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ABSTRACT In this paper, we approach the problem of forecasting a time series (TS) of an electrical load
measured on the Azienda Comunale Energia e Ambiente (ACEA) power grid, the company managing the
electricity distribution in Rome, Italy, with an echo state network (ESN) considering two different leading
times of 10 min and 1 day. We use a standard approach for predicting the load in the next 10 min, while,
for a forecast horizon of one day, we represent the data with a high-dimensional multi-variate TS, where the
number of variables is equivalent to the quantity of measurements registered in a day. Through the orthogonal
transformation returned by PCA decomposition, we reduce the dimensionality of the TS to a lower number k
of distinct variables; this allows us to cast the original prediction problem in k different one-step ahead
predictions. The overall forecast can be effectively managed by k distinct prediction models, whose outputs
are combined together to obtain the final result. We employ a genetic algorithm for tuning the parameters
of the ESN and compare its prediction accuracy with a standard autoregressive integrated moving average
model.

INDEX TERMS Time-series, forecasting, electric load prediction, echo state network, genetic algorithm,
PCA, dimensionality reduction, smart grid.

I. INTRODUCTION
In this paper we consider the problem of Time-Series
Forecasting (TSF) [1] concerning the prediction of future
values of a time-series (TS) of electric load, leveraging
previously observed history. An accurate Short-Term Load
Forecast (STLF) method can reduce operating costs, keep
power markets efficient and provide a better understanding
of the dynamics of the monitored system. On the other hand,
a wrong prediction could cause either a load overestimation,
which leads to the excess of supply and reserve and con-
sequently more costs and contract curtailments for market
participants, or a load underestimation resulting in failures
in gathering enough provisions, thereby more costly supple-
mentary services [2], [3].

Recently, the Echo State Network (ESN) have been
employed in a wide range of applications such as intrusion
detection [4], adaptive control [5], financial credit
rating [6], harmonic distortion measurements [7] and speech
recognition [8]. In power grid applications, ESN have been
adopted as stand-alone forecaster with a minimum num-
ber of inputs for STLF with promising results, achieving

high accuracy relatively to the problem of electricity load
forecast [9], [10]. ESN not only benefits from the presence of
feedbacks like any other RNN (Recurrent Neural Network),
a feature which gives to the system the capability to model
any complex dynamic behavior, but also gains a sparsely
interconnected reservoir of neurons that leads to a very
fast and simple training procedure, unlike the complicated
and time consuming training process required by the RNNs
without reservoir. On the other hand, because of the property
of ‘‘short-term memory’’, ESN is not suitable for long-term
predictions [11]; for long forecasting horizons, a very basic
averaging model in general outperforms many more complex
alternatives [12].

In this work we face the problem of STLF considering
two different methodologies. In the first approach we directly
predict the next value on the TS (1-step ahead forecast).
When the forecasting horizon is longer, i.e. when the forecast
step m is high (m � 1), trying to directly predict the values
of the TS become more difficult. In this case, we represent
the TS through a matrix M , with a number of columns equal
to the leading time m: in this way the problem consists in
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predicting the values in the next row of the matrix. Using
a Principal Component Analysis (PCA) decomposition,
the m columns of the matrix can be approximated by the first
k independent components, with k < m, which can be pre-
dicted independently, possibly in distinct parallel threads. The
m-step ahead forecast can therefore be evaluated with k dif-
ferent 1-step ahead forecasts. In this paper we process a novel
dataset, relative to the demand of electricity in the distribution
network of Rome. We explain how to retrieve and how to
dynamically update the coefficients in the PCA decomposi-
tion, as long as new values of the TS are observed.We forecast
the values of the components using k different predictors
and we show how to combine them for retrieving the final
forecast of the electricity load. Finally, we compare the results
obtained using an ESN as forecast model or with standard
ARIMA (Auto-Regressive Integrated Moving Average)
predictor.

The remainder of the paper is structured as follows: in
Sect. II we discuss previous works in the literature which
approached the TSF problem through ESNs, by considering
multi-variate TS and by applying techniques for dimension-
ality reduction. In Sect. III we present the dataset examined
in this study and we discuss the properties of the TS under
analysis. In Sect. IV we explain how to generate the sets
used for training and for testing the prediction model in
order to face two different STFL problems, characterized by
a short and a long forecast horizons respectively. In the case
of long leading time, we explain how we represented the data
with a multi-variate TS. In Sect. V we firstly introduce the
PCA procedure, then we discuss how it can be used for
reducing the number of variables in the multi-variate TS,
which can be approximated with a small number of inde-
pendent components. Finally, we explain how to effectively
take advantage of this representation of the TS for forecasting
future loads. In Sect. VI we describe the standard procedure
for forecasting a TS using an ESN. In Sect. VII we discuss
how we tested our system considering different setups and
we show the obtained results, while in Sect. VIII we report
our conclusions.

II. RELATED WORKS
In the Smart Grid era, where scientific research from
one hand and industry and regulation from the other are
transforming the actual power grid in a more intelligent
technological ecosystem, the electric load forecasting became
a fundamental issue in a myriad of applications. Informa-
tion Communication Technologies (ICT) with smart metering
infrastructures provide a huge amount of load data that can be
analyzed andmodeled with advanced learning algorithms and
data mining techniques [13]–[17].

