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Abstract—Constraining the temperature of computing systems
has become a dominant aspect in the design of integrated
circuits. The supply voltage decrease has lost its pace even
though the feature size is shrinking constantly. This results
in an increased number of transistors per unit of area and
hence a growing power density. Researchers started investigating
dynamic thermal management techniques to address the trade-
off between performance and temperature. Hardware dynamic
thermal management can guarantee safety but, at the same time,
can negatively affect established service-level agreements. On the
other hand, software solutions rely on hardware for safety but
does not indiscriminately trade-off performance for temperature.

We propose ThermOS, an extension for commodity operating
systems that harnesses formal feedback control and idle cycle
injection to decrease thermal emergencies while showing better
efficiency than commodity and cutting edge techniques.

Index Terms—dynamic thermal management, DTM, chip

multi-processors, CMP, multi-core, operating systems, OS

I. INTRODUCTION

The shift from single-core superscalar processors to multi-

core processors was a tentative response to address the inabil-

ity of respecting Joy’s law: the peak computer speed doubles

each year.1 If parallel software is available, a multi-core

processor made up of smaller cores, which harness thread-level

parallelism, can outperform a massive single-core superscalar

processor exploiting instruction-level parallelism within the

same power budget.

In the last decade we assisted to the proliferation of multi-

core processors such as chip multi-processors (CMPs) and

multi-processors system-on-chip (MPSoCs) characterized by a

constantly increasing number of transistors made possible by

the ever-decreasing feature size. However, recent lithographic

technologies do not abide Dennard’s scaling law causing

power density of a multi-core processors to approach that of a

nuclear reactor. Power density increases as the scaling of clock

frequency and number of transistors outpaces the downscaling

of supply voltage. The consequent rise of temperature due to

the inability of packages to dissipate heat heavily influences

the design of computing systems.

Maintaining temperature under control is crucial for per-

formance, energy consumption, and reliability of integrated

circuits: a higher temperature increases leakage current and

leads to a sharp increase of energy consumption [1] and to

drastic decreases of both throughput [2] and mean time to

1J. Markoff, “The not-so-distant future of personal computing,” InfoWorld,
no. 49, 1993.

failure (MTTF) [3]. Researchers from the computer architec-

ture, compiler, and operating system communities put efforts

in addressing this issue. Our work pursues the same objective.

We propose ThermOS (Thermal Operating System), an ex-

tension for commodity operating systems, which provides dy-

namic thermal management (DTM) through formal feedback

control and idle cycle injection (ICI) [4] for multi-programmed

workloads. ThermOS specifically targets commodity CMPs,

which cannot benefit from the latest architectural and micro-

architectural advancements. However, we believe that Ther-

mOS could benefit even further from both the architectural

and micro-architectural evolution.

This paper makes the following contributions. (1) Propose

and validate a linear discrete-time thermal model that de-

scribes the temperature behavior around the threshold when

employing ICI for DTM. (2) Derive a proportional-integral

(PI) controller to drive ICI, demonstrate its asymptotic stability

and robustness. (3) Evaluate ThermOS on a commodity CMP

with representative benchmarks showing its capabilities of

managing multi-programmed workloads and addressing the

trade-off between temperature and performance.

The remainder of this paper is organized as follows. Sec-

tion II makes a first high-level comparison between DVFS

and ThermOS. Section III describes the linear discrete-time

thermal model that enables ThermOS while Section IV reports

implementation details regarding each ThermOS component.

Section V provides evidence that ThermOS achieves its goals.

Section VI surveys, at the best of our knowledge, related

work and highlights benefits and drawbacks of ThermOS with

respect to the state of art. Finally, Section VII concludes the

paper.

II. DYNAMIC THERMAL MANAGEMENT

Typical scheduling algorithms implement the race to idle

approach: applications run as fast as possible to allow pro-

cessors entering low power states as soon as possible. This

behavior leverages the capability of decreasing energy con-

sumption when employing low power states and delivers the

best performance. Race to idle favors energy efficiency [5]

and is beneficial for desktops, laptops, and mobiles, where

interactive, low-utilization applications are common.

Conversely, race to idle leads to high temperature in servers

and large-scale computing systems where non-interactive high-

utilization applications prevail, incurring in additional costs

to power computer room air conditioning (CRAC) and heat,

ventilation, and air conditioning (HVAC). CRAC and HVAC
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(a) DVFS.
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(b) ThermOS.

Fig. 1. Executions of a multi-programmed workload on a commodity CMP. On the left: DVFS decreases temperature with a chip-wide impact on performance.
On the right: ThermOS decreases temperature with a core-wide impact on performance.

are in place to avoid exceeding the temperature threshold2 and

limit the number of DTM events that degrade vital measures

such as throughput, latency, and missed deadlines.

A. Dynamic Voltage and Frequency Scaling

Researchers from the computer architecture community

demonstrated the energy efficiency of per-core P-states [6]

through DVFS in CMPs [7]. Each core within a CMP heats

up differently depending on the manufacturing variability of

the silicon, the floorplan, the application it is running, etc. [1]

making the adoption of per-core P-states desirable to address

temperature issues. However, providing such a fine-grained

control in CMPs with more than few cores is uncommon [8]

and most of the manufacturers ditch fine-grained control in

favor of coarse-grained control.3

This scenario is especially harmful for multi-tenant envi-

ronments. Each user is assigned a certain amount of resources

and expects predictable performance. The occurrence of DTM

events (e.g., the activation of DVFS as a consequence of

the overheating of a single core running a particularly CPU-

intensive application) affects the whole CMP and impairs the

performance of all the applications within a multi-programmed

workload, regardless of the owner.

