
Electronic Notes in Theoretical Computer Science 66 No. 4 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume66.html 15 pages

Compatibility of Linda-based Component
Interfaces

Antonio Brogi 1

Dipartimento di Informatica, Università di Pisa, Italy

Ernesto Pimentel 2,4

Dpto. de Lenguajes y Ciencias de la Computación,University of Málaga, Spain

Ana M. Roldan 3,4

Dpto. de Ingenieŕıa Electrónica, Sistemas Informáticos y Automática, University
of Huelva, Spain

Abstract

Linda is a coordination language, originally presented as a set of inter-agent com-
munication primitives which can virtually be added to any programming language.
In this paper, we analyse the use of Linda to specify the interactive behaviour of
software components. We first introduce a process algebra for Linda and we define
a notion of process compatibility that ensures the safe composition of components.
In particular, we prove that compatibility implies successful computation. We also
argue that Linda features some advantages with respect to similar proposals in the
context of dynamic compatibility checking. In this perspective, we propose an alter-
native definition of compatibility that takes into account the state of a global store,
which gives some relevant information about the current execution of the system.

1 Introduction

Component-Based Software Engineering (CBSE) is an emerging discipline in
the field of Software Engineering. In spite of its recent birth, a lot of activ-
ities are being devoted to CBSE both in the academic and in the industrial

1 Email: brogi@di.unipi.it
2 Email: pimentel@lcc.uma.es
3 Email: amroldan@diesia.uhu.es
4 The work of Ana M. Roldán and E. Pimentel has been partially supported by the Spanish
project TIC2001-2705-C03-02

c©2002 Published by Elsevier Science B. V.

82

 Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Roldán

world. The reason of this growing interest is the need of systematically de-
veloping open system and “plug-and-play” reusable applications, which has
led to the concept of “commercial off-the-self” (COTS) components. The first
component-oriented platforms were CORBA [16] and DCE [14], developed by
OSF (Open Software Foundation) and OMG (Object Management Group).
Several other platforms have been developed after them, like COM/DCOM
[10], CCM [21], EJB [17], and the recent .NET [15].

Available component-oriented platforms address software interoperability
by using Interface Description Languages (IDLs). Traditional IDLs are em-
ployed to describe the services that a component offers, rather than the services
the component needs (from other components) or the relative order in which
the component methods are to be invoked. IDL interfaces highlight signature
mismatches between components in the perspective of adapting or wrapping
them to overcome such differences.

However, even if all signature problems may be overcome, there is no
guarantee that the components will suitably interoperate. Indeed, mismatches
may also occur at the protocol level, because of the ordering of exchanged
messages and of blocking conditions, that is, because of differences in the
component behaviours. To overcome such a limitation, several proposals have
been put forward in order to enhance component interfaces [12]. Many of them
are based on process algebras, and extend interfaces with a description of their
concurrent behaviour [1,2,7,8,13,20], such as behavioural types or role-based
representations.

The objective of this work is to explore the usability of the coordination
language Linda [9] for specifying the interaction behaviour of software compo-
nents. Linda was originally presented as a set of inter-process communication
primitives which allow processes to add, read, and delete data in a shared
tuple space (store). Linda’s communication model features interesting prop-
erties, such as space and time uncoupling [9], as well as a great expressive
power to specify concurrent and distributed systems [3,4].

The contributions of this paper can be summarised as follows:

(i) We use Linda as the specification language to describe interface protocols.
Syntactically, this corresponds to extending traditional IDL interfaces
with a Linda description of component behaviours. The formal meaning
of a Linda protocol is given by means of the process algebra presented in
[5].

(ii) We define a notion of process compatibility that guarantees the safe com-
position of components. More precisely, we prove that the compatibil-
ity of two processes implies that their interaction will be successful.The
importance of the notion of compatibility relates to the possibility of
performing a priori verification of complex interacting systems.

(iii) We then define a notion of store sensitive compatibility to formalise
the compatibility of two processes with respect to a given state of the

83



Roldán

store.The state of the store is particularly significant in Linda as it is the
only means by which (all) Linda processes communicate. The store hence
provides relevant information on the results of the current execution of
the system, and it allows to contextualise the compatibility of processes
in the perspective of dynamic compatiblity checking.