Approaching the TSF with an Artificial Neural
Network (ANN), has been widely explored in the past
years [1], [18]–[20]. Recently, the RNN has become one of
the most used type of ANN as a prediction system, espe-
cially for chaotic TS [21], [22], and many works present a
direct comparison of the prediction performances obtained

using a simple RNN or a standard ARIMA model [23].
Varshney and Verma [24] use a RNN as forecast
model, affirming that the commonly used feed-forward
back-propagation network offers good performance, but
this performance could be improved by using recurrence
or reusing past inputs and outputs. The motivation behind
considering recurrence is that some patterns may repeat
over time. A network which remembers previous inputs or
feedback of previous outputs may have greater success in
determining these time dependent patterns. In [20] a novel
feed-forward NN is proposed which, similarly to the Fourier
decomposition method, introduces in every layer a Cosine
function to capture the remaining unexpressed non-linearity.
The number of layers is set dynamically and it depends upon
the complexity of the underlying process and the desired
level of accuracy, while the number of nodes at each layer
is fixed. A relevant work dealing with ESN in TSF is [9],
where the authors train a different ESN for predicting each
hour of the day. They perform both a 1-hour and a 24-hours
ahead forecast. The 24-h forecast is done calling recursively
the 1-h ahead forecast. In the training of the ESN only
a specific hour of the day is taken into account. In [25]
the ESN is used for a multi-variate TS prediction and the
reservoir is trained with a Bayesian regularization technique.
In order to avoid overfitting in the regression step, neurons
and redundant connections are pruned. In the context of
chaotic TS predictions, Li et al. [22] propose an alternative
to the Bayesian regression for estimating the regularization
parameter. The method uses a Laplacian likelihood function
rather than a Gaussian, which has demonstrated to be more
robust to noise and outliers. In [26] chaotic TS are predicted
with ESNs using a decentralized training algorithm over a
network of agents, which achieved performances comparable
to the centralized case. An hybrid model using ESN in
conjunction with ARIMA is proposed in [11], where a
TS with multiple seasonality is forecast. The TS is decom-
posed according to a wavelet multi-resolution analysis in
a sum of different wavelets, modeling the seasonal part of
the TS, and a residual smooth term. The periodicities that the
TS exhibits at different cycles can be isolated using wavelet
terms, which are extremely regular and can be predicted
using an ARIMA model. The smooth component, instead, is
processed with an ESN and the final prediction is obtained
integrating all the components. An interesting forecasting
model using ESN on a multivariate TS can be found in [25],
where the prediction is performed using a special ESN with a
different reservoir for each variable: this allows to better catch
the dynamic of each single variable. Because of the presence
of multiple reservoirs, the number of output connections from
the internal matrices to the output is huge and could lead to
overfitting during the training; for this reason authors propose
a method for pruning these connections.

In previous researches, the complexity of a multi-variate
TS prediction problem was reduced by applying singular
value decomposition (SVD) prior to time-series forecasting
in order to decrement the number of variables in the TS.
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The original TS is re-arranged in a n×mmatrix, being m the
leading time in the forecast and n the number of periods of
length m in the TS. Each column of this matrix constitutes a
TS of observations for a particular interval in the time period.
SVD is used to extract the main underlying components in
these data and thus reducing the number of variables to be
forecast. Taylor [27], [28] applies a SVD to obtain a set
of k < m coefficients, which are successively forecast using
exponential smoothing approaches. Shen and Huang [29]
used an AR(1) model for infra-day and inter-day load
forecasting. They represented the TS with a matrix where
each row stores the load registered in a day and the columns
the forecast for each half-hour; the 48 columns are reduced
using a SVD. Taylor et al. [30] compare the accuracy of
six univariate methods for short-term electricity demand
forecasting for lead times up to a day ahead. This work
analyzes the following methodologies: a multiplicative sea-
sonal ARIMA; an exponential smoothing; an artificial neural
network implementation and a Principal Component
Analysis (PCA) approach that is strictly related to SVD
decomposition. The PCA with the intrinsic dimensionality
reduction capability is also used in [31] for STLF of intraday
electricity demand, considering data from several European
countries.

III. THE ANALYZED TIME SERIES
In this work we analyze a TS of the electricity load provided
by ACEA (Azienda Comunale Energia e Ambiente), the com-
pany which manages the electric and hydraulic distribution
in the city of Rome, Italy. The ACEA power grid covers
10,490 km of Medium Voltage (MV) lines, while the Low
Voltage (LV) section covers 11.120 km. It is constituted of
backbones of uniform section, exerting radially and with the
possibility of counter-supply if a branch is out of order. Each
backbone is fed by two distinct Primary Stations (PS) and
each half-line is protected against faults through the breakers;
we refer the reader to [32] for more details. The values in the
TS concern the quantity of electricity supplied in the distri-
bution network, measured on a MV feeder. Data are collected
every 10 minutes for 3 years of activity, from 2009 to 2011.
In Fig. 1 we report the electricity load profile registered
in 3 consecutive days.

Before processing the TS, a common procedure con-
sists in applying some kind of normalization to the data,
such as standardization or rescaling, which is successively
reversed when the forecast values must be provided. Trans-
forming the data with a non-linear function like square-
root, logarithm or hyperbolic tangent [20], [29], [33]–[35]
is useful for stabilizing the variance in the data, with-
out altering the underlying structure. A log-transformation
allows also to capture a multiplicative seasonal pattern
by models which are inherently additive. Then, in pres-
ence of long term trends or when the residuals show a
marked increment in variance over time of the amplitudes
of the seasonal cycles, a non-linear transformation should be
preferred.

FIGURE 1. The load profile of the TS in 450 time intervals (approximately
3 days).