Fig. 1a depicts this setting. We run swaptions, a CPU-

intensive application from the PARSEC 2.1 benchmark

suite [9], and apachebench, an I/O-intensive application, on

two different cores. When running at the highest clock fre-

quency, the core executing swaptions overheats (see the dashed

red line in Fig. 1a), breaking the temperature threshold, while

the core executing apachebench does not (see the dashed green

line in Fig. 1a). When the same multi-programmed workload

executes on a CMP using chip-wide DVFS for DTM, each

core is subject to the same supply voltage and clock frequency

setting. The core executing swaptions does not overheat when

DVFS is in place since it decreases the supply voltage and

2The temperature threshold can be either a manufacturer-defined safety limit
or an administrator-defined cap to lower the total cost of ownership.

3Commodity CMPs support per-core P-states; unfortunately, this setting
becomes effective only when cores operates in different C-states.

the clock frequency (see the point at 200 s in the execution

in Fig. 1a); this directly translates into a run time increase

(see red line and ∆1 in Fig. 1a). Unfortunately, the same

happens—on a smaller scale due to the I/O-intensive nature

of the application—to apachebench, which does not cause

overheating at the highest clock frequency (see the light green

line). Hence, apachebench is unnecessarily slowed down (see

green line and ∆2 in Fig. 1a).

B. Idle Cycle Injection

The system-wide performance degradation of chip-wide

DVFS is its main drawback. ThermOS addresses this issue

by harnessing formal feedback control and ICI [4]. Let us

reconsider the previous multi-tenant scenario. ThermOS selec-

tively throttles the execution of those applications whose cores

are overheating without affecting the remaining cores and

thus avoiding system-wide performance degradation. Fig. 1b

depicts this setting. ThermOS prevents the core running swap-

tions from overheating by increasing its run time (see red line

and ∆1 in Fig. 1b). At the same time, it does not impact the

execution of apachebench (see green lines in Fig. 1b).

Almost all processors today support a handful of C-states—

five on Intel “Ivy Bridge”—and this trend is spreading as

processors dynamic power and thermal management gain

momentum [10]. For example, our evaluation platform features

an Intel Xeon Processor W3530 supporting the C0, C1/C1E,

C3, and C6 states at the individual thread, core, and package

level. A convenient interface accessible through the MWAIT

instruction allows the operating system requesting low power

states [11]. ThermOS exploits this interface to selectively

throttle applications, thus decreasing temperature.

Flexibility makes ICI very interesting. For example, Google

is already exploiting ICI through kidled [12] in some of its data

centers while Intel recently merged PowerClamp [13]—a ther-

mal driver for ICI— with the Linux kernel 3.9 (released April

29, 2013). Other approaches, like Dimetrodon [4], rely on ICI

to provide preventive thermal management via probabilistic

injection of idle time. We thoroughly compares Dimetrodon

with ThermOS in Section V.
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III. THERMAL MODEL

DTM can benefit from accurate thermal modeling and many

proposals can be found in the computer architecture literature.

Brooks and Martonosi [14] model the temperature behavior

through power consumption in the Wattch power analysis

framework. Unfortunately, chip-wide power consumption is a

poor proxy for temperature [1].

Skadron et al. [1] model the temperature behavior through

a compact thermal model in the HotSpot thermal analysis

framework. This solution is fairly accurate and explains the

complete temperature behavior. The main disadvantage of

the compact thermal model is the need for a considerable

amount of micro-architectural details such as the floorplan of

the functional units. This information may be available for

obsolete designs but can only be guessed for current ones.

Zhou et al. [15] harnesses the compact thermal model to

deploy a thermal-aware scheduler, which requires the complete

temperature behavior for minimization without hurting perfor-

mance. However, the compact thermal model is simplified to

make its adoption viable outside of a simulation environment

and inside the Linux kernel.

Commodity designs cannot benefit from the latest ad-

vancements in micro-architectural DTM [16]. They rely on

conservative techniques like DVFS to guarantee safety. Given

safety for granted, portable software DTM techniques like ICI

become attractive to address the trade-off between temperature

and performance, as shown in Section II.

A. Thermal Model for Dynamic Thermal Management

Deriving a thermal model that is meaningful for the whole

range of commodity designs and DTM techniques is imprac-

tical. Thus, we propose one that assumes the availability of

software DTM and explains the temperature behavior around

the threshold.

We employ the linear discrete-time thermal model described

in Eq. (1). T (k) and T (k+1) are the temperatures at the k-th

and k+1-th sample instants, respectively; I(k) is the idle time

between the k-th and k + 1-th sample instants; while a and b
are parameters defining the temperature behavior.

T (k + 1) = a ·T (k) + b · I(k) (1)

According to the linear discrete-time thermal model, we can

approximate the future temperature by accounting for its

current value and the idle time between the current and future

time instants.

Fig. 2 shows a thermal simulation leveraging the compact

thermal model proposed by Skadron et al. [1]. We simulate

a worst-case application capable of pushing temperature of

an “abstract” single-core processor up to 80 ◦C given an idle

temperature of 30 ◦C (see the red line labeled “w/o ICI” in

Fig. 2). One should note that the temperature behavior has

been artificially accelerated to show a meaningful time frame.

The thermal simulation comprises ICI for DTM to alternate

high energy consumption phases with low energy consumption

phases. The control period for ICI is set to 10ms (see the

ticks on the blue dashed line in Fig. 2) while the idle time can
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Fig. 2. Thermal simulation leveraging the compact thermal model giving
visual evidence on the applicability of the linear discrete-time thermal model.

reach at most 80% of this value (i.e., 8ms). The temperature

threshold is set to 70 ◦C while the trigger threshold is set to

1 ◦C less. On the first thermal emergency at 80ms, ThermOS

injects ≈ 30% of idle time and, from that point on, it injects

≈ 20% of idle time per control period to keep temperature

around the threshold (see the green line in Fig. 2).

