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Abstract. The Earth’s rotation rate is not constant, but
changes on all observable timescales, from subdaily to
decadal and longer. These variations are usually discussed
in terms of variations in the length of the day (LoD) and are
caused by processes acting within the interior, at the surface
and outside of the Earth. Here, we investigate the presence
of long-standing decadal variations in yearly LoD data cov-
ering the period from 1832 to 2009 by applying the Hilbert–
Huang transform (HHT). The HHT has been slightly modi-
fied here to take into account the uncertainty of LoD values
that has changed greatly in time due to the use of different
LoD measurement techniques. The LoD time series has been
completely decomposed into five intrinsic mode functions
(IMF) and a residual trend. The estimation of instantaneous
frequencies and related amplitudes of the obtained IMFs has
allowed us to compute the Hilbert spectrum that has been
used as the starting point for studying and discussing the sta-
tionarity of typical LoD timescale stationarity. The obtained
results while showing the presence of multiple periodicities
also indicate the absence of really stationary periodicities.
Therefore, rather than considering the processes taking place
in the Earth’s core as the result of a superposition of oscil-
lations (i.e. stationary mechanisms) occurring on a discrete
number of different timescales, it would be better to think of
a superposition of fluctuations that are intermittent in both
frequency and amplitude.

1 Introduction

The question of whether or not the rotation rate of the Earth is
constant was investigated at least as early as the seventeenth
century. However, it was only in the twentieth century that
the observation of planetary motions confirmed its irregular

behaviour. Nowadays, it is well known that the Earth’s rate
of rotation (�), and hence the length of the day (LoD), is
not constant in time, but exhibits changes of the order of a
few parts in 108, i.e. δ�/� ∼ 10−8. Though variations with
the largest amplitude occur over the decadal timescale, ob-
servations of the evolving state of Earth rotation have re-
vealed the occurrence of variability on many timescales rang-
ing from days to centuries and longer. This wide range of
timescales is the expression of the wide variety of processes
influencing Earth rotation. These processes involve external
tidal forces, superficial processes concerning the atmosphere,
oceans, and hydrosphere, and internal processes taking place
at the core-mantle boundary as well as within the solid Earth
itself (Hide and Dickey, 1991). This is the reason why, for
many years, scientists in the field of astronomy and Earth sci-
ences have been focusing their attention on the interpretation
of the Earth rotation fluctuations as a key to understanding
fundamental terrestrial dynamical processes.

LoD variations occurring over the longest timescales are
thought to be primarily a consequence of the tidal friction
resulting from the gravitational attraction of the Sun and
Moon on the rotating Earth. These interactions produce a
secular slowing of rotation and consequently a secular in-
crease in the LoD. The linear increase in the LoD is expected
to be about 2.3 ms century−1, but what is actually observed
from the ancient astronomical record is an increase of about
1.7 ms century−1. The difference between these two values,
which is sometimes called the anomalous rate of increase in
LoD, is believed to be caused by a linearly varying redistri-
bution of mass within the Earth associated with the so-called
post-glacial rebound. Indeed, although the ice began to melt
about 18 000 yr ago and was mostly gone 5000 yr ago, the
depressions of the Earth’s surface have not completely dis-
appeared yet.

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



1128 P. De Michelis et al.: Nonstationarity of decadal LOD

Variations in the LoD occurring on relatively short
timescales, from subannual to annual, characterized by an
amplitude up to 2 ms have been explained primarily by the
exchange of angular momentum between the solid Earth and
its atmosphere and oceans, as deduced from many studies
(e.g. Hide et al., 1980; Marcus et al., 1998; Gross et al.,
2004).

Between these two kinds of variations are those occurring
over timescales of several decades with an amplitude of a few
milliseconds that cannot be easily explained by surface pro-
cesses. These variations are generally believed to be caused
by the transfer of rotational angular momentum between the
Earth’s liquid metallic core and the overlying solid mantle
(Wahr, 1988; Jault, 2003). When the mantle gains angular
momentum, its rotation rate increases, while the observed
LoD decreases. Various mechanisms have been invoked to
explain how the angular momentum is transferred across the
core-mantle boundary. Commonly cited mechanisms involve
viscous (Rochester, 1984), gravitational (Jault and Le Mouël,
1990; Buffet, 1996), electromagnetic (Holme, 1998) and to-
pographic (Hide, 1969, 1977) core-mantle coupling, but ar-
guments for and against each of these mechanisms can be
found as a consequence of the poor knowledge of the physi-
cal conditions in the core.