A preemptive analysis of the TS can help us to understand
the nature of the seasonality and the variance in the data.
In this preprocessing phase it is also important to identify
the presence of multiple seasonalities, hidden daily and/or
hourly patterns, which could be better treated using multiple
forecasting systems [9], [25] or with models designed to deal
with multiple seasonality [27], [28], [36]. Fourier frequency
analysis and the auto-correlation function (ACF), evaluated
up to sufficient high number of lags, are the most commonly
used tools for seasonality study. As expected, in the ACF plot
in Fig. 2(a), we can notice that the TS shows an obvious
seasonality pattern every 144 time intervals (one day); this
seasonality is slightly additive, but not multiplicative and
the TS is likely to contain a monotonous trend. In fact, if
a signal exhibits a monotonous trend it lacks a tendency to
return to its mean value, or the values in its ACF are positive
up to a high number of lags and the standard deviation of
the residuals is greater than in the differentiated signal. For
identifying a second, less obvious seasonality we apply a
seasonal differencing [37] to the TS and we examine its ACF,
which is reported in Fig. 2(b). As we can see, the absence of
cyclic correlations shows that the gross pattern of seasonality
has been removed and then we can exclude the presence of a
second seasonality in the data.

We consider the average daily load in the TS in order to
check if in different days the load profile changes. In Fig. 3
we report the mean values of the TS in a time-interval
of 1 day, computed over 1 month of activity. We also report
the standard deviation from the mean value (represented by
gray dashed lines in the figure) which, as can be seen from the
plot, is relatively small, confirming a stable load profile over
different days. Since there are not multiplicative seasonalities
in the data nor overdispersion, i.e. the variance is not greater
than the mean value [38], a non-linear transformation for
stabilizing the variance is not required and a rescaling or
a standardization are suitable for normalizing the values
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FIGURE 2. In (a) is drawn the autocorrelation of the TS; as we can notice there is a strong correlation component at every
144 lags. In (b) the autocorrelation of the same TS after a seasonal differencing. We can notice that TS now is deseasonalized
and there are not other evident seasonalities.

FIGURE 3. With the black line we represent the daily mean of the values
in the TS, relatively to 1 month of activity. The standard deviation from
the mean is reported in the graphic with gray dashed lines. As we can
see, the deviation is small, in particular in the intervals when the
electricity demand is lower.

in the TS. In particular, we choose to rescale the values in
the interval [0, 1], using a unity-based normalization. Finally,
since we do not observe the presence of multiple seasonality
in the data or well defined weekly patterns, a single forecast-
ing model can be adopted for our STFL task.

IV. PREDICTION LEADING TIME
In a TSF problem, the forecast step m defines how far
ahead the prediction is performed; in particular given X (τ ),
which represents all the values assumed by the TS X up to
time τ , namely x0, x1, .., xτ−1, xτ , we want to forecast xτ+m.
A generic prediction model which takes as input a series of

the observed values is trained to return as output the series
of future values assumed by the TS m time intervals ahead.
The training set is then composed of an ordered set of pairs
of values {(x0, xm), (x1, x1+m), .., (xT , xT+m)}, being T the
number of time samples that we consider in the training data
and the pair (xτ , xτ+m) the input and the desired output of the
system at time τ . A test set (with the same structure) is used
to evaluate the prediction accuracy of the model. Note that
the value assumed by xτ+m does not depends only on xτ , but
also on all the previous inputs, which are taken into account
by the memory of the system.

In the following we explain the procedure implemented
for splitting the data in order to obtain a training and a test
set, used for synthesize a prediction model and for evaluat-
ing its performances respectively. Note that this procedure
is general and it is adopted for both the forecast models
considered in this paper (ARIMA and ESN) and the
two different approaches used for representing the data,
which are discussed at the end of this section.

From the original data X we generate 2 different overlap-
ping TS of the same length, Xobs and Xfut, where Xobs(τ ) =
{x0, . . . , xτ } and Xfut(τ ) = {xm, . . . , xτ+m}. Note that Xobs
and Xfut can be simply constructed by removing from X
the last and the first m elements respectively. The length of
the 2 new time-series is N − m, being N the entries in X .
Successively, Xobs and Xfut are split in 2 different sets each,
which represent the training set (X trobs, X

tr
fut) and the test set

(X tsobs, X
ts
fut). The procedure is illustrated in Fig. 4.

When the forecast horizon is very short (e.g. m = 1),
a variety of different models and techniques can successfully
predict the future values of X . In particular, an ESN-based
predictionmodel, like the one considered in this work, obtains
very high prediction accuracy when dealing with short lead-
ing times. As long as the value m increases, the forecast
horizon stretches, the TSF problem become harder and the
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FIGURE 4. Xobs contains the observed values on the TS and is obtained
removing the last m values from X , while Xfut contains the values that
must be predicted by the system and is obtained by removing the
first m values from X . Both Xobs and Xfut are split in a training and test
set, according with the ordering described in the figure.

accuracy in the prediction decreases. A common case of study
is forecasting the load in the next 24 hours. It is noted that
forecasting the electricity load for the next 24 hours is an
important task in grid operation and planning, primarily in the
Smart Grid application field, where intermittent renewable
resources such as wind or solar plants are widely integrated in
the power system, making such tasks more difficult. Forecast-
ing next-day electricity demand can be useful in unit commit-
ment applications, especially in presence of energy sources
characterized by a long start-up time. Since in our case the
TS contains data collected every 10 minutes, predicting the
values of the following day corresponds to a leading time
m = 24 × 6 = 144. Note that 144 corresponds also to the
main seasonality in our TS (see Sect. III).

