

S(c) =
c∑
i=1

s(i)
ni(n− ni)

(14)

In order to consider both aims, we could define a single
metric that takes into account both H and S, such as their
difference or their ratio. However, the values of those two

FIGURE 5. Clustering metrics for lack of homogeneity and separation.

metrics appear to differ by orders of magnitude, so that their
direct combination into a single metric is not very useful.
We prefer to consider their behavior separately. In FIGURE 5
we see that a reasonable trade-off choice between the differ-
ent aims for H and S is c = 3, 4.
As to the case of 3 clusters, the first cluster contains all

the papers that adopt a periodic updating; the second cluster
includes instead the papers that adopt an aperiodic updating
but where the interaction concerns either pairs of agents or
all the agents; the third cluster takes all the remaining papers,
with no specific common feature.

In the case of four clusters, all papers adopting a uni-
lateral interaction direction make up Cluster 1, so that the
papers considering a bilateral interaction direction, which are
the majority, are distributed among the three other clusters.
Cluster 2 and Cluster 4 contain the papers with a bilat-
eral symmetric pairwise interaction and aperiodic updating.
Cluster 3 contains instead the papers adopting a bilateral non-
symmetric interaction and a linear updating function, but not
those considering a pairwise interaction.

VI. CONCLUSIONS
Our survey has included over 150 papers, i.e., a large body of
research literature.

The interest in the topic is growing at an aggregate yearly
rate of 16%, though most papers among the most cited ones
were published around the year 2000, with the notable excep-
tion of a paper published in 2013 and appearing in the Top 10.

Two scientific communities appear to constantly working
on the subject, though the interaction between them is very
limited. However, the development in the area could ben-
efit from a mutual awareness of their work and a tighter
interaction.

As to the models, not all the combination of features have
been equally explored. The most adopted models feature
a bilateral, but non symmetric, interaction direction; most
studies do not employ a utility function, and adopt a nonlinear
updating function.
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Probably, the most interesting feature that could be
explored in the future is the adoption of a utility function,
which would signal the interest of agents to update their
opinion. The survey may also be employed to highlight other
features that have not been sufficiently explored so far.
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