The rest of the paper is organized as follows. Section 2 presents a process
calculus for Linda. The use of Linda for specifying component protocols is also
illustrated by means of a simple example. Section 3 is devoted to introduce
the notion of process compatiblity and to prove that compatibility ensures
safe compositions. An alternative, store sensitive definition of compatibility is
then given, and the relation between the two notions is stated. Finally, some
concluding remarks are discussed in Section 4.

2 Specifying component protocols in Linda

2.1 A Linda calculus

Linda [9] was the first coordination language [11], originally presented as a set
of inter-agent communication primitives which can virtually be added to any
programming language. Linda’s communication primitives allow processes to
add, delete and test for the presence/absence of tuples in a shared tuple space.
The tuple space is a multiset of data (tuples), shared by concurrently running
processes. Delete and test operations are blocking and follow an associative
naming scheme that operates like select in relational databases.

In this paper, following [5], we shall consider a process algebra L containing
the communication primitives of Linda. These primitives permit to add a tuple
(out), to remove a tuple (in), and to test the presence/absence of a tuple (rd,
nrd) in the shared dataspace. The language L includes also the standard
prefix, choice and parallel composition operators in the style of CCS [18].

The syntax of L is formally defined as follows:

P ::= 0 | A.P | P + P | P ‖ P | recX.P

A ::= rd(t) | nrd(t) | in(t) | out(t)

where 0 denotes the empty process and t denotes a tuple.

Following [5], the operational semantics of L can be modeled by a labelled
transition system defined by the rules of Table 1. Notice that the configu-
rations of the transition system extend the syntax of processes by allowing
parallel composition of tuples. Formally, the transition system of Table 1
refers to the extended language L′ defined as:

P ′ ::=P | P ′ || 〈t〉
Rule (1) states that the output operation consists of an internal move

which creates the tuple 〈t〉. Rule (2) shows that a tuple 〈t〉 is ready to offer
itself to the environment by performing an action labelled t. Rules (3), (4)
and (5) describe the behaviour of the prefixes in(t), rd(t) and nrd(t) whose

84



Roldán

(1) out(t).P
τ−→ 〈t〉 ‖ P (6)

P
α−→ P ′

P + Q
α−→ P ′ + Q

(2) 〈t〉 t−→ 0 (7)
P

t−→ P ′ Q
t−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

(3) in(t).P
t−→ P (8)

P
t−→ P ′ Q

t−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q

(4) rd(t).P
t−→ P (9)

P
α−→ P ′ α 	= ¬t

P ‖ Q
α−→ P ′ ‖ Q

(5) nrd(t).P
¬t−→ P (10)

P
¬t−→ P ′ Q 	 t−→

P ‖ Q
¬t−→ P ′ ‖ Q

Table 1
Transition system for L.

labels are t, t and ¬t, respectively. Rule (6) is the standard rule for choice
composition. Rule (7) is the standard rule for the synchronization between
the complementary actions t and t: It models the effective execution of an
in(t) operation. Rule (8) defines the synchronization between two processes
performing a transition labelled t and t, respectively. Notice that the process
performing t is left unchanged, since the read operation rd(t) does not modify
the dataspace. The usual rule (9) for the parallel operator can be applied
only to labels different from ¬t. Indeed a process P can execute a nrd(t)
action in parallel with Q only if Q is not able to offer the tuple 〈t〉, as stated
by rule (10). Notice that, following [5], there are no rules for recursion since
its semantics is defined by structural axiom recX.P ≡ P [recX.P/X] which
applies an unfolding step to a recursively defined process.

The rules of Table 1 are used to define the set of derivations for a Linda
system. Following [5], both reductions labelled τ and reductions labelled ¬t are
considered. Formally, this corresponds to introducing the following derivation
relation:

P �−→ P ′ iff (P
τ−→ P ′ or P

¬t−→ P ′).

Notice that the above operational characterization of L employs the so-called
ordered semantics of the output operation [6]. Namely, when a sequence of
outputs is executed, the tuples are rendered in the same order as they are
emitted. It is also worth noting that also the store can be seen as a process
which is the parallel composition of a number of tuples.

Let us finally introduce another derivation relation that will be used as a

85



Roldán

shorthand in the rest of the paper:

P
α

=⇒ P ′ iff (P �−→∗ α−→ P ′)

where α ∈ {t, t, t}.