Rather than directly predicting the next m values of X , the
STFL problem can be approached by representing the TS in
a matrix formM ∈ Rn×m, with m columns and n rows, being
n = dNm e the total number of time intervals (days in our case)
in X of length m. The t-th row of M contains the electricity
load registered in the t-th day. Then, given a row t , the
prediction problem consists in determining the values of the
next row t + 1, which is equivalent to perform a 1-step ahead
forecast of a multivariate TS. The prediction of a multivariate
TS is a widely studied problem, which is commonly
approached using models such as vector autoregressive mod-
els or, more generally, vector autoregressive and moving
average models [39]. Alternatively, more forecasting models
are used, each one dedicated and individually trained on a
single variable of the TS, and their outcomes are combined
together in order to obtain the final forecast [25]. However,
those systems are computationally demanding and they are
usually applied when the number of variables in the TS is
small. In our case, we have a TS with 144 variables and
then a dimensionality reduction is required for represent-
ing each row in M with a lower number k of coefficients.

This operation can be done using the PCA decomposition and
it is described in detail in the following section.

V. PREDICTION WITH PCA DECOMPOSITION
The Principal Component Analysis (PCA) is the well-known
statistical procedure that uses an orthogonal transformation
to convert a set of observations of possibly correlated vari-
ables into a set of values of linearly uncorrelated variables
called principal components. The first component accounts
for as much of the variability in the data as possible and
each succeeding component in turn has the highest variance
possible under the constraint that it is orthogonal to the pre-
ceding components. Also known as discrete Karhunen-Loève
transform (KLT) in signal processing, the PCA is desirable in
applications which require a dimensionality reduction [40].
Linear filtering methods, known in signal processing as
‘‘subspace filtering’’, use the PCA to separate the ‘‘signal
subspace’’ from the ‘‘noise subspace’’ in an ensemble of
measured signals, i.e. a sampled signal under the hypothe-
sis of uncorrelated additive noise. An important feature of
orthogonal transformations is the tendency to redistribute
the energy contained in the signal so that most of energy is
contained in a small number of components. In the following
we discuss the properties of the PCA decomposition and how
they can be exploited for approximating the analyzed TS with
a lower number of variables.

A. PROPERTIES OF PCA DECOMPOSITION
Given the matrix representation of the TS M ∈ Rn×m with
column-wise zero empirical mean, the estimated covariance
matrix SM ∈ Rm×m can be written as:

SM =
1

n− 1
MTM, (1)

that is a square symmetric m × m matrix where the diago-
nal terms represent the variance of the column vectors Mj,
j = 1, ..,m of M, while the off-diagonal terms are the
covariance between the column vectors Mi, Mj for i 6= j
and i, j = 1, ..,m. Algebraically, the PCA can be obtained
by identifying an orthogonal matrix C ∈ Rm×m (rotation
matrix) that diagonalizes the given covariance matrix SM ,
whose columns are the eigenvectors and are called loadings
of the original matrix M. It can be shown that C originates
from the following orthogonal decomposition:

A = CDCT , (2)

where A = MTM ∈ Rm×m is the positive semi-definite
scatter matrix. D ∈ Rm×m is a diagonal matrix whose
diagonal real-valued elements λ1 ≥ λ2 ≥ . . . ≥ λm,
placed in decreasing order, are the eigenvalues of MTM.
Thus, the diagonal elements are proportional to the variance
(up to a constant factor (n − 1)−1) of principal compo-
nents in the directions given by the corresponding eigenvec-
tors represented by the columns of C. The matrix C is an
instance of a linear operator that projects M in a new matrix
β = [β1, . . . , βm] ∈ Rn×m that lies in a new coordinate
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system whose components βj, j = 1, ..,m are the PC scores.
Thus, for M the following equality holds:

M = βCT . (3)

being C an orthogonal matrix (CT
= C−1). The score

matrix β can easily computed as:

β =MC (4)

Since the eigenvalues of the covariance matrix measure
the ‘‘generalized variance’’ in M, an high eigenvalue means
that the related PC accounts for more variability in data.
Conversely, a low variance accounts for less variability.
In general, the latter case indicates the presence of redun-
dancy in the available data, allowing a reduction of the dimen-
sionality. A measure able to catch the explained variance by
the PCs is the Cumulative Variance Ratio Rk defined as the
ratio of the sum of the first k , λ1 ≥ λ2 ≥ . . . ≥ λk eigenvalues
and the sum of all m eigenvalues, k ≥ m, of the covariance
matrix, that is:

Rk =

∑k
j=1 λj∑m
i=1 λi

. (5)

An approximation ofM using the first k components with
the highest variance is defined as:

M̄(k)
= β(k)C(k)T ,β(k)

∈ Rn×k ,C(k)
∈ Rm×k (6)

where β(k)
= [β1, . . . , βk ] and C(k)

= [c1, . . . , ck ] are the
first k columns of β and C respectively.

B. DIMENSIONALITY REDUCTION WITH PCA
The t-th row of M̄(k) can be expressed as M̄(k)(t) =∑k

j=1 βj(t)c
T
j , which is an approximation of the t-th period of

lengthm of the original TS. Given the t-th period, represented
by the coefficients βj(t), j = 1, . . . , k , the m-step ahead
forecasting problem can be solved with the 1-step ahead
prediction of the k coefficients, i.e. the values of the period
t + 1 can be approximated as

∑k
j=1 β̂j(t + 1)cTj , where the

coefficients β̂j(t + 1), j = 1, . . . , k are the 1-step ahead pre-
dictions. In fact, thanks to the orthogonality of the principal
components β1, . . . , βk , they can be considered independent
TS which can be predicted using k distinct forecast models,
each one trained to forecast a specific principal component βj.
We apply to M the same procedure described in Sect. IV:

at first, we generate the 2 matricesMobs andMfut containing
the observed and the future values of the TS. Then, with a
split, we generate the training (Mtr

obs, M
tr
fut) and the test set

(Mts
obs,M

ts
fut).