Since the Earth’s magnetic field is produced by fluid flows
occurring in the Earth’s core, whatever the nature of the
torque, the assumption that the decadal fluctuations are due to
these flows suggests that there ought to be some correlation
between the time variability of observed LoD and that of the
observed Earth’s magnetic field. Unfortunately, studying cor-
relation is complicated because of the attenuation suffered by
magnetic field variations travelling upward through the con-
ducting mantle. When correlations have been identified, the
time lag between changes in the LoD and similar changes in
the observed magnetic field has been used to help constrain
mantle electrical conductivity.

One of the keys to explaining the possible correlation be-
tween the observed LoD and Earth’s magnetic field could
be found in magneto-hydrodynamic torsional waves, i.e. in
the rotation of core fluid on concentric cylinders coaxial with
the Earth’s rotation axis. It has been suggested that these tor-
sional oscillations, with proper period and spatial structure,
may transfer sufficient angular momentum across the core-
mantle boundary to produce the observed LoD variations on
decadal timescales (Jault et al., 1988; Jackson et al., 1993).

Periodicities of torsional oscillations have not been as-
sessed precisely yet. The reason for the large uncertainty
in these periodicities arises from the poorly known physi-
cal conditions of the core and from the mathematical models
constructed to describe the flow at the top of the core. Indeed,
the periods of the fundamental modes of the torsional oscilla-
tions depend crucially on the assumed magnitude of the com-
ponent of the magnetic field orthogonal to and away from the
rotation axis (Bs), which is not well known and, partially,
on the viscosity of the fluid core. For instance, according

to Braginsky(1984), torsional oscillations can have a period
of ∼ 60 yr if the amplitude ofBs is around 0.2 mT, but if it
is closer to 1–2 mT, the period of the free modes shifts to
smaller values. Moreover,Gillet et al. (2010) have recently
hypothesized the existence of torsional oscillations recurring
in the core interior every 6 yr. These torsional oscillations,
whose angular momentum accounts well for the change in
the length of the day with a six-year period detected over the
second half of twentieth century, seem to be carried by an
internal field (Bs) of about 4 mT.

BesidesBraginsky(1984) andGillet et al. (2010), many
other authors have estimated the characteristic periodicities
of torsional oscillations and of the typical periodicities of
LoD decadal variations.Currie (1973) analysed LoD data
primarily from the 18th and 19th centuries using the maxi-
mum entropy method and found a periodicity of 57.5 yr. The
same method was used byJin and Thomas(1977), who found
well-defined signals at 66 and 33 yr. Some years later,Zat-
man and Bloxham(1997) showed that the fluid flow at the
surface of the core is consistent with the presence of two tor-
sional oscillations travelling inside the core with periods of
76 and 53 yr.Hide et al.(2000) identified a dominant vari-
ability period of approximately 65 yr in LoD data. More re-
cently,Roberts et al.(2007) confirmed the existence of a pe-
riodicity of around 60 yr by applying the empirical mode de-
composition (EMD) analysis to LoD data and to the Earth’s
magnetic field by suggesting the existence of a correlation
between the two signals with a well-determined lag.

Considering the nonlinearity and non-stationarity of LoD
time series, we applied the complete Hilbert–Huang trans-
form (HHT) here to try to gain a deeper knowledge of LoD
typical periodicities. So, HHT was performed by decompos-
ing the original signal into a series of monocomponents by
means of EMD and then evaluating the associated Hilbert
spectrum to study the properties of the original signal in the
time–frequency–energy domain. Additionally, we have de-
veloped a procedure to estimate a Hilbert spectrum able to
take into account the information on LoD actual measure-
ment errors. In this way, the estimated LoD characteristic pe-
riodicities, as shown in the following, acquire a more reliable
statistical meaning. Using the Hilbert spectrum it is possi-
ble to both study the temporal evolution of the instantaneous
frequencies characterizing the signal and evaluate the actual
presence and stationarity of the decadal periodicities, such as
that of about 60 yr that have been found in the excess LoD
data by other authors.