2.2 Component protocols in Linda

We now describe how the Linda language can be effectively used to specify
the interactive behaviour of components. To exemplify the appropriateness of
Linda for specifying component protocols, we will illustrate its application to
the standard client/server interaction model.

The typical basic behaviour of a server can be described by the following
protocol:

SERVER = in(c,tos,qry).out(c,ans).SERVER

The server repeatedly exhibits the same interactive behaviour: It first inputs
a request and then outputs the answer it computed for the received request.
The input operation has three parameters which denote the name (c) of the
client who produced the request, the type of service required (some constant
tos), and the actual request (qry). The server then returns its answer to the
query by placing a tuple of the form <c,ans> in the shared dataspace.

The typical basic behaviour of a client is instead described by the following
protocol:

CLIENT = out(#me,tos,qry).in(#me,ans).CLIENT

where #me is the identifier of the client process [9].

Notice that, in the above specification, the client request does not refer to
the name of a specific server. Most importantly, a client does not need to be
aware of which servers are currently available. Notably, the above specification
allows several clients and servers to be dynamically and transparently plugged
in an open system.

The above specification describes the basic behaviour of clients and servers.
A more refined specification may include for instance the brokerage of the
servers currently available for a given type of service. Indeed, the server
protocol may be rewritten so that the first operation a server performs is
to inform the system that she is a server featuring a certain type of service.
This can be done by outputing a tuple that associates the process identifier
with a certain type of service, as specified in the following protocol:

SERVER = out(tos,#me).CYCLE

CYCLE = in(c,#me,qry).out(#me,c,ans).CYCLE

where CYCLE is a process name. Notice also that the SERVER protocol employs
the tuple format <sender,receiver,message> for the message exchanged
between clients and servers on the shared dataspace.

86



Roldán

Server brokerage can be then easily included in the client protocol as fol-
lows:

CLIENT = (rd(tos,srv).out(#me,srv,qry).in(srv,#me,ans).CLIENT)

+

(nrd(tos,srv).EXCEPTION)

Namely the client determines the name of a server offering the desired type of
service by means of the

rd(tos,srv) operation. If there is no server available for such type of
service (nrd(tos,srv)), then the client will have to handle the unexpected
situation by means of some process EXCEPTION. Note that this behavior de-
scription forces to the server to provide a service to the client, in order to avoid
an EXCEPTION. Obviously a real client would wait for some time before enter-
ing in the second branch. However, with the given specification are modelling
the possibility of having this situation, abstracting from temporal conditions.

3 Correct composition of components

3.1 Interfaces compatibility

We now introduce a notion of compatibility among processes in order to deter-
mine whether two processes — specified as two Linda agents — conform one
another. The idea is applying this notion to the analysis interfaces compati-
bility.

Let us first define the notion of successful computation which, intuitively
speaking, denotes the absence of deadlock in all possible alternative executions
of a process.

Definition 3.1 [Successful computation] A process P is a possible failure if
there exists an agent P ′ such that P �−→∗ P ′ 	�−→ and P ′ is not structurally
equivalent to a store (i.e., a parallel composition of tuples). On the contrary,
a process P is successful if P is not a possible failure.

Before defining the notion of compatibility among processes,we introduce
the notion of synchronizable processes. This notion is needed for technical
reason, and its need will be better clarified later.

Definition 3.2 [Synchronizable processes] A process P provides an input a

for an agent Q if there exist two processes P ′ and Q′, such that P
a

=⇒ P ′ and
Q

α
=⇒ Q′, where α ∈ {a, a}. Two processes P and Q are synchronizable if P

provides an input for Q or Q provides an input for P .

Definition 3.3 [Compatible processes] A process P is semi-compatible with
a process Q, written P C Q (and the relation C is called a semi-compatibility),
iff:

87



Roldán

(i) If P is not successful then P and Q are synchronizable

(ii) If P only can proceed by ¬t transition then Q �−→∗ 	 t−→.

(iii) If P
τ−→ P ′ then P ′ C Q.

(iv) If P
t−→ P ′ and Q

t−→ Q′ then P ′ C Q′.

(v) If P
t−→ P ′ and Q

t−→ then P ′ C Q.