In order to retrieve the first k principal components in
each matrix, we firstly apply the PCA decomposition on
Mtr

obs andM
tr
fut which give us the components used for training

the prediction system. During the test phase, as soon as a new
test element is presented as input to the prediction system, we
can approximate the values of its first k principal components,

according to the property defined in Eq. 4. Let β
tr(k)
obs , Ctr(k)

obs
and β

tr(k)
fut , Ctr(k)

fut be the first k principal components and

loadings ofMtr
obs andM

tr
fut respectively. As we observe, given

the t-th row Mts
obs(t) of the test set Mts

obs, the associated
values of the k principal components can be approximated
as follows:

β̄
ts(k)
obs (t) =Mts

obs(t)C
tr(k)
obs . (7)

where β̄
ts(k)
obs (t) is an approximation of β

ts(k)
obs (t), i.e. the t-th

value of the k principal components which would result from
the PCA decomposition on {Mtr

obs,M
ts
obs(1), . . . ,M

ts
obs(t)}.

Analogously, we can estimate β̄
ts(k)
fut (t) using Ctr(k)

fut .

C. PREDICTING THE k COMPONENTS
Because of the property of orthogonality, each column βj,
j = 1, . . . , k can be considered a different TS where the
n-th value βj(n) depends only on the previous values βj(t),
t = 1, . . . , n−1 observed on the same TS. In fact, the orthog-
onality property ensures every TS to be linearly independent
from the others and the final forecast is the combination of
results of the single predictions. Each model j is trained using
the TS β trobsj (which is the j-th column of the matrix β trobs)
as input and the TS β trfutj as desired output. For what con-
cerns the prediction of the t-th test element, we retrieve the

values β̄
ts(k)
obs (t) of the k principal components, according to

the procedure described in the previous section. Then, for
each component β̄ tsobsj (t) we evaluate the m-step ahead fore-

cast β̂ tsfutj (t).

In order to obtain the predicted values of the t +m interval
in the original TS, whose ground-truth values are contained
inMts

fut(t), we use the rotation matrix Ctr(k)
fut from the training

set. In particular, the forecast will be the following:

M̂ts
fut(t) = β̂

ts(k)
fut (t)Ctr(k)

fut (8)

Note that as long as more rows of the test set are processed,
the approximation error increases, since the orthogonality
property among the k components is no longer guaranteed
because in the last values of the columns βj some linear
correlations with the other TS βq, q 6= j are introduced.
This produces an increasing decay of the accuracy in the
forecast, since the prediction relies exclusively on the past
values observed on the j-th TS, according to the assumption
of orthogonality which is now violated. For this reason, we
adopt a mechanism for updating the matrices of the loadings

Ctr(k)
obs and Ctr(k)

fut during the forecasting procedure, in order to
modify the internal state of the forecast model for taking into
account the most recent observations to be considered in the
future predictions and for recovering the geometric proper-
ties of the principal components. Every p time-intervals we

recomputeCtr(k)
obs andCtr(k)

fut on the newMtr
obs andM

tr
fut, which

are updated by inserting the data of the test set that have been
observed in the last p intervals. In order to obtain the highest
accuracy, p should be selected equal to 1; however every
time we recompute the PCA, we obtain a set of completely
different k principal components, meaning that we have to
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retrain every forecast model on the new set of TS; a good
compromise between prediction accuracy and computational
effort should be chosen.

VI. FORECAST WITH ESN
In this work we consider two different forecasting methods
for predicting the electricity load values: the first is a classic
ARIMA model that we use for benchmarking purposes, the
second is an Echo State Network, whose structure and train-
ing procedure is described in this section.

FIGURE 5. Schematic depiction of an ESN. The circles represent the input
variables x, the state variables h and the output variables y. The squares
depicted with solid lines, Wo

r and Wo
i , are the trainable weight matrices

of the readout, while the squares with dashed lines, Wr
r , Wr

o and Wr
i ,

are random initialized weight matrices. The polygon represents the
non-linear transformation of the neurons in the network.

A schematic depiction of an ESN is shown in Fig. 5.
It is divided in three components, namely the input layer,
a recurrent reservoir, and a readout. The current output
of an ESN is computed in two distinct phases. First, the
Ni-dimensional input vector x[n] ∈ RNi is given as input to
the recurrent reservoir, whose internal state h[n − 1] ∈ RNr

is updated according to the state equation:

h[n] = fres(Wr
i x[n]+Wr

rh[n− 1]+Wr
oy[n− 1]), (9)

where Wr
i ∈ RNr×Ni , Wr

r ∈ RNr×Nr and wr
o ∈ RNr are

randomly initialized at the beginning of the learning process,
and they remain unaltered afterward. fres(·) in Eq. (9) is a
suitable non-linear function, typically of sigmoid shape, and
y[n − 1] ∈ R is the previous scalar output of the network.
In our case, we have fres(·) = tanh(·). In the second phase,
the ESN’s prediction is computed according to:

y[n] =
(
Wo

i
)T x[n]+

(
Wo

r
)T h[n], (10)

where Wo
i ∈ RNi ,Wo

r ∈ RNr are trainable connections. The
difference between fixed and adaptable weight matrices is
shown in Fig. 5 with the use of continuous and dashed lines,
respectively. Additionally, to increase the overall stability,
it is possible to insert a small uniform noise term to the state
update in Eq. (9), before computing the non-linear transfor-
mation fres(·) [41].
A few words should be spent on the choice of the

matrix Wr
r . According to the ESN theory, the reservoir

must satisfies the so-called ‘echo state property’ (ESP) [42].

This means that the effect of a given input on the state of
the reservoir must vanish in a finite number of time-instants.
A widely used rule-of-thumb is to rescale the matrix Wr

r to
have ρ(Wr

r ) < 1, where ρ(·) denotes the spectral radius
operator. We use this strategy and we refer the interested
reader to [43] for recent theoretical studies on the subject.
If the ESP is satisfied, an ESN with a suitably large reservoir
can approximate any non-linear filter with bounded memory
to any given level of accuracy [42].