The paper is organized as follows: in Sect.2, we briefly
describe the technique of the Hilbert–Huang transform intro-
duced byHuang et al.(1998), in Sect.3 we explain how HHT
has been applied to test the existence and stationarity of the
excess LoD decadal periodicities and, finally, in Sect.4 we
discuss and summarize our results.
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2 The Hilbert–Huang transform: a brief introduction

HHT provides a new method for analysing nonlinear and
non-stationary time series, allowing the exploration of inter-
mittent and amplitude-varying processes. HHT consists of
the successive use of two mathematical techniques: EMD
and Hilbert spectral analysis (Huang et al., 1998, 2003;
Huang and Wu, 2008). The central idea of HHT is that a
time series can be decomposed into simple oscillatory modes
of significantly different average frequencies and a residue.
These modes are called intrinsic mode functions (IMFs) and
are directly obtained from the data with no a priori assump-
tions regarding their nature. IMFs are constructed to satisfy
two specific conditions:

1. the number of extrema and of zero crossings must be
either equal or differ at most by one;

2. the mean value of the envelope defined by the local
maxima and of the envelope defined by the local min-
ima is zero.

We will not linger over details of the complete procedure
to perform EMD since it is reported in many scientific pa-
pers, for instance inHuang et al.(1998, 2003), Huang and
Wu (2008) andFlandrin et al.(2004). Here, we just empha-
sise that for the stoppage condition of the sifting process we
use, as suggested byHuang et al.(1998), the Cauchy-type
convergence criterion where the threshold value limiting the
size of the standard deviation computed from two consecu-
tive siftings has been set so as to have a diadic decomposition
in the case of fractional Browian motion time series having
the same length of actual time series (Flandrin et al., 2004).

After decomposing a signal into its monocomponents, i.e.
its IMFs, it is possible to calculate the instantaneous frequen-
cies and the associated energies using, for example, the tra-
ditional Hilbert transform. Here, however, we computed the
Hilbert spectrum by estimating, for each IMF, the instanta-
neous frequency and associated energy through the so-called
direct quadrature method (Huang et al., 2009). The estima-
tion of instantaneous frequency from experimental data is
not a trivial mathematical problem and many algorithms have
been proposed. For instance,Huang et al.(2009) tested dif-
ferent methods for instantaneous frequency estimation, find-
ing that the normalized Hilbert transform and direct quadra-
ture gave the best results. One of the advantages of direct
quadrature is that it is not affected by the occurrence of nega-
tive frequencies, a problem generally suffered by a traditional
Hilbert transform.

The method of direct quadrature is based on the principle
that a monocomponent signal, say the IMFci(t) (wherei =

1, . . . ,k with k the number of IMFs into which the signal
x(t) has been decomposed), can be written as the product of
its envelopeAi(t) and its carrier cosφi(t) as follows:

ci(t) = Ai(t)cosφi(t), (1)

whereφi(t) is the phase function, andAi(t) and cosφi(t) are
theamplitude-modulated(AM) and thefrequency-modulated
(FM) parts of the signal, respectively. Thus, the instantaneous
frequencyfi(t) is given directly by differentiating the phase
with respect to time,fi(t) = dφi(t)/dt .

The separation of a given IMF into its AM and FM parts
has been achieved empirically following the iterative normal-
ization scheme proposed byHuang et al.(2009). This scheme
works as follows. Once all IMFs are found, all local maxima
of the absolute value of theith IMF, i.e. | ci(t) |, are con-
nected in the first iteration by means of a cubic spline curve,
say ei,1(t). Then, the functionsyi,1(t), . . . ,yi,n(t) are esti-
mated via an iterative procedure as follows:

yi,1(t) =
ci(t)

ei,1(t)
, . . . ,yi,n(t) =

yi,(n−1)(t)

ei,n(t)
, (2)

where ei,k(t) is the cubic spline curve connecting all lo-
cal maxima of the absolute value of theyi,(k−1) with k =