The simulation gives visual evidence that the temperature

behavior around the threshold when employing ICI for DTM is

quasi-linear both when ICI does and does not inject idle time

and provides a first hint on the applicability of our thermal

modeling approach.

B. Thermal Model Training

The estimation of parameters can be performed either online

or offline and combinations of the two may apply. Online

estimation is beneficial for time-variant workloads alternating

CPU with memory and I/O-intensive phases and for workloads

with CPU-intensive phases in which the number of instructions

issued per clock cycle has a high variance, since it allows

a thermal model to better track the temperature behavior.

However, online estimation introduces overhead at run time

since usually the better the estimation algorithm the higher its

execution time. Offline estimation is suited for steady time-

invariant workloads characterized by a single phase that is

either CPU, memory, or I/O-intensive. Since the estimation of

parameters occurs offline, the run time overhead is completely

absent. Offline estimation requires an accurate training phase

to guarantee that a thermal model fits the temperature behavior.

We decided to use offline estimation for the following

reasons: (1) we focus on multi-programmed CPU-intensive

workloads that have a high probability of increasing tem-

perature; (2) we use a reasonably high control frequency in

the realm of operating systems and hence we must keep the

temporal overhead under control; and (3) we execute in kernel-

mode and hence we are discouraged from using floating point

computation; this makes almost prohibitive the implementation

of most estimation algorithms at run time.

C. Estimation and Empirical Validation

We run a modified version of ThermOS that randomly

selects a value for the idle time in the interval [0%, 80%]
on our evaluation platform. We run a worst-case workload
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consisting of four instances of cpuburn to make the linear

discrete-time thermal model conservative with respect to real-

world workloads. We collected about 1.5 millions of triples—

equivalent to ≈ 1 h of execution—consisting of the current

temperature value, the previous temperature value, and the idle

time value to catch most of the temperature behavior.

We used the least squares algorithm to estimate the param-

eters and fit the linear discrete-time thermal model reported

in Eq. (1). The least squares algorithm “solves” the linear

system y = X ·w, where y is the column vector made up

of n values of the current temperature, X is the matrix of

n tuples consisting of the previous temperature value and the

idle time value, and w is the column vector containing the m
parameters (i.e., a and b).

We partitioned the collection of triples in two: a training

set of 70% of the triples and a validation set of 30% of the

triples. We run the algorithm on the training set and verified

the result against the validation set. The trained linear discrete-

time thermal model yields a correct prediction for over 95%
of the triples of the validation set. Although we expect lower

accuracy with real-world workloads due to the conservative

nature of our thermal modeling approach, it is still accurate

enough. We iterated the estimation many times with different

training and validation sets to gain information about the

robustness of parameters estimation. We eventually selected

the best couple of parameters where a and b are 1.0244 and

−0.0484, respectively.

While the simulation of ThermOS shows that the linear

discrete-time thermal model is meaningful, the empirical vali-

dation gives mathematical evidence and strengthen our thermal

modeling approach.

D. Statistical Validation

We further evaluated the quality of the estimated parameters

values through the computation of their statistical significance.

Since we used the least squares algorithm, it was possible

to estimate the variance of the parameters by means of the

statistic reported in Eq. (2). wi is the i-th parameter; X is the

matrix of coefficient of the linear system “solved” by the least

squares algorithm; S is the sum of squared residuals computed

according to Eq. (3); n and m are the number of triples used

by the least squares algorithm and the number of parameters

of the linear discrete-time thermal model, respectively.

Var(wi) = σ2([XT ·X ]−1)ii ≈
S

n−m
· ([XT ·X ]−1)ii (2)

S =

n∑

i=1

(yi −Xi ·w)
2 (3)

The estimated variances of the a and b parameters values

across different training/validation partitions are 6.7851 ·10−8

and 1.4059 ·10−7, respectively. They suggest our thermal

modeling approach is robust.

IV. THERMAL MANAGER

We structured ThermOS following a feedback design and

implemented it inside the Linux kernel. The first step consists

-

_

T

+

T
S

T
C PA

e I% I

Fig. 3. Feedback design.

in observing temperature values. The second step takes deci-

sions regarding the needed idle time. Finally, the third step

incorporates the idle time into applications execution.

A. Temperature Measurement

Formal feedback control requires contextual information;

more specifically, DTM leverages temperature “measure-

ments”. One can either rely on analytic thermal models or

employ thermal sensors to provide such “measurements”.

ThermOS provides DTM through a software solution that

mitigates the drawbacks of hardware DTM. However, software

DTM cannot provide strong guarantees of limiting tempera-

ture; thankfully, ThermOS can still rely on hardware DTM

to face thermal emergencies. Because of this reason, the low

resolution of temperature measurements obtained through on-

chip digital thermal sensors (DTSs) available on commodity

CMPs are sufficient. For example, our evaluation platform

features an Intel Xeon Processor W3530 supporting per-core

DTSs with a resolution of 1 ◦C.

We implemented the observation phase through high-

priority kernel-mode threads. Each high-priority kernel-mode

thread always executes on the same core and periodically

probes machine-specific registers to retrieve the temperature

measurement of the core it is running on.

B. Idle Time Determination

Formal feedback control is successful in managing sys-

tems explained through mathematical models. The physical

laws ruling thermal phenomena provide a strong mathemat-

ical model enabling the use of formal feedback control for

DTM, thus avoiding the difficulties associated with specially-

designed controllers.