To determine the weight matrices in the readout, let
us consider a sequence of Q desired input-outputs pairs
given by:

(x[1], d[1]) . . . , (x[Q], d[Q]) (11)

In our case, the input vector is the original time-series X or
the i-th principal component βi, while the output is given by:

d[t] = x[t + m], (12)

where m define the forecast horizon. In the initial phase of
training, called ’state harvesting’, the inputs are fed to the
reservoir in accordance with Eq. (9), producing a sequence
of internal states h[1], . . . ,h[Q]. Since, by definition, the
outputs of the ESN are not available for feedback, the desired
output is used instead in Eq. (10) (so-called ‘teacher forcing’).
The states are stacked in a matrix H ∈ RQ×Ni+Nr and the
desired outputs in a vector d ∈ RQ:

H =

 xT [1], hT [1]
...

xT [Q], hT [Q]

, (13)

d =

 d[1]
...

d[Q]

. (14)

The initial D rows from Eq. (13) and Eq. (14) should be
discarded, since they refer to a transient phase in the ESN’s
behavior. We refer to them as the dropout (or washout) ele-
ments.1

At this point the resulting training problem is a standard
linear regression, which can be solved in a large variety of
ways.We used the least-square regression (LSR), which is the
algorithm originally proposed for training the readout [44].
It consists in the following regularized least-square problem:

w∗ls = argmin
w∈RNi+Nr

1
2
‖Hw− d‖22 +

α

2
‖w‖22 , (15)

wherewls =
[
wo
i w

o
r
]T and α ∈ R+ is a positive scalar known

as regularization factor. A solution of problem (15) can be
obtained in closed form as:

w∗ls =
(
HTH+ αI

)−1HTd. (16)

1Not to be confused with the dropout regularization currently in use in the
deep learning literature.
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Whenever Nr + Ni > Q, Eq. (16) can be computed more
efficiently by rewriting it as:

w∗ls = HT (HHT
+ αI

)−1d. (17)

A. PARAMETERS OPTIMIZATION
The initial configuration of the ESN depends on a set of
parameters which need to be properly tuned to achieve
the best performances in the task considered. An effective
approach consists in using a genetic algorithm (GA) to
retrieve an optimal parameter configuration [9]. Since the
variables which must be tuned assume both integer and real
values, we opted for a mix-integer GA based on MI-LXPM
algorithm [45], which optimizes a genetic code composed
of real and integer values, defined in a suitable interval.
The algorithm follows the standard GA procedure, which
begins by creating a random initial population. Then, in each
iteration the GA generates a new population using some of
the individuals with high fitness in the current generation,
called parents, which are chosen using a tournament selec-
tion with tournament size equal to 2. Individuals in the next
generation are generated either by making random changes
to a single parent with a Gaussian mutation, which adds
a random number taken from a Gaussian distribution with
0 mean to each entry of the parent vector, or by combining
parent entries with a Laplacian crossover [45], with crossover
fraction µ. The algorithm also implements elitism, moving
the E individuals with the highest fitness to the next gen-
eration, where E = dρPe, being ρ and P elitism rate and
population size respectively. The stop criterion triggers when:
(i) a maximum number G of generations is reached; (ii) the
average relative change in the value of the fitness function
over a number of consecutive generations is below a given
threshold τstall; (iii) the fitness value of the best individual
in the current population is less than or equal to the fitness
limit – usually 0 (or 1), if the normalized fitness score is
minimized (or maximized).

Previous uses of GA for optimizing ESN
parameters [9], [46], [47] have shown, in most cases, that
the achieved performances are comparable to an exhaustive
search and that the ESN itself is robust to small variations
in parameter values. We considered the recommendations
reported in previous works, e.g. [48], as guidelines to deter-
mine the search space of the genetic code. In the following we
define the search space for each parameter and the optional
resolution of the search.
• For the number of neurons in the reservoir we
selected the bounds [100, 1000], with a resolution
of 100.

• The weights inWr
r are extracted from an uniform distri-

bution in [−1,+1]. Then, a given percentage p of values
are set to 0, and the matrix is rescaled to obtain a desired
spectral radius ρ∗. ρ∗ is optimized in [0.5, 0.99], while
the percentage p of the connectivity in the reservoir
in [0.1, 0, 4].

• The small noise term in Eq. (9) is drawn from aGaussian
distribution with zero mean and variance β2, which is
searched in [0.00001, 0.001].

• To provide additional flexibility, input signal, desired
response, and feedback signal are all scaled by three
constant factors, namely γin, γout, and γfeed. The first two
are optimized in [0.1, 1], while the third in [0, 1]. The
particular case of γfeed = 0 represents an ESN without
feedback.

• The search of the parameter regularization α used in the
linear regression of the readout training, takes place in
the codomain of the exponential function {2c}, where
the value of c is searched by the GA in [−10, 10] with
resolution 1.

In the optimization procedure, the fitness of the genetic
code is evaluated using the forecast accuracy obtained on a
validation set X vsobs and X

vs
fut, which is generated by splitting

the training set in 2 parts: the first part becomes the new
training set, the remaining part the validation set. If the
TS is represented in the matrix form M, the coefficients
βvsobs and βvsfut are approximated with β̄

vs
obs and β̄

vs
fut,

analogously to β̄
ts
obs and β̄

ts
fut, as described in Sect. V-B.