1, . . . ,n. Normalization stops at iterationn when all the val-
ues of the functionyi,n(t) are less than or equal to unity.
Having removed the amplitude modulation,yi,n(t) repre-
sents the FM part of the IMFci(t) and, according to Eq. (1),
yi,n(t) = cosφi(t). Based on simple trigonometric relations,
the instantaneous frequency for theith IMF ci(t) is given by:

fi(t) =
dφi(t)

dt
=

d

dt
arctan

 yi,n(t)√
1− y2

i,n(t)

 , (3)

while, according to Eq. (1), the AM part is given by:

Ai(t) =
ci(t)

yi,n(t)
, (4)

whereAi(t) provides the instantaneous amplitude of theith
IMF ci(t) and reflects how the energy (defined as the ampli-
tude squared), associated with the instantaneous frequency,
changes with time. The Hilbert spectrum is obtained by plot-
ting on the same graph the curves for the instantaneous fre-
quency of each IMF as a function of time and the associated
amplitude. The corresponding Hilbert spectrumH(f, t) (de-
fined in terms of amplitudes,H(f, t) = A(f, t), or squared
amplitudes,H(f, t) = A2(f, t)), is designed to represent the
amplitude/energy in a time–frequency (or alternatively time–
period) representation.

3 Data and analysis

In the present study we focused on a time series of ex-
cess length of day,1LoD spanning May 1832–May 2009 at
yearly intervals. In detail, we extended the smoothed length
of day series LUNAR97, covering the period May 1832–
May 1997 at yearly intervals (Gross, 2001), to the present
using COMB2010 series. This consists of daily values
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Fig. 1. Values and uncertainties for the excess length of day, ∆LoD, spanning 1832.5-2009.5 at 1-year inter-
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Fig. 1.Values and uncertainties for the excess length of day,1LoD,
spanning 1832.5–2009.5 at 1 yr intervals.

and uncertainties for the length of day from 20 Jan-
uary 1962 to 28 May 2010 and can be downloaded
from ftp://euler.jpl.nasa.gov/keof/combinations/2010/. So, it
is from COMB2010 that yearly values of length of day and
relative uncertainty for the last 12 yr (1998–2009) have been
evaluated. We notice that the LoD series ofGross(2001)
has been obtained after many transformations. The LoD se-
ries is indeed derived from a Kalman Earth orientation filter
based on a combination of independent Earth rotation mea-
surements utilizing the techniques of optical astrometry, very
long baseline interferometry (VLBI) and lunar laser ranging
(LLR). The result is a smoothed and interpolated estimate
of the length of day. This time series, as obtained, does not
permit the analysis of periodicities of a few years because
Gross(2001) has applied Gaussian filters to the original data
of Jordi et al.(1994). Nevertheless, longer periodicities of the
length of day, as decadal ones, can be appropriately investi-
gated using this time series.

Figure 1 shows the1LoD yearly values, i.e. values of
the excess LoD in milliseconds with respect to the standard
day of 86 400 s, for a time interval spanning 178 yr. Each
1LoD value is plotted together with its associated uncer-
tainty (Gross, 2001); this gets smaller with time. It is between
0.6 and 0.35 ms in the time interval May 1832–May 1955,
between 0.1 and 0.02 ms in the period from May 1955 to
May 1997, and around 0.02–0.01 ms from May 1998 to
May 2009.

Since this time series is non-stationary and nonlinear, we
studied it using HHT. For this reason, we pre-processed data
using EMD and then estimated its Hilbert spectrum by direct
quadrature as introduced byHuang et al.(1998, 2003) and
Huang and Wu(2008). We belive that HHT allows us to bet-
ter define values and stationarity of typical LoD periodicities
and to gain a deeper insight into the underlying processes
that are expected to influence Earth’s rotation rate. So, we
first applied EMD in the standard way without considering
the effects of different error measurements and using as the
stoppage criterion that discussed in Sect.2.
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Fig. 2. Empirical Mode Decomposition of ∆LoD into five intrinsic mode functions (IMFs) ci(t) and a residue
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value is plotted together with its associated uncertanity (Gross, 2001), this gets smaller with time.180
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period from 1955.5 to 1997.5, and around 0.02-0.01 ms from 1998.5 to 2009.5.

