
Fast Fuzzy Inference in Octave

Piero Molino, Gianvito Pio, Corrado Mencar

Department of Informatics, University of Bari,V. E. Orabona, 4,
Bari, 70125, Italy

E-mail: {piero.molino,pio.gianvito}@gmail.com, mencar@di.uniba.it

Abstract

Fuzzy relations are simple mathematical structures that enable a very general representation of fuzzy
knowledge, and fuzzy relational calculus offers a powerful machinery for approximate reasoning. How-
ever, one of the most relevant limitations of approximate reasoning is the efficiency bottleneck. In this
paper, we present a module for fast fuzzy inference through relational composition, with the twofold
objective of being general and efficient. We implemented this module in GNU Octave because it is a
high-level language targeted to numerical computations. Experimental results show the impressive per-
formance gain when the proposed implementation is used. The module is free available under LGPL
licence.

Keywords: GNU Octave; fuzzy relations; fuzzy composition; fuzzy inference.

1. Introduction

Fuzzy Set Theory (FST) is widely recognized as a
valid mathematical tool for representing and pro-
cessing imprecise and gradual knowledge8. In par-
ticular, FST is capable to represent the semantics
of concepts that are usually expressed with nat-
ural language terms, which are inherently impre-
cise. In this way, FST enables the formal rep-
resentation of linguistically quantified knowledge
and provides a mathematical machinery for approx-
imate reasoning7. In recent years a number of tools
have been developed to express fuzzy knowledge
and to provide for deductive inference∗. Exam-
ples of these tools are Xfuzzy6 (forja.rediris.
es/projects/xfuzzy/), FisPro4 (www.inra.
fr/internet/Departements/MIA/M/fispro/),

NEFCLASS5 (fuzzy.cs.uni-magdeburg.de/
nefclass/), FuzzyTech (www.fuzzytech.com/),
Fuzzy Logic Toolbox for Matlab (www.mathworks.
com/products/fuzzy-logic/) and GUAJE1

(www.softcomputing.es/guaje).

The objective of such tools is to enable knowl-
edge engineers and/or end-users to develop fuzzy
expert systems that can be applied in a variety of
application domains. Many of available tools are
rule based, i.e. the knowledge base is expressed in
terms of fuzzy rules. This enables an immediate rep-
resentation of knowledge that can be interpreted in
a linguistic fashion. However, rules in fuzzy knowl-
edge bases may have different interpretations2; fur-
thermore, fuzzy rule representation is not the unique
form for expressing knowledge.

On a more general level, fuzzy rules are par-
∗Actually, many of such tools have been devised for inductively learning fuzzy knowledge, especially from data; however the analysis
of this feature is outside the scope of this paper.

P. Molino, G. Pio & C. Mencar

ticular forms of fuzzy relations among variables.
Thus, fuzzy relations are very general representa-
tions of knowledge and fuzzy relational calculus of-
fers a powerful machinery for approximate reason-
ing. However, one of the most relevant limitations of
approximate reasoning is the efficiency bottleneck:
while precise reasoning (as in Boolean logic) can
be efficiently performed through symbolic computa-
tions, in approximate reasoning this is no more pos-
sible, since the gradual truth of concepts involved in
an inference process must be taken into account. To
improve the efficiency of the inference process, ei-
ther restrictive assumptions on the involved relations
need to be made (e.g. only fuzzy rules are allowed)
or efficient algorithms for general inference must be
devised. The second choice does not require any as-
sumption on the relations used for inference, but re-
quires an effort in designing and implementing the
inference algorithms by considering efficiency as a
key feature.

In this paper we present a package for fast
inference in approximate reasoning that has the
twofold objective of being both general and effi-
cient. We implemented this module in GNU Oc-
tave (www.gnu.org/software/octave/) because
it is a high-level language targeted to numerical
computations. Furthermore, GNU Octave is a free
software and its language is almost identical to the
MathworksTMMatlab R©language, which is widely
known in the FST research community.

In the next Section, a general discussion on fuzzy
inference is presented. Next, implementation issues
and solutions are described. In Section 4 a quantita-
tive measurement of the efficiency of the proposed
procedures is reported. Conclusive remarks end the
paper.

2. Fuzzy inference

FST is based on the fundamental concept of fuzzy
set defined on a domain (or universe of discourse)
U . When a domain can be decomposed as Cartesian
product of subdomains, i.e. U =U1×U2×·· ·×Un,
then a fuzzy set on U is called fuzzy relation on
U1,U2, . . .Un.