Each genetic code cj defines a network ESNj and we
use β trobs and β trfut as input and teacher signal for training
the readout. Successively, at each time interval t we present
β̄
vs
obs(t) as input to ESNj and we compare the predicted values

β̂
vs
fut(t) with the true values β̄

vs
fut(t). The fitness of the genetic

code cj is evaluated according to the prediction error; once the
optimal genetic code copt is identified, the associated ESNopt
is used for forecasting the values of the test set, as described
in Sect. V-C, and the prediction error on the test set represents
the generalization capability of the system. A schema of the
whole procedure is depicted in Fig. 6.

VII. EXPERIMENTS
The TS contains 137376 values representing the electric load
registered on the feeder named ‘‘Belsito Prisciano’’ every
10 minutes during approximately 3 years of activity.
Accordingly to the splitting procedure described in Sect. IV,
we used the first 80% of the TS as the training set. Of the
remaining part the first 15% become the validation set and
the last 5% the test set.

In a problem of a m-step ahead prediction, a TS X is
serially processed by the system which, for each component
X (t), returns the predicted value X̂ (t + m). Many different
techniques can be used for evaluating the prediction accu-
racy [1], [49]. The error measurement that we adopted is the
Normalized Root Mean Squared Error (NRMSE) function,
which is a frequently used error measure that represents the
sample standard deviation of the differences between pre-
dicted values and observed values. It is defined as follows:

NRMSE(X̂ ,X ) =

√
1
n

∑n
i=1(x̂i − xi)2

xmax − xmin
(18)

being x̂i the i-th prediction and xi the observed value.
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FIGURE 6. The optimization procedure performed on the training and validation set using
the GA. Once the optimal parameters are identified, the optimal configuration of the
ESN is used for predicting the values in the test set: the prediction accuracy describes the
generalization capability of the system.

FIGURE 7. In (a) we report the approximation error and the prediction error (both evaluated with the NRMSE measure) when the
TS X is approximated using a different number k of principal components. In (b) we report the Pareto chart which reports the
percentage of explained variance in the data, considering a different number k of components. As we can see, by using a number
of components k = 5 we can obtain good performances, lowering significantly the original number of variables, which are 144.

For training the ESNwe optimized the network parameters
using the GA, as described in Sect. VI-A, configured with a
crossover rateµ = 0.8, a population sizeP = 50, amaximum
number of generationsG = 100, a stop threshold τstall = 0.01
and an elitism rate ρ = 0.05. During the optimization step the
prediction accuracy is evaluated on the validation set using
the NRMSE function, which represents the reciprocal of the
fitness for each chromosome.

In order to select the optimal number of principal compo-
nents k , we analyzed the approximation error of the original
TS and the prediction error as k varies – in this case
the prediction error is evaluated directly on X using an
ARIMA model and considering a forecast step of 50 time-
intervals. As we can see from the graphics in Fig. 7a, when
X is reconstructed using more than 5 principal components,
both the approximation and the prediction errors start to
decrease very slowly. Thismeans that if we consider a number

of components k > 5, we are adding complexity to the
system (a new forecast model is required for any additional
principal component) without obtaining a significant decre-
ment of the approximation and prediction error. In the Pareto
chart in Fig. 7b we report the explained variance of the first
principal components which, according to Eq. 5 in the case
of k = 5 is:

R5 =

∑5
j=1 λj∑144
i=1 λi

= 0.946. (19)

As in the previous case, we can see that the first 5 compo-
nents are sufficient to explain almost all the variance in the
data. Thus, in the following experiments we always consider
k = 5 principal components for approximatingM, the matrix
representation of X .

We compared the results obtained with the ESN based
prediction system using an ARIMA model. We refer
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to an ARIMA model using the standard notation
ARIMA(p,d,q)× (P,D,Q)s, where the term (p,d,q) gives
the order of the nonseasonal part, (P,D,Q) the order of the
seasonal part, being s the value of the seasonality [23]. For
the direct prediction of the original TS X , we generated an
ARIMA model according to a preemptive analysis, whose
results are partially reported in Sect. III. The non-stationary
TS can be forecast using amoving average term and including
both seasonal and non-seasonal first order differencing,
i.e. a ARIMA(0, 1, 1)×(0, 1, 0)144 model. For what concerns
the prediction of the coefficients β1, .., βk , they are non-
stationary TS without a defined seasonal pattern and they
can be modeled using a single autoregressive term and a
first order differencing component for achieving stationarity:
we processed the k components returned by the PCA decom-
position using k ARIMA(1,1,0) models. Like for the ESN,
the parameters of the models are evaluated on the training
and the validation set using a standard optimization routine.

The code is fully written in MATLAB. The ESN is
implemented using a customized version of the Simple
ESN toolbox [50] which can be found at https://bitbucket.org/
ispamm/distributed-esn, while for the prediction with
ARIMA we used the implementation belonging to the soft-
ware in the MATLAB financial toolbox.

A. RESULTS
In this section we evaluate the results obtained relatively
to the problems of STLF considering two forecast horizons
of 1 and 144 step ahead. Because of the random nature of the
GA used in the optimization and of the ESN, whose internal
reservoir structure is generated randomly when the network is
generated, we repeated the initialization, the optimization, the
training of the network and the final test 10 different times.
Additionally, because of the initial transient phase of the ESN,
we discard the first 50 output values as dropout elements, in
order to let the system reach a steady behavior.

TABLE 1. Forecast errors evaluated with the NRMSE function on the load
of 50 days, using ARIMA and ESN. There are two different leading times in
the prediction, which are 1 and 144. The 144-step ahead forecast is done
directly on the original time-series, on the k components returned by the
PCA decomposition with and without updating the loadings.