(vi) If P
¬ t−→ P ′ and Q 	 t−→ then P ′ C Q.

A relation C is a compatibility if both C and C−1 are semi-compatibilities.
We say that two processes P and Q are compatible, and we denote it by P �Q,
if there exists a compatibility relation C, such that P C Q.

Intuitively speaking, two Linda processes are compatible if for each possible
action offered by one of them there is a corresponding answer from the other
one, and vice-versa. Notice that condition(i) has a technical justification as
it avoids considering two unrelated processes (viz., two processes that do not
share any action) compatible.

When processes are defined with a finite number of states (even if they
present an infinite behavior), it is worth observing that it is possible to imple-
ment a tool capable of automatically checking the compatibility of two pro-
cesses. Obviously, depending on the structural complexity of the processes,
the cost of checking might be very high. In any case, even when infinite be-
havior is dealt with, the usefulness of a tool is clear. Thus, a negative answer
showing the non-compatibility of two components could prevent from wrong
compositions. Obviously, the compatibility of two generic processes is not
always decidible. In fact, the second condition of previous definition may in-
troduce a very high cost when two Linda agents are analysed to check their
compatibility. This condition has been included only to deal with the nrd
action. Observe that always an agent P exhibits a ¬t transition, a compatible
agent Q must prevent the existence of a tuple 〈t〉, even after a (indeterminate)
number of �−→ transitions. And this could be rather expensive in terms of
resource consuming. However, from a practical point of view, it is usual to
complement the description of a component with state finite processes, and
we could restrict us to a subset of Linda (no including the nrd primitive). We
can, for instance, verify that the processes:

CLIENT = out(#me,tos,qry).in(#me,ans).CLIENT

and:

SERVER = in(c,tos,qry).out(c,ans).SERVER

are compatible. Since CLIENT
τ−→ qry−→ CLIENT’ and SERVER

qry−→SERVER’, we
check the compatibility of the two new processes

CLIENT’=in(#me,ans).CLIENT

and

SERVER’=out(c,ans).SERVER.

88



Roldán

Now, CLIENT’
ans−→CLIENT and SERVER’

τ−→ ans−→SERVER. Therefore, both pro-
cesses belong to a compatibility relation, and then, we can conclude that
CLIENT and SERVER are compatible.

On the other hand, we can observe that an “eager” server (that may ter-
minate if there are no pending queries) such as:

SERVER2 = in(c,tos,qry).out(c,ans). SERVER2

+ nrd(c,tos,qry).0}

is not compatible with CLIENT.

If we consider the notion of bisimilarity defined in other process calculi, we
can observe that compatibility provides a different way of comparing processes.
In fact, whereas two bisimilar processes present the “same” behavior, two
compatible processes describe two “complementary” behaviors.

Definition 3.4 [Bisimilar processes] Two processes P and Q are similar, writ-
ten P S Q, (and the relation S is called a similarity) iff P S Q implies that
∀α εA

⋃{τ}:

If P
α−→ P ′, ∃Q′ Q

α−→ Q′ and P ′ S Q′.

A relation S is a bisimilarity if both S and S−1 are similarities. We say
that two processes are bisimilar (and we denote it by P ∼ Q), if exists a
bisimilarity relation, such that P S Q.

Theorem 3.5 If P � Q and Q ∼ R then P � R.

Proof. The proof is this result is direct from conditions imposed in the defi-
nition of compatibility. We only have to prove that the relation C = {(P,R) :
P �Q and Q ∼ R} is a semi-compatibility. Let P,R be two C-related processes,
i.e P C R. We analyze the different possibilities:

(i) If P is not successful, by the definition of compatibility (condition 1 for
P � Q) and bisimilarity, P and R are synchronizable.

(iii) If P
τ−→ P ′, we observe that P ′ �Q. And if we consider Q ∼ R, then we

obtain P ′ C R.

(iv) If P
t−→ P ′ and R

t−→ R′. As Q ∼ R, there exists Q′ such that Q
t−→ Q′

and Q′ ∼ R′. In the same way, as P � Q, we have by condition 4 that
P ′ � Q′ Therefore P ′ C R′.