A fuzzy relation R maps each element of the do-

main U to an element of a bounded chain:

L = 〈I,∨,∧,0,1〉 (1)

We assume that I = [0,1]⊂R since a lot of applica-
tions are developed on the unitary interval; besides,
a numerical interval is the most convenient choice
for an implementation in Octave.

The most common choice for the join (∨) and
meet (∧) operators are the maximum (max) and min-
imum (min) functions, respectively. However, other
operators can also be used, among the so-called t-
norms (for meet) and t-conorms (for join).

A fuzzy relation

R : U1×U2×·· ·×Un 7→ [0,1] (2)

defines a connection among variables x1,x2, . . . ,xn
defined on their respective domains; the strength of
the connection is given by R(x1,x2, . . . ,xn). We re-
strict our discussion on binary relations, i.e. when
n = 2. This restriction is not technically limiting,
since by defining X = U1 ×U2 × ·· · ×Un−m and
Y =Un−m+1×·· ·×Un, then the binary relation

R : X×Y 7→ [0,1] (3)

is formally equivalent to (2). Usually, X is called
input domain, and Y is the output domain.

A fuzzy set A defined on X can be considered
as a possibility distribution over n−m formal input
variables. In other words, a fuzzy set expresses an
imprecise (i.e. granular and gradual) fact about the
values of these variables. Fuzzy deductive inference
takes a fuzzy set A and a fuzzy relation R to provide
a new fuzzy set B defined on Y ; this fuzzy set re-
stricts the possible values of the formal output vari-
ables given the fact A and the relation R:

A,R
B

(4)

As an example, if R encodes a fuzzy rule α→ β ,
then fuzzy inference carries out the so-called Gener-
alized Modus Ponens

A,α → β

B
(5)

which extends the classical Modus Ponens that is
used in Boolean logic.

Fast Fuzzy Inference in Octave

The basic rule for fuzzy inference in (4) is the
relational composition operator, i.e.

B = A◦R (6)

In classical set theory, where A, B and R are crisp
(i.e. defined on {0,1}), an element y belongs to B if
and only if there exists x∈A and (x,y)∈R. By trans-
lating this definition in FST, the composition opera-
tor can be defined as follows:

B(y) = max
x∈X

min{A(x),R(x,y)} (7)

In a more general setting, (7) is generalized by us-
ing a t-norm ∧ in place of the min function, and a
t-conorm ∨ in place of the max function:

B(y) = ∨x∈X (A(x)∧R(x,y)) (8)

Actually, (8) can be defined when both operands
are relations, thus leading to the most general defi-
nition of the composition operator:

T (w,y) = ∨x∈X (S(w,x)∧R(x,y)) (9)

where S, R and T are relations on W × X , X ×Y
and W ×Y respectively. Eq. (8) specializes (9) by
assuming W = {•}, i.e. a singleton set with a con-
ventional element.

The composition operation (9) is at the basis of
fuzzy inference. Hence an efficient implementation
should consider this operation as elementary, i.e. not
defined in terms of its compound operations. By tak-
ing the ◦ operator as elementary, fuzzy set opera-
tions can be redefined as:

A1∩A2 = A1 ◦diag(A1×A2) (10)

and
A1∪A2 = A1 ◦diag(A1 +A2) (11)

being diagR(x,y)=R(x,y) if x= y and diagR(x,y)=
0 if x 6= y. The Cartesian product is defined as
(A1×A2)(x1,x2) = A1(x1)∧A2(x2) and the Carte-
sian co-product is defined as (A1 + A2)(x1,x2) =
A1(x1)∨A2(x2).

3. Implementation design

Implementation in Octave takes advantage of the
high efficiency of matrix computation. As a con-
sequence, fuzzy sets are represented as vectors and
relations as matrices. This requires an implicit or-
dering of the input and output domains, which is
straightforward when they are numeric, while it
must be conventionally established when one of
them is categorical.

Two different implementations have been de-
signed for a fast computation of the composition op-
eration, which respectively work on full and sparse
matrices†. The implementation for full matrices (iFM
in brief) benefits of the inherent parallelism of the
algorithm for computing composition. On the other
hand, the implementation for sparse matrices (iSM
in brief) is highly efficient when the number of non-
zero elements in the operands is small. A check-
ing procedure establishes when the full matrix or the
sparse matrix implementation should be applied.