Since this time series is non-stationary and nonlinear, we studied it using HHT. For this reason,

we pre-processing data using EMD and then estimated its Hilbert spectrum by direct quadrature as

introduced by Huang et al. (1998, 2003) and Huang & Wu (2008). We belive that HHT allows us to185
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underlying processes that are expected to influence Earth’s rotation rate. So, we first applied EMD

in the standard way without considering the effects of different error measurements and using as the

stoppage criterion that discussed in Section 2.

EMD yielded five prominent IMFs and a residue, as shown in Figure 2. Figure 3 exhibits a190
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Fig. 2. Empirical mode decomposition of1LoD into five intrinsic
mode functions (IMFs)ci(t) and a residuer(t).

EMD yielded five prominent IMFs and a residue, as shown
in Fig. 2. Figure3 exhibits a comparison between the power
spectral densities (PSDs) of the excess LoD (1LoD) and of
the single IMFs into which the original signal has been de-
composed. The sum of the IMF PSDs correctly reproduces
the PSD of the1LoD, confirming the completeness of our
decomposition. Furthermore, we may notice that the shape of
the1LoD PSD is well described by a stretched Lorentzian
shape,

S(f ) =
A

(1+ (f/f0)α)
, (5)

with α ∼ 2.8 andf0 = [0.0137±0.0008] yr−1. This suggests
that the spectrum of1LoD fluctuations is mainly broadband,
thus supporting the presence of nonlinearities and also non-
stationary features. We will return to this point in the next
section.
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Fig. 3. Comparison among the power spectral density (PSD) of ∆LoD and the PSDs of each IMF. The dashed

line is a nonlinear best fit of the ∆LoD PSD using a stretched Lorentzian shape (see Eq. 5).
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The error associated with each value off̄i , as shown in
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Fig. 4. IMFs ci average frequencies̄fj versus IMF indexi. The
dashed line is a nonlinear best fit using Eq. (8), wherefc = [0.46±

0.25] yr−1.

a nearly diadic filter bank, suggesting that the nature of the
analysed time series is similar to that of a fractional Brow-
nian motion (Flandrin et al., 2004). From these average fre-
quency values̄fi the corresponding average periodicities can
be obtained. They are equal to:T̄1 = 5 yr; T̄2 = 10 yr, T̄3 =

21 yr, T̄4 = 59 yr andT̄5 = 90 yr. Similar periodicity values
were obtained byCurrie (1973), who analysed1LoD data
using the maximum entropy method and found periodicities
of 10–11 yr, 21–22 yr and 57.5 yr. These values are never-
theless partially different from those previously obtained by
Roberts et al.(2007), who found clear evidence for two peri-
odicities of 30 yr and 65 yr. While we could partly confirm
the longest periodicity of 65 yr having found an IMF, i.e.
c4(t), with a mean periodicity of∼ 59 yr, we did not find any
evidence for the periodicity of 30 yr by using the Fourier-
based approach on all the IMFs. Moreover, the Fourier spec-
trum of each IMF does not show any characteristic peak at
the frequencies found byRoberts et al.(2007). In contrast,
the PSDs shown in Fig.3 are characterized by an energy dis-
tributed over a quite large interval of frequencies, suggesting
a non-stationary character for the two periodicities indicated
by Roberts et al.(2007). We believe that the observed period-
icities should more reliably be interpreted under a probabilis-
tic point of view in terms of average characteristic timescales.

To infer the origin of the differences between our results
on 1LoD characteristic periodicities and those obtained by
Roberts et al.(2007), we used EMD as already done by
Roberts et al.(2007), but with the simple purpose of pre-
processing the data. The real step forward in the analysis
presented here is represented by the estimation of the Hilbert
spectrum of excess LoD that, due to the way it is estimated,
also takes into account the uncertainties associated with LoD
estimation. By means of the Hilbert spectrum it is possible
to move the investigation of excess LoD timescales from the
time domain to the time–frequency–energy domain. So, the
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Fig. 5. Ensemble averaged Hilbert spectrum〈H(f, t)〉 plotted on
the time–frequency plane. Frequency resolution is 0.1 in the ln2(f ).
The horizontal white line indicates the 65 yr characteristic periodic-
ity.

direct quadrature method, explained in Sect.2, has been per-
formed on each IMF. For each IMF the instantaneous fre-
quencyfi(t) and the associated amplitudeAi(t) have been
evaluated using Eqs. (3) and (4). The results obtained are
plotted in the time–frequency–energy space, with energy de-
fined as the amplitude squared. The resulting representation
is defined as the Hilbert spectrumH(f, t).