(v) If P
t−→ P ′ and R

t−→ R′. As Q ∼ R, there exists Q′ such that Q
t−→ Q′

and Q′ ∼ R′. In the same way, as P � Q, we have by condition 5 that
P ′ � Q. Therefore P ′ C R.

(vi) If P
¬t−→ P ′ and R 	 t−→. As Q ∼ R, we can affirm that exists Q′ such

that Q 	 t−→ and Q′ ∼ R′. As P � Q, by condition 6 we obtain P ′ � Q.
Therefore P ′ C R.

89



Roldán

✷

We also can prove that the compatibility of two processes implies the success
of their parallel composition. This result is not surprising, because conditions
of Definition 3.3 have been selected to ensure that parallel composition is
deadlock free.

Proposition 3.6 If P � Q then P ‖ Q is successful.

Proof. Suppose that P � Q but P ‖ Q is not successful.Then, there exists
F (a possible failure) such that P ‖ Q �−→∗ F, F is not a set of tuples and
F 	�−→. We will prove that it is not possible by induction on the number n of
τ -transitions leading to F.

(i) Base Case. Suppose n = 0. Then P ‖ Q = F 	�−→, therefore P 	 τ−→
and Q 	 τ−→. If P or Q is a stuck process, then, by the first condition of
compatibility, we infer that P and Q are synchronizable (it means that

a exists such that P
a

=⇒ P ′ and Q
α

=⇒ Q′, where α ∈ {a, a}). And
then, we have P ‖ Q =⇒ P ′ ‖ Q′ τ−→, which is a contradiction. Another

possibility is that P
¬t−→ and Q

t−→ for some action t (or viceversa); but
this is contradictory with the second condition of compatibility.

(ii) Inductive hypothesis. ∀P ′, Q′. P ′ �Q′, if P ′ ‖ Q′ �−→k F with k < n, then
either F �−→∗ or F is structurally equivalent to a store (i.e. a parallel
composition of tuples).

(iii) General Case. Suppose that (P ‖ Q) �−→ (P ′ ‖ Q′) �−→n−1 F. Then the
initial transition is due to one of the following situations:
(a) P

τ−→ P ′. Then, since Q = Q′ we have that P ′ � Q′

(b) P
t−→ P ′ and Q

t−→ Q′. Then, we have that P ′ � Q′

(c) P
t−→ P ′ and Q

t−→. Then, we have P ′ � Q′

(d) P
¬t−→ P ′ and Q 	 t−→. Then, we have P ′ � Q′

(e) Or the symmetrical situations for Q.
Because of P �Q in every situation, we can apply the inductive hypothesis
and deduce that either F

τ−→ or F is a parallel composition of tuples,
again obtaining a contradiction.

✷

For instance, the previously described processes CLIENT and SERVER are
compatible, and Proposition 3.6 ensures that their parallel composition is a
success. Although this is not a surprising result, we will introduce below the
notion of compatibility with respect to a set of tuples, which will capture some
interesting details making the successful composition of components depen-
dent on the open running system.

90



Roldán

3.2 Store sensitive compatibility

In Linda, inter-process communication occurs only via a shared store (or datas-
pace) which is a (multi)set of tuples inserted, extracted or deleted by the
concurrent processes.

In order to have an explicit treatment of the store, we now define a com-
patibility relation that takes into account the situation of the store. As we will
see, we can obtain a similar result concerning successful computation in the
presence of compatibility. An advantage of having an explicit reference to the
store is the possibility of establishing dynamic compatibility checking. Indeed,
a Linda-based computation is characterized by the store’s evolution, so that
the set of tuples included into the store governs each computation step. This
way, the aim of the following definition is to enable run-time (store-sensitive)
compatibility checking.

If we observe the Definition 3.3, the processes P and Q are agents that be-
long to L′. The fact of compatibility checking implies the processes must have
tuples, because they are obtained when we apply τ -transitions (out-actions).
But we must put the tuples into the store, so we have the processes without
tuples. How do we get this? We can define two types of τ -transitions: one of
this transition appears when it synchronizes an output (t) and an input (t or
t) and the second type emerges from the creation of the tuples (out). In this
way, we can separate the processes which originate the tuples and put them
(the tuples) into the store. Therefore it is necessary to rewrite the rule num-
ber (1) of the transition system. We will name τ -actions(rules 7 and 8)when
we want to synchronize processes and τout-actions when we want to indicate
output :

out(t).P
τout−→ 〈t〉 ‖ P

And now we can define a relation of compatibility w.r.t a data shared
space.