Formal feedback control provides many advantages thanks

to its formalism. It is possible to design controllers with

predictable behavior in terms of response time and to achieve

desirable stability and robustness guarantees.

Control theory helps synthesizing controllers that achieve

the desired output by exploiting the availability of math-

ematical models of the controlled processes. In particular,

industry strongly relies on formal feedback control and har-

nesses well-known solutions that proved beneficial even when

dealing with approximate mathematical models: P, PI, and PID

(proportional-integral-derivative) controllers.

1) Formal Feedback Controller: Fig. 3 shows a feedback

design, where the sensor S measures the output T of the

process or plant P ; the controller C computes the error

e subtracting the output T from the desired output T̄ and

then constraints process the input I through the actuator A.

Following this paradigm, we realize per-core formal feedback

controllers.
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Let Temerg be the temperature threshold such that exceeding

such value causes a thermal emergency. We must start DTM

before reaching Temerg, so we set a temperature trigger thresh-

old T̄ < Temerg. We periodically sample the temperature mea-

surement Ti(k) of core i following the methodology reported

in Section IV-A. We compute the error ei(k) = T̄ − Ti(k).
If the error ei(k) is negative the i-th core is overheating.

Otherwise, if the error ei(k) is positive, the i-th core is

working properly.

We devised a PI controller that responds to errors by means

of two terms: (1) a proportional term and (2) an integral

term. The proportional term changes its effect according to

the current value of the error and in a way that decreases the

future values of the error. The integral term changes its effect

incrementally accounting for the past values of the error. We

neglected the derivative term; while this results into a little

loss of control, at the same time it leads to notably less noise.

The synthesis of the PI controller depends on whether

the mathematical model of the process is continuous-time

or discrete-time. Since we periodically obtain per-core tem-

perature measurements with a specified sample period, the

mathematical model reported in Eq. (1) is discrete-time. Thus,

we perform the derivation in the Z-transform domain.

Eq. (4) represents the PI controller for core i, where Ii(k)
is the idle time required to constrain temperature, expressed

as a percentage of the control period.

Ii(k) = Ii(k − 1) +
1− p

b
· ei(k)− a ·

1− p

b
· ei(k − 1) (4)

2) Controller Synthesis and Stability Proof: We devised

a PI controller for the linear discrete-time thermal model

reported in Eq. (1) with the goal of keeping temperature T (k)
as close as possible to the trigger threshold T̄ .

We determined the transfer function P(z) applying the Z-

transform to the linear discrete-time thermal model reported

in Eq. (1). Eq. (5) shows the result, where T (z) and I(z) are

the Z-transforms of temperature and idle time, respectively.

z · T (z) = a · T (z) + b · I(z)

P(z) =
T (z)

I(z)
=

b

z − a
(5)

We synthesized the PI controller by constraining the transfer

function of the feedback as explained by Levine [17]. Eq. (6)

holds the result; G(z) and C(z) are the transfer functions of

the feedback and of the PI controller, respectively.

G(z) =
C(z) · P(z)

1 + C(z) · P(z)
=

1− p

z − p
(6)

We employed a first order transfer function with a pole in

p, a configurable parameter whose value changes the respon-

siveness of the PI controller. If p is chosen in the interval

(−1, 1) the feedback is asymptotically stable. Moreover, if p
is chosen in the interval (0, 1) the feedback guarantees the

absence of oscillations. Given asymptotic stability and the

absence of oscillations for granted, large values of p in the

interval (0, 1) translate into a slower but smoother response,

while small values of p translate into a faster but rougher

response. ThermOS provides a compile time setting to change

the value of p in the interval (0, 1), therefore we conclude the

feedback is asymptotically stable.

Starting from Eq. (6), we determined the transfer function

C(z) of the controller; Eq. (7) holds the result.

C(z) =
(1− p) · (z − a)

b · (z − 1)
(7)

We imposed C(z) = I(z)/E(z); this leads to the transfer

function reported in Eq. (8).

I(z)

E(z)
=

(1− p) · (z − a)

b · (z − 1)

z · I(z)− I(z) = z ·
1− p

b
· E(z)− a ·

1− p

b
· E(z) (8)

The Z-antitransform and a time shift applied to Eq. (8) yield

Eq. (9), the generic form of Eq. (4).

I(k) = I(k − 1) +
1− p

b
· e(k)− a ·

1− p

b
· e(k − 1) (9)

3) Controller Robustness Analysis: In general, a controller

depends on the process it is responsible for. In our case, the PI

controller depends on the linear discrete-time thermal model

depicted in Eq. (1), whose parameters were estimated and

validated in Section III-B.

The statistical significance of the a and b parameters values

makes us confident. However, ThermOS must deal with many

events that can suspend ICI; this negatively impacts the effec-

tiveness of ICI, which is represented by the b parameter. For

this reason, we ask ourselves: what if our thermal modeling

approach is not faithful and, in particular, what if the b
parameter of the linear discrete-time thermal model is poorly

estimated? In other terms, what if the weight of I(k) is not b
but b+ δ? We answer this question by means of a robustness

analysis.

We assume the real process is described by the transfer

function P(z) reported in Eq. (10).

P(z) =
b+ δ

z − a
(10)

We substitute Eq. (10) in Eq. (6). The pole of the transfer

function of the feedback changes from z = p to Eq. (11).

z =
p · (b+ δ)− δ

b
(11)

If the pole lays in the interval (−1, 1) the feedback remains

asymptotically stable and loses at most the guarantee on the

absence of oscillations. We solve the system of inequalities

that leads to Eq. (12).