3.1. Implementation for full matrices (iFM)

When this implementation is selected, a systematic
approach is applied, which consists in the calcula-
tion of all the t-norms/t-conorms required for the
composition. Given two input matrices A ∈ Rn×m

and B ∈ Rm×l , a total of n×m× l t-norm/t-conorm
calculations have to be performed. This is the worst
case, if compared to the sparse situation explained in
the following section. However, this algorithm has
the advantage of being easily parallelizable by ex-
ploiting multiprocessor systems. Parallelization is
achievable because it is possible to know in advance
how many operations will be performed and, hence,
the computation of the output matrix can be subdi-
vided among all the available processors.

In a system with K available processors, the im-
plementation creates exactly K threads and assigns a
portion of the resulting matrix (a subset of rows) to
each thread (see fig. 1). This gives the advantage of
an almost zero overhead caused by thread handling,
because data assignment to each thread is performed
only once at the beginning of the procedure and no

†Full matrices require an explicit representation of all elements, while sparse matrices require an explicit representation of non-zero
elements only.

P. Molino, G. Pio & C. Mencar

other data assignment operations are performed dur-
ing the computation.

Figure 1: Rows assignment to the available processors. Each processor
performs the t-norm/t-conorm calculation for a subset of rows of the
resulting matrix.

With this type of implementation, it is possible
to perform union and intersection of fuzzy sets in an
efficient way. This is accomplished by appropriately
locking the cycles, in order to execute only those op-
erations required in (10) and (11). The following
pseudo-code illustrates the procedure carried out by
each processor.
Require: A ∈ Rn×m,B ∈ Rm×l

Require: istart, iend {start and end indexes of the result matrix
assigned to the processor}

Require: lock {=1 for intersection and union, 0 otherwise}
Require: ⊗ : [0,1]2 7→ [0,1] {internal operator}
Require: ⊕ : [0,1]2 7→ [0,1] {external operator}
Ensure: slice of C ∈ Rn×l {result of the composition}

inc← lock ∗ l +1
for i = istart→ iend do

j = i∗ lock
repeat

s← A[i,0]⊗B[0, j]
for k = 1→ m−1 do

t← A[i,k]⊗B[k, j]
s← s⊕ t

end for
C[i, j ∗ (1− lock)]← s
j← j+ inc

until j > l
end for

When lock = 0, the standard composition opera-

tor is computed. The index j spans from 0 to l− 1,
thus computing the values of the part of the matrix
C assigned to a thread‡. On the other hand, when
lock = 1, the index j is locked to 0, so that C is just
a one-dimensional array (corresponding to a fuzzy
set). It must be observed that, when intersection or
union has to be computed, it is necessary that A and
B are vectors, i.e. m = 1. In such case, with lock = 1
the value of C[i,0] is determined by A[i,0]⊗B[0, i].
If⊗ is a t-norm, then the intersection is calculated; if
⊗ is a t-conorm, union is calculated instead. As a fi-
nal remark, if lock = 0 and both A and B are vectors,
the Cartesian product (or co-product, depending on
the choice of ⊗) is computed.

3.2. Implementation for sparse matrices (iSM)

Sparse matrices in Octave are stored using the Col-
umn Compressed Storage (CCS) technique3. This
technique consists in storing three arrays for each
matrix: data, cidx and ridx. The data array
contains only the nonzero values of the matrix, in
columnwise order. The ridx array contains the row
indexes of the nonzero elements, aligned with the
data array. The cidx array stores the locations in
the data array that start a column. The number
of nonzero elements in the i-th column is given by
cidx[i+1]−cidx[i]. As a convention, the first ele-
ment of cidx is 0 and the last one is the number of
nonzero elements of the matrix.

If the input matrices are sparse it is not useful to
calculate the t-norm over the zero elements as the re-
sult will always be zero and will not influence the re-
sulting matrix. Hence, in view of an efficient imple-
mentation, the computation of the t-norm over those
elements should be avoided.

As an example, given the following matrices:

A =

 0 0.6 0
0.5 0 0.3
0 0.1 0

B =

0.9 0 0
0 0.2 0

0.8 0.7 0.1

‡We assume that the array indexes start from zero.