Furthermore, to obtain a more robust estimate of the fre-
quencies contained within the excess LoD data, we not only
calculated the Hilbert spectrum starting from the excess LoD
series, but we also developed a procedure to take into account
the time-varying uncertainty associated with LoD estimation.
So, we applied the HHT to a large ensemble of1LoDi(t)

time series with values defined as follows:

1LoDk(t) = 1LoD(t) + εk(t), (9)

wherek is an index in the interval[1,N ], 1LoD(t) is the
original excess LoD time series,εk(t) is a random value from
a Gaussian distribution such that the standard deviation of an
infinite number of such values would be the measured uncer-
tainty of the1LoD(t), i.e. σ(t) = δ1LoD(t) whereσ(t) is
the standard deviation ofεk(t). This corresponds to consid-
ering many of the possibly infinite1LoD time series con-
sistent with the estimated errors. This procedure ensures a
more reliable estimation of the local frequencies, also pro-
viding a right evolution of their significance. Thus, for each
time series, both EMD and direct quadrature have been per-
formed to get the corresponding Hilbert spectrumH(f, t)

on the time–frequency plane. This procedure has been it-
eratedN = 100 000 times to explore the sample space of
1LoD(t) errors correctly. All resulting Hilbert spectra are
successively averaged to get theensemble averaged Hilbert
spectrum〈H(f, t)〉. This way of applying the HHT must not
be confused with the so-called ensemble empirical mode de-
compositions (EEMD) (Huang and Wu, 2008), where the av-
erage is done over the sets of IMFs before computing the
Hilbert spectrum.
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11

Fig. 7. Marginal spectrumHm(f ) computed using the ensemble
averaged Hilbert spectrum〈H(f, t)〉 shown in Fig.5.

Figure 5 shows the Hilbert spectrum〈H(f, t)〉, as ob-
tained by averaging on the ensemble ofN = 100 000 Hilbert
spectra. The main feature of〈H(f, t)〉 is its patchy charac-
ter, which suggests the lack of stationary periodicities in the
1LoD time series. A more immediate interpretation of the
characteristic periodicities contributing to the LoD fluctua-
tions can be obtained by looking at Fig.6, where the Hilbert
spectrum is represented in the time–period–energy domain.
Here, the non-stationary feature of the contributing period-
icities is more pronounced. In particular, there is no clear
evidence of a rigorously constant periodicity in the range
T ∈ [50,70] yr. For this reason it would be more appropri-
ate to refer to a range of periods within which character-
istic periodicities are more likely to fluctuate. Indeed, the
Hilbert spectra in Figs.5 and6 should be interpreted in terms
of probability and statistical weight. This point is clearly
shown in Fig.7, where we have plotted the marginal spec-
trum Hm(f ) computed using the ensemble averaged Hilbert
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more likely to fluctuate. Indeed, the Hilbert spectra in Figures 5 and 6 should be interpreted in terms

of probability and statistical weight. This point is clearly shown in Figure 7 where we have plotted

the marginal spectrum Hm(f) computed using the ensemble averaged Hilbert spectrum 〈H(f,t)〉,
and defined as follows:265

Hm(f) =
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t1

〈H(f,t)〉dt. (10)

where t1 and t2 are the starting and ending values of the time interval over which the analyzed signal

is defined. This spectrum is very revealing about the mean energy distribution during the whole time

interval in the frequency domain. We recall that, differently from the Fourier spectrum, the Hilbert

spectrum has a statistical meaning. In detail, it is possible to identify 4 characteristic period bands270
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8 shows the marginal spectrum Hm(T ) computed in the period domain. This plot exhibits a more

detailed structure than that shown in Figure 7, showing at least two other possible main typical

timescales around ∼ 80 yr and ∼ 90 yr, although most of the energy is concentrated in the range275

T ∈ [60,80] yr.