δ >
b · (1 + p)

1− p
∧ δ < −b (12)

In practice, δ can vary in the interval (−0.0899, 0.0484)
when the b and p parameters values are −0.0484 and 0.3,

respectively. The interval is large when compared to the
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estimated value of the b parameter. Hence, we declare that

ThermOS is robust with respect to estimation errors on the

effectiveness of ICI.

C. Idle Cycles Injection

The scheduling infrastructure of the Linux kernel enables

different algorithms to schedule different types of threads (i.e.,

either a process or a thread). This materializes in different

scheduling classes with different priorities. The scheduling

skeleton iterates over scheduling classes from the highest to

the lowest priority to pick the next runnable thread.

The scheduling infrastructure of the Linux kernel pro-

vides five scheduling classes: (1) SCHED_FIFO, (2)

SCHED_RR, (3) SCHED_OTHER, (4) SCHED_BATCH, and (5)

SCHED_IDLE. The first two scheduling classes provide “real-

time” policies while the remaining provide “normal” policies.

We implemented ICI for user-mode threads scheduled

through normal policies, which are under the control of the

Completely Fair Scheduler (CFS). This is consistent with

previous implementations of ICI [4]. The rationale behind this

choice is avoiding the preemption of real-time threads, which

are rarely present in most GNU/Linux systems, and kernel-

mode threads, which usually run with low IPC, causing low

power consumption and temperature.

When the scheduling skeleton calls CFS, ThermOS enters

the actuation phase and may or may not perform ICI depending

on the outcome of the decision phase. We implemented ICI

within the Linux kernel exploiting the availability of an idle

thread for each core. CFS eventually picks the idle thread

instead of the next runnable thread and runs it for as long as

the thermal controller (i.e., the PI controller) dictates.

1) Changing the Idle Task: The Linux kernel executes the

idle thread whenever there are no runnable threads; the idle

thread yields as soon as a thread becomes runnable. ThermOS

also executes the idle thread whenever the thermal controller

demands the injection of idle time.

Without loss of generality, we analyze the behavior of the

Linux kernel when executing on top of Intel x86 and x86-64

processors. The Linux kernel runs the idle thread in kernel-

mode to allow the execution of protected instructions. The

idle thread issues the MONITOR instruction to arm the address

monitoring hardware with the address of the flags variable

stored in its task_struct. It then issues the MWAIT in-

struction to request the processor entering the C1E state.

The Linux kernel eventually writes the flags variable

of the idle thread to demand a reschedule. The address

monitoring hardware catches the write operation forcing the

processor to exit the C1E state and enter the C0 state. Finally,

the MWAIT instruction returns and the idle thread yields.

We modified the idle thread to issue the MONITOR instruc-

tion to arm the address monitoring hardware with different

variables depending on the outcome of the thermal controller.

Whenever the thermal controller demands the injection of idle

time, the idle thread selects the thermal_flags variable,

which is once again stored in its task_struct. Otherwise,

the idle thread selects the flags variable and its behavior is

unmodified. The idle thread then issues the MWAIT instruction

to request the processor entering the C1E state.

The Linux kernel eventually writes either the

thermal_flags or the flags variable of the idle

thread to indicate the idle time is exhausted or a runnable

thread is available possibly triggering a C-state transition.

In addition, the Linux kernel writes the thermal_flags

instead of the flags variable of the idle thread whenever

the idle thread is running for cooling purpose and either a

real-time or a kernel-mode thread became runnable. This

grants ThermOS with the capability of suspending ICI to face

the execution of real-time or kernel-mode threads.

2) Exploiting the Dynamic Tick: The Linux kernel uses a

periodic timer firing at a configurable frequency—100, 250,

333, 1000Hz—for “house-keeping” operations. This timer is

usually referred to as scheduler tick.

The scheduler tick forces the processor to exit low power

states and hence increases the energy consumption even when

the Linux kernel is executing the idle thread. Since energy

consumption is a fundamental issue, the Linux kernel 2.6.21

introduced the dynamic scheduler tick. The scheduler tick is

temporarily disabled to “idle” instead of “idle with ticks”. The

scheduler tick fires periodically whenever the Linux kernel

executes runnable threads while it fires on-demand whenever

the Linux kernel executes the idle thread.

When the Linux kernel sets the scheduler tick to fire on-

demand it takes the difference between the current time and

the next time a software interrupt request must execute. We

modified this behavior by choosing the minimum between

the next time a scheduled interrupt request (e.g., sleep(2))

must execute and the idle time.

3) Scheduling the Idle Task and Alternatives: In the re-

mainder of this section we analyze alternative approaches to

scheduling the idle thread as a means for ICI and we highlight

the choices that led to our design.

Scheduling the idle thread as a means for ICI may be sub-

optimal from a performance standpoint: it requires trapping

from user to kernel-mode and context switching the current

thread with the idle thread. A first alternative approach targets

the context switching issue. One could avoid the cost of

context switching from the current thread to the idle thread

by “replicating” the functionality of the idle thread and the

cpuidle infrastructure: issue the MONITOR and MWAIT pro-

tected instructions that allow the processor to arm the address

monitoring hardware and transition from the C0 to the C1E

state. This approach violates the basics of software engineering

by replicating a well-structured functionality.