Fast Fuzzy Inference in Octave

and max/min for composition, the value of C[1,1] is
determined by:

C[1,1] = (A[1,0]∧B[0,1])∨ (A[1,1]∧B[1,1])

∨(A[1,2]∧B[2,1]) = 0.3

We observe that the final value is only due to
the computation of (A[1,2]∧B[2,1]) because both
B[0,1] and A[1,1] are null. To get rid of useless t-
norm calculations, we consider the CCS representa-
tions of A> and B:

data(A>) = 0.6 0.5 0.3 0.1
ridx(A>) = 1 0 2 1
cidx(A>) = 0 1 3 4

and

data(B) = 0.9 0.8 0.2 0.7 0.1
ridx(B) = 0 2 1 2 2
cidx(B) = 0 2 4 5

To compute C[1,1], the non-zero elements of col-
umn 1 of both A> and B must be considered. The
values of cidx(A>)[1] and cidx(B)[1] refer to the
elements on the corresponding data arrays where
such columns begin. In the example, cidx(A>)[1] =
1 and cidx(B)[1] = 2; furthermore, cidx(A>)[2]−
cidx(A>)[1] = 2 and cidx(B)[2]−cidx(B)[1] = 2,
meaning that both columns have two non-zero ele-
ments. By looking at ridx vectors, we observe that
column 1 of A> has two non-zero elements in rows 0
and 2 and column 1 of B has two non-zero elements
in rows 1 and 2. A simple comparison loop shows
that, in column 1, the only row where both A> and B
have a non-zero value is row 2. The computation of
the t-norm on these cells yields the expected result
0.3.

In general, the following procedure is run to
compute the composition operator in presence of
sparse matrices:

Require: A> ∈ Rm×n,B ∈ Rm×l {in CCS representation}
Require: ⊗ : [0,1]2 7→ [0,1] {internal operator}
Require: ⊕ : [0,1]2 7→ [0,1] {external operator}
Ensure: C ∈ Rn×l {result of composition}

{due to CCS representation, operations will be done on A>

and C>}
kC> ← 0 {data index of C>}
for i = 0→ n−1 do

cidx(C>)[i]← kC>

for j = 0→ l−1 do
kA> ← cidx(A>)[i] {starting point of column i in A>}
kB← cidx(B)[j] {starting point of column j in B}
nzA> ← cidx(A>)[i + 1]− cidx(A>)[i] {number of
non-zero elements in column i of A>}
nzB ← cidx(B)[i + 1]− cidx(B)[i] {number of non-
zero elements in column i of B}
s← 0
kend

A> ← kA> +nzA> {limit for kA>}
kend

B ← kB +nzB {limit for kB}
while kA> < kend

A> ∧ kB < kend
B do

if ridx(A>)[kA>] = ridx(B)[kB] then
t← data(A>)[kA>]⊗data(B)[kB]
s← s⊕ t
kA> ← kA> +1
kB← kB +1

else if ridx(A>)[kA>]< ridx(B)[kB] then
kA> ← kA> +1

else
kB← kB +1

end if
end while
if s 6= 0 then

ridx(C>)[kC>]← j
data(C>)[kC>]← s
kC> ← kC> +1

end if
end for

end for
cidx(C>)[n]← kC>

Differently from the implementation for full ma-
trices, the internal loop in this implementation does
not necessarily cycle m times; rather, the number of
cycles is reduced when zero elements occur in the
columns of A> or B involved in the computation.
Under the sparsity assumption, this greatly reduces
the number of computations.

P. Molino, G. Pio & C. Mencar

3.3. Implementation selection

The selection of the implementation for computing
the composition operator is either in charge of the
programmer or can be made automatically, by ver-
ifying a number of conditions. In particular, the
sparse matrix implementation is selected only when
the following conditions are met:

1. Both operand matrices are two-dimensional
(i.e. they are not vectors);

2. Sparse matrix implementation is more conve-
nient than full matrix implementation.

Whilst the first condition is immediate to verify,
the second one is far more complex. Empirical ev-
idence shows indeed that the most dominant opera-
tions (i.e. the operations that require most execution
time) in iSM are comparisons made in the branching
conditions, likely because of the required access to
main memory. However, these operations do not ap-
pear in iFM: this makes impractical any attempt to
compare the two implementations in terms of dom-
inant operations. In order to define a heuristic strat-
egy for automatic implementation selection, the fol-
lowing steps have been executed.

3.3.1. iFM time estimation

Since iFM computation time is insensitive to ma-
trix density but it only depends on the size of the
involved matrices and on the number of available
processors, we randomly generated five couples of
1000×1000 matrices to be applied to iFM for their
composition. We recorded the average time re-
quired for composition and repeated the process
by varying the number of involved processors in
the set {1,2,4}. We obtained an average time of
7.16 [secs ·processors] and a very small standard de-
viation (0.02 [secs] with four processors).