To better identify the different main periodicities, the marginal spectrumHm(T ) has been decom-

posed in a superposition of single Gaussian bands in the interval T ∈ [15,150] yr. This has been done

by fitting the marginal spectrum using the following expression,

h(T ) =
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Aj exp
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− (T −Tj)2
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]
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The single contributions are plotted in Figure 8, while in Table 1 are shown the main features of each

contributing Gaussian.
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Fig. 8.Marginal spectrumHm(T ) computed using the ensemble av-
eraged Hilbert spectrum〈H(T , t)〉 shown in Fig.6. The dashed lines
correspond to the six Gaussian functions (see expression of Eq.11)
whose superposition reconstructs the marginal spectrumHm(T ).

spectrum〈H(f, t)〉, and defined as follows:

Hm(f ) =
1

t2 − t1

t2∫
t1

〈H(f, t)〉dt, (10)

where t1 and t2 are the starting and ending values of the
time interval over which the analysed signal is defined. This
spectrum is very revealing about the mean energy distribu-
tion during the whole time interval in the frequency domain.
We recall that, differently from the Fourier spectrum, the
Hilbert spectrum has a statistical meaning. In detail, it is pos-
sible to identify four characteristic period bands at∼ 24 yr,
∼ 48.5 yr, ∼ 68 yr and∼ 84 yr, respectively. This result can
be better visualized by evaluating the marginal spectrum in
the period domain using〈H(T , t)〉 instead of〈H(f, t)〉. Fig-
ure8 shows the marginal spectrumHm(T ) computed in the
period domain. This plot exhibits a more detailed structure
than that shown in Fig.7, showing at least two other pos-
sible main typical timescales around∼ 80 yr and∼ 90 yr,
although most of the energy is concentrated in the range
T ∈ [60,80] yr.

To better identify the different main periodicities, the
marginal spectrumHm(T ) has been decomposed into a su-
perposition of single Gaussian bands in the intervalT ∈

[15,150] yr. This has been done by fitting the marginal spec-
trum using the following expression:

h(T ) =

5∑
j=1

Aj exp

[
−

(T − Tj )
2

2σ 2
j

]
. (11)

The single contributions are plotted in Fig.8, while in Ta-
ble1 are shown the main features of each contributing Gaus-
sian.

Table 1. Second and third columns list the main parameters (av-
erage and standard deviation) of the Gaussian distributions used to
decompose, by means of Eq. (11), the marginal spectrumHm(T )

shown in Fig.8. Fourth column gives the value of the degree of
stationarity DS for each periodTj .

j Tj [yr] σj [yr] DS(Tj )

1 25 6 0.51
2 45 7 1.11
3 64 5 0.31
4 79 14 0.17
5 119 18 0.26

To characterize the temporal behaviour of the identified
typical period bands and to evaluate the stationarity of each
period band, we have computed the so-calleddegree of sta-
tionarity DS(T ) of each period band. According toHuang et
al. (1998), DS(T ) can be defined as follows:

DS(Tj ) =
1

t2j − t1j

t2j∫
t1j

[
1−

〈H(Tj , t)〉

Hm(Tj )

]2

dt, (12)

wheret1j andt2j are the boundaries of the period band cor-
responding toTj ± σj (as listed in Table1) andt ∈ [t1j , t2j ].
For a stationary signal the degree of stationarity DS is ex-
pected to be zero. Departures from zero are a signature of
non-stationarity. The last column in Table1 gives DS values
of the main characteristic periodicities. All values of DS are
different from zero, indicating that non-stationarity is a fea-
ture common to all typical periodicities of excess1LoD fluc-
tuations. In particular, the periodicity of∼ 79 yr character-
ized by the smallest value of DS seems to be more stationary
than the other periodicities. However, we have to take into ac-
count the shortness of the1LoD time series analysed here,
which necessarily influences the value obtained for the de-
gree of stationarity. A good calculation of this quantity must
take into account the interval over which it is calculated. This
interval should be much longer than the periodicity itself.

4 Summary and conclusions

The aim of this work is that of investigating the properties
of decadal variations in the length of day with the purpose
of gaining some new information that can be helpful in the
modelling of the LoD and of the torsional oscillations in the
fluid core. However, as will be discussed in what follows, our
results can contribute to drawing a picture of these variations
and of core motions which seem to be more complicated than
expected.