A second alternative approach targets both the trapping

and the context switching issues. One could avoid the cost

of trapping from user to kernel-mode and hence the cost of

context switching from the current thread to the idle thread by

issuing “low-power” instructions in user-mode. The adoption

of a just-in-time (JIT) compiler allows changing the code

of an application at run time; it is theoretically possible

harnessing this feature to “inject” a series of NOP instructions

to cool down the processor. Unfortunately, the effectiveness
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of this approach is limited by design by the use of the NOP

instruction, which does not allow the processor to transition

from the C0 to the C1E state. We are aware of state-of-the-art

compiler-directed techniques to decrease the peak temperature

of a processor to improve long-term reliability [18]; however,

these techniques target the mitigation of long-term effects like

the negative bias temperature instability and the aging.

We quantified the overhead of trapping and context-

switching: it is limited between 3 and 30µs where the worst

case accounts for thread migration. We concluded that the

overhead is acceptable and does not compromise the efficiency

of ThermOS.

V. EVALUATION

This section evaluates ThermOS and, in particular, it is fo-

cused on answering the following questions: (1) Can ThermOS

constrain temperature and affect applications within a multi-

programmed workload depending on cores thermal profiles?

(2) How efficient is ThermOS in tackling the trade-off between

performance and temperature when compared to Dimetrodon

and DVFS?

A. Evaluation Platform and Configuration

We evaluated ThermOS on a Dell Precision T3500 worksta-

tion with an Intel Xeon Processor W3530 and 12GB of Single

Ranked DIMMs. The processor features 4 cores operating at

2.80GHz and sharing 8MB of last-level cache. Each memory

module runs at 1066MHz. The Enhanced Intel SpeedStep

Technology allows the processor to work in ten different P-

states from 1.60 to 2.80GHz. We disabled the Intel Turbo

Boost Technology to prevent the processor entering P-states

with clock frequency higher than the nominal when a subset

of the cores is executing. The Intel Turbo Boost Technology

would bias the analysis in favor of ThermOS that creates un-

balanced execution times since it exploits the different thermal

profiles. We disabled the Intel Hyper-Threading Technology

(HTT) to simplify our implementation. When HTT is enabled,

each physical core is in fact a couple of virtual cores requiring

ICI co-scheduling to enter the C1E state [11].

We configured Debian 7.0 to run the Linux kernel 3.4

enhanced with ThermOS and FreeBSD 7.2 enhanced with

Dimetrodon [4]. We configured ThermOS with a temperature

sampling period of 10ms and a control period of 10ms. The

thermal controller was setup to limit the idle time to 80%
of the control period and the temperature trigger threshold is

3 ◦C lower than the temperature threshold. The a, b, and p
parameters values are 1.0244, −0.0484, and 0.3, respectively.

Section III-B supports the choice of these values.

We assessed the behavior of ThermOS through the PARSEC

2.1 benchmark suite [9], which provides a set of representative

workloads. We ran multi-programmed workloads of single-

threaded applications pinned to cores. Section V-D comments

on ThermOS’s behavior with multi-threaded applications.

TABLE I
BREAK DOWN OF THE EXECUTION TIME OF A MULTI-PROGRAMMED

WORKLOAD PER CORE PER C-STATE

Core C0 C1E C3 C6

0 91% 7% 2% 0%

1 91% 9% 0% 0%

2 91% 6% 3% 0%

3 91% 5% 4% 0%

B. Addressing Multi-Programmed Workloads

We first show how ThermOS is capable of constraining tem-

perature and affecting applications within a multi-programmed

workload depending on cores thermal profiles.

We thoroughly explain the behavior of ThermOS when run-

ning a homogeneous multi-programmed workload consisting

of four instances of swaptions, each one running with a single

thread of execution on its own core since we believe it helps

making our point. However, similar considerations hold for

the various multi-programmed workloads we employ in the

remainder of this paper.

The multi-programmed workload leads to a steady tempera-

ture of about 80 ◦C with an idle temperature of 30 ◦C. Fig. 4a

shows the last minute of execution without any form of DTM

and highlights different thermal profiles for the four cores;

core 1 operates at a higher temperature than the other cores and

overcomes 80 ◦C while core 3 operates at a lower temperature.

Fig. 4b displays the last minute of execution with ThermOS

configured to constraint temperature below 70 ◦C. ThermOS

enforces the threshold. Table I breaks down the execution time

of the multi-programmed workload per core per C-state when

executing on ThermOS. Each instance of swaptions always

requires the execution of the same amount of instructions to

run to completion and in fact they complete at the same time

when any form of DTM is disabled (see Fig. 4a). All cores

spend approximately the same percentage of the execution

time in C0 since it is the only C-state in which cores actually

execute instructions of the instances of swaptions.

When executing on ThermOS, the real execution time of

an instance of swaptions accounts for the time spent in C0

and C1E since ThermOS exploits only the latter to lower

temperature instead of using C3 and C6 that introduce higher

latency to enter and exit the C-state (i.e., 20 and 200µs,
respectively, instead of 3µs) and penalties (e.g., private caches

and register file flushes). Cores spend different percentages

of the execution time in C1E and C3 since ThermOS injects

idle time depending on cores thermal profiles and hence the

instances of swaptions complete at different instants. For

example, core 1 operates at a higher temperature than the

other cores and the instance of swaptions it runs is the last to

complete. Thus, core 1 spends the highest percentage of the

execution time in C1E when compared to the other cores and

none in C3. Conversely, core 3 operates at a lower temperature

and the instance of swaptions it runs is the first to complete.

Thus, core 3 spends the lowest and the highest percentages

of the execution time in C1E and C3, respectively, when

compared to the other cores.

47



swaptions @ core 0/2
swaptions @ core 1
swaptions @ core 3

te
m

p
er

at
u
re

 i
n
cr

ea
se

 (
°C

)

30

35

40

45

50

55

time (s)

470 480 490 500 510 520 530

(a) w/o ThermOS.

swaptions @ core 0/2
swaptions @ core 1
swaptions @ core 3

te
m

p
er

at
u
re

 i
n
cr

ea
se

 (
°C

)

30

35

40

45

50

55

time (s)

510 520 530 540 550 560 570

(b) w/ ThermOS.