Definition 3.7 [Compatible processes with respect to a store] Let P and Q
be two processes in L, P is semi-compatible with Q w.r.t a store St, written
P CSt Q, iff:

(i) If P is not successful then P and Q ‖ Store are synchronizable.

(ii) If P only can proceed by ¬t transition then Q �−→∗ 	 t−→ and St does not
include the tuple 〈t〉.

(iii) If P
τout−→ 〈t〉 ‖ P ′ then P ′ CSt‖〈t〉 Q.

(iv) If P
t−→ P ′ y St

t−→ St′ then P ′ CSt′ Q.

(v) If P
t−→ P ′ y St

t−→ then P ′ CSt Q.

A relation CSt is a compatibility w.r.t. the store St if both CSt and C−1
St are

semi-compatibilities w.r.t. the same store St. We say that two processes P

91



Roldán

and Q are compatible w.r.t. St, and we denote it by P �St Q, if there exists a
compatibility relation CSt, such that PCStQ.

As in Definition 3.3, condition (1) is introduced for technical reasons to
avoid two unrelated processes to be considered compatible. In this case, since
the compatibility relation is relative to a certain store, we allow to have unre-
lated (without sharing complementary actions) compatible processes, when-
ever they might be related through the store. That is, when two processes do
not present any common (complementary) behavior, but one of them, after
consuming a tuple from the store, synchronizes with the other process, then
they may present a compatible behavior.

Notice that two processes which are not compatible in the sense of Defini-
tion 3.3 can be compatible with respect to a convenient store. For example, if
we consider the process CLIENT2=in(schd,init).CLIENT, modeling a client
which needs to be initialized by some scheduler before behaving as CLIENT, it
is not compatible with the process SERVER previously defined in this Section.
However, we observe that they are compatible w.r.t. a store containing the
tuple <schd,init>. Here, we can see how the new introduced notion makes
more flexible the compatibility checking between two processes. In fact, the
compatibility of a client and a server could depend on the actions already
made by a third component previously created (the one which has put the
convenient tuple into the store.)

And then, if we study the two relations � and �St in a basic case, we obtain
the next proposition.

Proposition 3.8 If P � Q then P �ø Q.

Proof.

(i) Trivial.

(iii) If P
τout−→ 〈t〉 ‖ P ′. As P � Q then 〈t〉 ‖ P ′ � Q, which implies by the

Definition 3.7(cond. 3) P ′ �〈t〉 Q.

✷

The result of Proposition 3.6 can be extended to �St , obtaining the follow-
ing result.

Proposition 3.9 If P �St Q then P ‖ Q ‖ St is successful.

Proof. Analogous to the proof of Proposition 3.6. ✷

Proposition 3.9 ensures the success of the computation of a pair of processes
in presence of a suitable store. In practice, this result can be used:

• both for checking the compatibility of a component and of a running system
w.r.t. the current store (characterizing the current state of the execution),

• and for conditioning the acceptance of a given component into an open
running system so as to wait for a suitable state of the store in order to
ensure the success of the overall system.

92



Roldán

It is worth observing that the two relations � and �St are closely related.
This is rather natural, because the notion of compatibility w.r.t. a store is
defined in terms of the complementary behavior of a process with respect to
another one (as it is made in the notion of compatibility), and with respect
to the store, which is dealt with as one more process (a parallel composition
of tuples). Informally, � can be seen as a different presentation of �St . What
we mean with this is that the compatibility with respect to a store could be
defined in terms of the compatibility relation, where the store can be seen as
one more process: a parallel composition of tuples.