In the first part of the paper we applied empirical mode
decomposition to the time series of excess length of day. We
obtained the same number of monocomponents as obtained
by Roberts et al.(2007). The values of the mean frequency
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of the different modes, which we have estimated by consid-
ering the (energy-weighted) mean frequency in the Fourier
power spectrum, are also coincident to those obtained by
Roberts et al.(2007), who used both the autocorrelation func-
tion and a visual method. The only exception is for the value
of the mean frequency of the third mode where our results
are slightly different. This difference is inherent in the em-
pirical mode decomposition, which produces a set of com-
ponents (IMFs) from the original data by selecting different
parameters independently of each other. When using EMD
it is possible to choose a number of variables such as the
maximum number of sifting iterations, the stopping criteria
as well as the relative thresholds. The obvious (yet critical)
question is which set of the many possible choices of the sift-
ing variables gives a meaningful result. For instance,Roberts
et al. (2007) used two stopping criteria, each with two dif-
ferent thresholds, for pre- and post-1840 magnetic data to
account for the different quality of data. Here, we preferred
to use a single stopping condition with a single threshold and
move the problem of frequency determinations to the second
part of the HHT analysis. Indeed, the ultimate purpose of the
EMD is to decompose a given data set into a finite and often
small number of intrinsic mode functions that admit Hilbert
transforms. We emphasise that the physical meaning of the
decomposition into IMF of the original signal comes only
in the totality of the decomposed components in the Hilbert
spectrum (Huang et al., 1998). This is the reason why we
have paid serious attention to the analysis of the Hilbert spec-
trum and have avoided giving a detailed physical meaning to
each IMF component as inRoberts et al.(2007). Indeed, the
broadband nature of1LoD pointed out by traditional Fourier
analysis clearly indicates the absence of a characteristic fre-
quency/periodicity in the investigated range of scales, sup-
porting the idea that the excess LoD fluctuations should not
be considered the result of the superposition of a few simple
linear waves/oscillations, but conversely are better described
in terms of a random superposition of fluctuations character-
ized by different characteristic timescales.

The really innovative part of our study is contained in the
second part of the paper, where traditional analyses are aban-
doned in favour of the so-called Hilbert–Huang transform
(Huang et al., 1998), which we have applied in a completely
original way. Taking advantage of the knowledge of errors in
1LoD measurements, we performed a sort of Monte Carlo
approach to EMD Hilbert analysis (this simulation should
not be confused with EEMD) to produce the most statisti-
cally likely Hilbert spectrum.

The patchy aspect of the Hilbert spectrum immediately
suggested the lack of stationarity in the characteristic peri-
odicities contained in the1LoD time series. This lack of sta-
tionarity was confirmed by the estimation of the degree of
stationarity DS for all the period bands found by decompos-
ing the Hilbert marginal spectrum into a superposition of five
Gaussian distributions. So, what we are finally capable of es-
tablishing is that1LoD does not contain stationary periodic-

ities, thus making it more appropriate to talk of period bands
within which characteristic periodicities are more likely to
fluctuate.

This result also implies that it would be more correct to
introduce the concept of fluctuation in place of that of os-
cillation. An oscillation is an intrinsically stationary process.
On the contrary, we have found that periodicities of the ex-
cess LoD are nonstationary and have a time-varying ampli-
tude. Therefore, rather than considering the processes taking
place in the Earth’s core as the result of a superposition of
oscillations (i.e. stationary mechanisms) occurring on a dis-
crete number of different timescales, we should think of a
superposition of fluctuations that are intermittent in both fre-
quency and amplitude, as confirmed by the continuous power
law spectrum of Fig.3. Of course, this implies that processes
occurring in the Earth’s core are nonlinear, thus making the
physical modelling of fluid flows in the core as well as of
core-mantle coupling more complicated to perform.

We conclude with a purely speculative conjecture. The
presence of a nonstationary and broadband spectrum for the
excess LoD could be the counterpart of a wave turbulence
process, perhaps a consequence of a turbulent convection
phenomenon occurring in the internal fluid core. Clearly, at
the present stage this is only a conjecture that requires more
studies.
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