Fig. 4. Executions of a multi-programmed workload on a commodity CMP. On the left: any form of DTM is disabled, hence temperature rises without
constraints. On the right: ThermOS is enabled, hence temperature rises but remains constrained below the threshold.
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Fig. 5. Efficiency in tackling the trade-off between performance and temper-
ature for ThermOS, Dimetrodon, and DVFS.

Fig. 4b displays the behavior of ThermOS when executing

a CPU-intensive workload. However, ThermOS is independent

from the kind of workload. Fig. 1b highlights the same capa-

bilities even when ThermOS executes a workload consisting

of a CPU and an I/O-intensive applications.

C. Addressing the Performance/Temperature Trade-Off

We also show how ThermOS is efficient in tackling the

trade-off between performance and temperature.

We configured ThermOS to achieve temperature decreases

of: 10, 20, 25, 30, and 35% with respect to the idle tempera-

ture. We configured Dimetrodon varying the idle time between

10 and 100ms and the idle probability between 0 and 40% for

a total of 150 configurations. We statically set the following

P-states: 2.79, 2.66, 2.53, 2.39, 2.26, and 2.13GHz through

DVFS. Each P-state is used for the whole execution of a multi-

programmed workload.

We ran various multi-programmed workloads consisting of

four applications among: blackscholes, bodytrack, canneal,

dedup, ferret, fluidanimate, raytrace, streamcluster, swaptions,

and x264 and balanced their run times by re-execution.

Fig. 5 displays the efficiency curves of ThermOS,

Dimetrodon, and DVFS. Performance (i.e., the ratio between

the execution time without and with the intervention of DTM

techniques) decreases linearly from 100% to 75% when

setting the P-states through DVFS; however, temperature de-

creases are less predictable.

Dimetrodon employs a probabilistic, feedforward controller

to drive ICI; the probabilistic nature of the controller and the

absence of feedback make the behavior mostly unpredictable.

Fig. 5 highlights the Pareto-optimal executions of Dimetrodon,

which are slightly worse than those of ThermOS; however,

the interpolation of all the executions is worse than that of

DVFS. Conversely to Dimetrodon, ThermOS employs a formal

feedback controller backed by a robust thermal model to drive

ICI. The conjunction of these elements make the behavior of

ThermOS highly predictable. Fig. 4b displays a performance

decrease of ≈ 8% with respect to Fig. 4a; this is expected

considering Fig. 5 and a temperature decrease of ≈ 20%.

When cores operate at decreased clock frequency the rel-

ative latency of the memory hierarchy tends to decrease

alongside with the bandwidth [19]. While the latter effect

is negative and compromises the performance of memory-

intensive applications, the former is positive for CPU-intensive

applications since it lessens the effects of memory stalls. We

believe P-states close to the highest do not allow DVFS to

balance the number of instructions issued, which is known to

have a higher correlation with temperature than the number of

instructions retired [20], with an adequate decrease of power

consumption.

It is well accepted that the dynamic power consumption

of an integrated circuit made up of an ensemble of transistors

scales as reported in Eq. (13); where a is some proportionality

constant, C is the capacitance of a single transistor, Vdd is the

supply voltage, f is the clock frequency, and nt is the number

of transistors that switches concurrently on average.

Pd ∝ a ·C ·V 2

dd
· f ·nt (13)

Until the beginning of 2000s, the supply voltage Vdd has

decreased constantly with the ever-decreasing feature size;

however, the shift from the micrometer to the nanometer realm

prevents this from happening with the same pace as before.

The supply voltage Vdd is bound to be twice as much as

the threshold voltage Vth, which is not scaling down [21].
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Fig. 6. Execution of a multi-threaded application on a commodity CMP.
ThermOS constraints temperature below the threshold but introduces artificial
critical paths making performance unpredictable.

DVFS is doomed to progressively lose its effectiveness since

the clock frequency f will be the only difference among

the available P-states and its weight is not comparable to

that of the squared supply voltage V 2

dd
. ThermOS already

achieves better efficiency than DVFS when tackling the trade-

off between performance and temperature for decrease of the

latter up to 35% and this margin is likely to increase in the

foreseeable future. In fact, future efficiency curves for DVFS

will most likely fall in the area below the current one (see

Fig. 5).

D. Limitations

In this work we focus on the trade-off between performance

and temperature for multi-programmed workloads consisting

of single-threaded applications. Let us consider a different

setting in which a CMP runs a multi-threaded application.

As already pointed out, cores on a CMP heat up following

different thermal profiles, thus requiring a more or a less

aggressive ICI. Whenever this happens, one or more threads

may be slowed down more than the others, thus putting in

place an artificial critical path impairing synchronization and

stretching the run time unpredictably. Fig. 6 displays this issue

by means of two consecutive runs of freqmine executing with

four threads. In this “unsupported” setting, ThermOS achieves

a temperature decrease of ≈ 11% at the cost of a performance

decrease of ≈ 15%.

Being aware of this issue we plan on improving ThermOS

so as to cope with synchronizations. A first naı̈ve approach

for finely-synchronized (e.g., barrier-based) multi-threaded

applications requires ICI to work with the same timing and

intensity among the cores running an application, doing so by

choosing the idle time required by the core with the worst

thermal profile. This is clearly sub-optimal from a perfor-

mance standpoint. A more elaborated solution requires an

augmented thermal model accounting for thermal interactions

among cores since synchronizing ICI will greatly enhance its

efficiency [13, 20]. An approach for coarsely-synchronized

(e.g., lock-based) multi-threaded applications exploits previous

work on scheduling for symmetric multi-processors and avoids

throttling a thread inside a critical section.