The advantage of using the presentation given by �St is its usefulness from
the automatic checking perspective. Although the new compatibility relation
is relevant per se (because the store plays an important role in the interaction
of components, and it is explicitly considered), a more interesting point is
the possibility of building an automatic checking tool capable of determining
which is the store (if any) that makes two given processes compatible. Such a
tool would manipulate processes belonging to L, that is, no containing tuples.
Whereas agents involved in the compatibility relation given in Definition 3.3
are from L′ (note that the out primitive introduces tuples), the idea is to
distinguish agents modeling a component (with no occurrences of tuples) from
those representing a store (a parallel composition of tuples). However, if we
observe the second condition of Definition 3.7, we see that the process P may
proceed to a process P ′ containing a tuple: it happens when the τ transition
comes from an out action (obviously, this is not the case when the τ transition
corresponds to a synchronization action). This inconvenient could be easily
solved by considering two different τ transitions, one to represent out actions,
and one to model synchronization. Thus, we assume that processes modeling
component protocols will always belong to L.

Theorem 3.10 Let P and Q be two processes, and let St be a set of tuples.
If P �St Q then P � (Q ‖ St).

Proof. This proof can be reduced to proving that the relation C ={(P,Q ‖
St) : P �St Q} is a semi-compatibility. Thus, given P C (Q ‖ St), which means
P �St Q, we analyze the different possibilities that are considered into the
Definition 3.3 (where second and sixth conditions are not considered, because
we are not dealing with the nrd action.)

(i) If P is not successful, by the Definition 3.7 (condition (1) for P �St Q), P
and (Q ‖ St) are synchronizable.

(iii) If P
τout−→ P ′, we observe that P ′ �St Q. This implies P ′ C Q ‖ St.

(iv) If P
t−→ P ′ and (Q ‖ St)

t−→. we observe the following situation:

• St
t−→ St′. Then, as P �St Q, by the condition (4), we have P ′ �St′ Q.

And by the definition of C, P ′ C Q ‖ St′.

(v) If P
t−→ P ′ and (Q ‖ St)

t−→, we have the next alternative:

93



Roldán

• St
t−→. Then, as P �St Q, by the condition (5), we have P ′ �St Q. And

by the definition of C, P ′ C Q ‖ St.

✷

If we analyze the proof of this theorem, we observe that a more general
result could have been proved. For example, the following theorem.

Theorem 3.11 Let P and Q be two processes, and let St be a set of tuples.
If P � (Q ‖ St) then P �St Q.

Proof. Analogous to the proof of Theorem 3.10, it can be reduced to proving
that the relation CSt ={(P,Q) : P � (Q ‖ St)} is a semi-compatibility.

(i) Trivial

(iii) If P
τout−→ 〈t〉 ‖ P ′. As P � (Q ‖ St) then we infer that 〈t〉 ‖ P ′ � (Q ‖ St),

where P ′ does not contain any tuple. Then P ′ CSt‖〈t〉 Q.

(iv) If P
t−→ P ′ and St

t−→ St′ then Q ‖ St
t−→ Q ‖ St′. As P � (Q ‖ St)

then by the Definition 3.7 (cond. 4), P ′ � (Q ‖ St′), and P ′ CSt′ Q.

(v) If P
t−→ P ′ and St

t−→.As P � (Q ‖ St) then by the Definition 3.7
(cond.5) P ′ � (Q ‖ St), therefore P ′ CSt Q.

✷

In fact, if two processes P and Q are compatible under a store St, for every
partition of that store, St = StP ‖ StQ, we could prove that P ‖ StP and
Q ‖ StQ are compatible too.

4 Concluding remarks

Linda is a coordination language where inter-process communication can only
occur through a set of tuples, and the main novelty of our proposal consists of
defining a compatibility relation taking into account the situation of the store.
The advantage of this is the possibility of establishing dynamic compatibility
checking. That is, when a component has to be incorporated into an already
executing system (seen as another component), the compatibility has to be
analyzed dynamically, and the “static” specification is not enough because
it presents the behavior of a component from its instantiation. Indeed, the
advantage of using a Linda-based formalism is that a Linda computation is
characterized by the store’s evolution, in such a way that the set of tuples
included into the store governs each computation step. This is not made
in other proposal, where other formalisms, like CSP or π-calculus, are used.
We believe that this Linda’s feature can be potentially used to establish the
compatibility of executing components, by using the store to have information
about the current state of the component.