In Tab. 1 we report the average forecasting accuracy evalu-
ated with the error function defined in Eq. 18 relatively to the
two STF problems. Concerning the 144-step ahead forecast
case, we present the prediction results of ESN and ARIMA
models directly on the TS and also the results obtained
combining the k different 1-step ahead predictions of the
principal components returned by the PCA. We also show
the forecasting error obtained updating the PCA coefficients,

as described in Sect. V-C every p = 5 days. All the errors
concerns the prediction of the electricity load in the 50 days
of the test set, for a total of 144 · 50 = 7200 predictions.

FIGURE 8. Predicted values using ESN and ARIMA, with a forecast
horizon of 144 time-intervals.

In Fig. 8 we plot the values predicted by ESN and ARIMA
along with the ground-truth values of the TS relatively to
the 144-step ahead forecast case. In Fig. 9 instead, the same
values are predicted combining the k 1-step ahead forecasts
β̂1, . . . , β̂k , related to the components returned by the PCA
decomposition of the matrix representation M of the origi-
nal time-series. The loadings of the PCA are update every
p = 5 days, in order to better keep track of the last observed
modifications.

FIGURE 9. The forecast returned by ESN and ARIMA is relative to a leading
time of 144 time-intervals. This time the result is obtained combining the
k different 1-step ahead predictions of the PCA components and applying
the updating procedure on the coefficients every 5 time intervals.

As expected, we can see that the best prediction accu-
racy is obtained relatively to the problem of 1-step ahead
forecast which, due to its simplicity, can be computed effec-
tively on the original TS X . However, when we consider the
longer leading time of 144 time-intervals ahead, the forecast
accuracy obtained directly predicting the next 144 values
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on X decreases substantially. The same prediction task is
approached with the PCA decomposition technique proposed
in Sect. V, which permits to greatly increment the prediction
performance on the same problem. The prediction capability
can be further improved by updating the PCA coefficients
as long as new elements of the TS are observed. Even if
representing the original TS only with the first k coefficients
of the PCA decomposition, introducing an approximation
error, the characterizing features of the TS are mostly pre-
served while the noise component is mostly removed. Since
a prediction system is in any case unable to model and predict
a random noise affecting the signal, removing it from the
original TS eases the forecasting task and the overfitting
phenomenon during training is reduced.

In every prediction task the ESN achieves better per-
formances than the ARIMA model, which is a traditional
method that often encounters difficulty in properly modeling
a complex non-linearity in the TS. Conversely, the hyperbolic
tangent transfer functions of the neurons of the reservoir
are able to map the input signal in a high dimensional non-
linear space. Thus, methods based on a ESN model have
the ability to learn or map those nonlinear relationships so
that, if they are properly trained on well suited preprocessed
data, the accuracy of the predicted results can be very high.
Additionally, the ESN is particularly effective in short term
predictions and thus, by reducing the problem to k 1-step
ahead predictions, we obtained the ideal application scenario
of the ESNmodel. The results obtained with the ESN are very
stable as we can see from the standard deviation in NRMSE
(reported in Tab. 1); the ESN prediction accuracy achieved
in the 10 different runs is very similar, even if the network
is initialized every time with a different random seed (which
generates a different internal structure of the reservoir) and
the model is trained with a genetic algorithm, which has a
stochastic behavior as well.

VIII. CONCLUSIONS AND FUTURE WORKS
In this paper we analyzed a real-world time-series of electric
load measured upstream of a MV feeder within the power
grid of Rome, Italy. The TS has a well defined seasonality
of 144 time intervals and we considered two different Short
Term Load Forecasting (STLF) problems, the first with a
leading time m = 1 and the second with m = 144. Relatively
to this second case of study, we proposed a method for
improving the prediction accuracy, consisting in representing
the TS in a matrix form, where each row has m components,
each one storing the daily electric load value sampled every
10 minutes. Given the t-th row of the matrix, the m step
ahead forecast consists in predicting the value of the next
row t + 1. In order to ease the prediction task, we retrieve
from the matrix the first k principal components using a
PCA decomposition and the related rotation matrix. Due to
the orthogonality of the components, they can be forecast
independently with k different predictors. In this way, the
problem of forecasting m steps ahead can be decomposed
in k simpler 1-step ahead prediction tasks and the final

result is obtained by combining together the solutions found.
We described how the values of the principal components
can be obtained and updated during the prediction phase.
As forecast model we used k different ESNs, one for each
of the selected principal components and we determined the
optimal set of parameters using a GA.

The method that we propose in this paper can be applied to
a multitude of TS, however it is advised to take into account a
TS with a sufficiently long seasonality, in order to effectively
exploit the reduction of the dimensionality. Furthermore, the
total number of time-steps in the original TS X must be high
enough. In fact, the length of the multi-variate TS generated
by the matrix representation of X , is reduced by m times
(being m the length of the seasonality in X ) and it should be
sufficiently long for a meaningful analysis.

We tested our system by predicting the electricity load
values in 50 days, considering two different leading times
of 10 minutes and 1 day respectively. For the 1-day ahead
predictionwe performed a direct prediction on the original TS
and we showed how the prediction accuracy can be improved
with the alternative method, based on the matrix representa-
tion and PCA decomposition. We also considered the proce-
dure for updating the coefficients of the PCA decomposition
during the prediction, in order to better keep track of the evo-
lution of the TS, as new values are observed, which demon-
strated to significantly increase the prediction accuracy.
We compared the performances obtained with a standard
ARIMA system and we showed how the ESN can outperform
ARIMA in every prediction task.

In this work we used a basic ESN model, which could be
improved or modified in future, considering the most recent
methodologies for training the readout or for generating the
reservoir in a more effective way. Additionally, we plan to
explore additional types of ANN for the prediction, like
Adaptive NeuroFuzzy Inference Systems (ANFIS) or SLTM
deep neural networks, which are gaining a lot of attention
recently.
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