VI. RELATED WORK

Researchers proposed a variety of techniques to deal with

temperature issues. We classify these techniques in three

categories: architectural, micro-architectural, and software.

A. Architectural Approaches

Clock and power gating limit the distribution of the clock

signal and the supply voltage, respectively. They decreases the

dynamic and static power consumption, respectively, since the

former prevents transistors from switching while the latter cut

them off from the supply voltage. C-states exploit clock and

power gating to decrease energy consumption.

Near/sub-threshold voltage (NTV/STV) designs [22] dra-

matically increase energy efficiency at the cost of severe drops

of clock frequencies and single-threaded performance. With

the shift from single to multi-core processors we assisted to

the proliferation of multi-threaded applications. The adoption

of NTV/STV designs moves the limits even further requiring

embarrassingly multi-threaded applications, which are far from

common. Hence, researchers disagree about the applicability

and success of NTV/STV designs [21].

A recent architectural approach employs c-cores [23] to

decrease energy consumption and power density by means of

pre-synthesized application-specific co-processors. c-cores are

promising but require a substantial paradigm shift at the com-

puter architecture level since the most likely implementation

require the adoption of reconfigurable fabrics.

B. Micro-Architectural Approaches

Micro-architectural approaches like instruction window siz-

ing, issue width sizing, and instruction fetch toggling aim

at limiting energy consumption by decreasing the number of

instructions issued per clock cycle. Performance penalties due

to the adoption of micro-architectural approaches can be amor-

tized by orthogonal techniques like activity migration [24],

which however requires additional transistors.

Brooks and Martonosi [14] propose a set of heuristics to

drive instruction fetch toggling. Skadron et al. [16] show

the applicability of the compact thermal model and formal

feedback control to drive instruction fetch toggling achieving

predictable behavior and the desirable properties control theory

can guarantee. Jayaseelan and Mitra [25] harnesses instruction

window and issue width sizing alongside with instruction fetch

toggling and a neural network predictor to implement DTM.

Collectively, micro-architectural approaches can guarantee

safety; however, being implemented at the lowest level of

the hardware/software execution stack, they lack visibility and

may impair the performance of critical pieces of software such

as real-time and kernel-mode tasks, and interrupt request rou-

tines. In addition, most of these approaches are not available in

commodity designs that need alternative software approaches.

C. Software Approaches

Common software approaches regard thermal-aware

scheduling and DTM. Thermal-aware scheduling for large-

scale computing systems involves migrating tasks from hot to
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cold islands [26], while thermal-aware scheduling for servers

is concerned with tasks placing [20] and ordering [15].

Powell et al. [20] propose Heat-and-Run, a technique to

perform assignment and migration of tasks to balance tem-

perature across a CMP. Heat-and-Run is a thermal-aware

scheduler that exploits simultaneous multi-threading (SMT) to

co-schedule “complementary” tasks (e.g., one ALU-intensive

and one FPU-intensive) on the same core and the availability

of many cores to alternate heating and cooling phases.

Zhou et al. [15] propose ThreshHot and observes that

tasks ordering actually matters. ThreshHot is a thermal-aware

scheduler that orders tasks from “hot” (mostly CPU-intensive)

to “cold” (mostly I/O-intensive) and schedules them from the

hottest to the coldest. This schedule is guaranteed to minimize

temperature at the end of an epoch. The goal of thermal-aware

scheduler is minimizing temperature without degrading vital

measures such as throughput and latency.

DTM, and hence ThermOS, is orthogonal to thermal-aware

scheduling since the former tackles those settings in which

the latter cannot prevent temperature from exceeding the

threshold. Kumar et al. [27] propose HybDTM, which still

exploits the “hot” and “cold” tasks classification but without

following a “hot-to-cold” schedule. Whenever temperature

exceeds the threshold, HybDTM throttles “hot” tasks first by

lowering their priority, thus allowing “cold” tasks to use more

processor time. HybDTM is meant for single-core processors

and many of its considerations do not apply in the CMP realm.

kidled [12] is Google’s ICI implementation. It allows ad-

ministrators to set a core-wide idle time over a time period. If

the end of an interval draws near and the core has not been

naturally idle for the requisite time, kidled injects idle time.

PowerClamp [13] is Intel’s ICI implementation. Bailis et al.

[4] propose Dimetrodon, a framework implemented inside the

FreeBSD kernel that relies on probabilistic feedforward control

and ICI as a means for decreasing temperature. Conversely

to ThermOS, kidled, PowerClamp, and Dimetrodon are eager

when injecting idle time. In addition, ThermOS leverages a

thermal model and formal feedback control to drive ICI.

VII. CONCLUSIONS AND FUTURE WORK

ThermOS proved effective in managing temperature dur-

ing the execution of multi-programmed workloads and

achieved better efficiency than both commodity and cutting

edge DTM techniques. The evaluation shows that ThermOS

can selectively affect applications within batch-style, multi-

programmed workloads running on a commodity CMP. Ther-

mOS also displays higher flexibility and better efficiency than

DVFS for temperature reduction of up to 30%. Moreover, the

use of formal feedback control provides ThermOS with better

predictability than Dimetrodon.

As future work we intend to both address the limitations

highlighted in this paper (e.g., exploit technologies like SMT

and HTT, execute multi-threaded applications, etc.) and inte-

grate DTM with performance management [28–30] to guaran-

tee service-level objectives.
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