Indeed, some of the issues covered in this paper have also been dealt with
in other proposals. In the context of software architecture Allen and Garlan

94



Roldán

[1] use the process algebra CSP to describe synchronization of components and
connectors, while having some limitations concerning the dynamic change of
configurations. Another proposal improving the expressiveness of interaction
descriptions by using π-calculus was presented by Canal [7]. Some of the
ideas proposed in [7] have already been applied to CORBA in [8]. In this
case, dynamic interaction among components (dynamic change of topology)
can be better expressed than in CSP. Other works, like [2], propose the use
of (a subset of) π-calculus to describe interaction patterns for components
so as to reduce the cost of verifying correctness properties in dynamic, open
systems. Our proposal somehow combines these two last lines by defining a
notion of process compatibility in the style of [7,8], while focussing on the
automatic, run-time checking of properties in dynamic, open systems in the
style of [2].

Our future work will be devoted to define an inheritance relation over
processes in order to promote the reusability and substitutability of interac-
tion descriptions, and to study how this affects compatibility and successful
computations. We are also planning to develop an automatic tool (by apply-
ing model checking techniques) to check compatibility in order to explore the
practical application of our proposal and to analyze and experiment the cost
of checking properties in practical real-word cases.

New generation component-based platforms (e.g., .NET) will allow proto-
col information to be directly included in the metalanguage description (e.g.,
in XML) of a component. In this perspective, our future work will be devoted
to develop a methodology for coding protocol information as metalanguage
descriptions and for checking composition properties by analyzing their met-
alanguage descriptions.

References

[1] R. Allen and D. Garlan,“ A formal basis for architectural connection,” ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

[2] A. Bracciali, A. Brogi, and F. Turini. Coordinating interaction patterns. In
Proceedings of 16th ACM Symposium on Applied Computing, 2001.

[3] A. Brogi and J. M. Jacquet. On the Expressiveness of Linda-like Concurrent
Languages. Electronic Notes in Theoretical Computer Science, 16, 1998.

[4] A. Brogi and J. M. Jacquet. “On the expressiveness of coordination models”.
In Coordination Languajes and Models: 3rd International Conference, number
1594 in lncs, pages 134–149. Springer-Verlag, 1999.

[5] N. Busi, R. Gorrieri, and G. Zavattaro. Comparing three semantics for linda-
like languages. Theoretical Computer Science, 1998.

[6] N. Busi, R. Gorrieri, and G. Zavattaro. A process algebraic view of linda

95



Roldán

coordination primitives. Electronic Theoretical Computer Science, 192:167–199,
1998.

[7] C. Canal. “Un Lenguaje para la Especificación y Validación de Arquitecturas
de Software ”. PhD thesis, Dept. Lenguajes y Ciencias de la Computación,
University of Málaga, 2001.

[8] C. Canal, L. Fuentes, E. Pimentel, J. Troya, and A. Vallecillo. Extending Corba
Interfaces with Protocols. The Computer Journal, 44(5):448–462, 2001.

[9] N. Carriero and D. Gelernter. Linda in Context. Communications of the ACM,
32(4):444–458, 1989.

[10] D. Chappell. “Understanding ActiveX and OLE ” . Microsoft Press, 1996.

[11] D. Gelernter and N. Carriero. Coordination Languages and Their Significance.
Communications of de ACM, 35(3):97–107, 1992.

[12] G. T. Leavens and M. Staraman, editors. “Foundations of Component-Based
Systems ”. Cambridge University Press, 2000.

[13] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour analysis of software
architectures. Kluwer Academic Publishers, 1999.

[14] DCE. The Open Group of Distributed Computing Environment.

[15] Microsoft Corporation. .NET Programming the Web.

[16] OMG. The Common Object Request Broker: Architecture and Specification.
Object Managemant Group.

[17] Sun Microsystems Inc. Enterprise JavaBeans.

[18] R. Milner. “A Calculus of communicating systems ”. Springer-Verlag, 1989.

[19] R. Milner, J. Parrow, and D. Walker. Calculus of mobie processes. Journal of
Information and Computation, 100:1–7, 1992.

[20] E. Najm, A. Nimour, and J. Stefani. Infinite types for distributed objects
interfaces. In Proceedings of the third IFIP conference on Formal Methods
for Open Object-based Distributed Systems - FMOODS’99. Kluwer Academic
Publishers, 1999.

[21] N. Wang, D. C. Schmidt, and C. O’Ryan. “An Overview of the CORBA
Component Model ”. Object Technology Series. Addison-Wesley, 2000.

96