3.3.2. iSM time estimation

Similarly to the first step, we generated random ma-
trices to be applied to iSM. However, since iSM

computing time is tightly related to matrix densi-
ties, we generated five couples of 1000× 1000 ma-
trices for each couple of density degrees (d1,d2)
in {.01, .02, .05, .10, .20, . . . , .80, .90, .95, .98, .99}2.
By density degree we define the ratio between non-
zero elements and the nominal size of the matrix
(num. of rows × num. of columns). We applied
iSM to all these matrices and recorded the average
time at varying density degrees.

According to statistical reasoning, it is possible
to show that the expected execution time is related
to a quadratic model on (d1,d2). More specifically,
we fitted the model

αd1d2 +βd1(1−d2)+ γd2(1−d1)+δ (12)

to the observed execution times, obtaining: α =
9.98, β = 2.69, γ = 2.79 and δ = 0.36.

The value of α expresses the time required for
computation when t-norm/t-conorm must be com-
puted on two cells (including the time for verify-
ing that such functions have to be actually evalu-
ated); the values of β and γ express the time re-
quired when t-norms need not to be computed (the
values are slightly asymmetrical because the proce-
dure is asymmetrical as the first matrix is accessed
from its transposed); finally, the value of δ expresses
the overhead of the procedure that does not depend
on the size of the matrices.

3.3.3. Comparison

Given two matrices with density degrees d1 and d2
respectively, model (12) is used for estimating iSM
execution time. iSM is selected if the returned value
is smaller than iFM threshold, calculated by dividing
the computed value 7.16 by the number of available
processors. Otherwise, iFM is selected. When one
of the input matrices are in full representation, it is
temporarily converted into its sparse equivalent, in
order to calculate its density degrees. This implies a
small overhead due to the representation conversion;
however the benefits deriving from the selection of
the proper implementation overcome this extra-time.

The strongest assumption of this approach is
its dependency on the machine used for time es-

Fast Fuzzy Inference in Octave

timation. We computed these estimations with a
state-of-the-art desktop computer (see next Section);
however as technology evolves, new measures are
needed. Anyhow, the thresholds can be customized
to a specific machine by re-running the simulations
and updating the constants in the code.

4. Evaluation

All algorithms have been coded in C++ (and com-
piled with gcc), by using the libraries required for
integrating with Octave. Membership degrees are
represented as floating point numbers. Fuzzy sets
and relations are represented as Octave vectors and
matrices respectively.

An empirical analysis has been carried out
with the aim of quantifying the performances of
the proposed implementations. The test machine
was equipped with a four-cores IntelTMCore R©i5-
2500K Processor (4 GHz clock), RAM 16 GB,
MicrosoftTMWindows R©7 x64 and GNU Octave
3.2.4.

4.1. iFM evaluation

The first experiment was aimed at evaluating the
time required for computing the composition of two
matrices with a number of variants. A standard im-
plementation in the Octave programming language
has been compared with the proposed iFM with one,
two and four cores. In the case of four cores, both
single and double precisions have been tested. Com-
parative results, obtained by averaging five indepen-
dent runs, are reported in table 1 for 200×200 ma-
trices and in table 2 for 1000×1000 matrices.

Table 1. Comparative results in composing 2 full 200× 200
matrices.

Implementation Time (s)
Octave language 646.484
Proposed, 1 core, single precision 0.073
Proposed, 2 cores, single precision 0.043
Proposed, 4 cores, single precision 0.031
Proposed, 4 cores, double precision 0.032

Table 2. Comparative results in composing 2 full 1000× 1000
matrices.

Implementation Time (s)
Octave language N.A.
Proposed, 1 core, single precision 7.300
Proposed, 2 cores, single precision 3.513
Proposed, 4 cores, single precision 1.790
Proposed, 4 cores, double precision 2.754

The results clearly show an impressive perfor-
mance gain when the proposed iFM is used. In the
case of 1000×1000 matrices, the implementation in
the native Octave language was unable to terminate
the task within 23 hours of continuous execution.
On the other hand, the proposed implementation is
able to carry out the composition in reasonable time.

When more than one core is available (as in
many systems, nowadays), performances can be fur-
ther improved, as depicted in fig. 2. This is moti-
vated by the decomposition of the computation into
parallel threads, which almost divides the required
time by a factor equal to the number of cores, save
for a small overhead for thread preparation. Over-
head is more visible in the case of 200×200 matri-
ces, while it becomes negligible when 1000× 1000
matrices are involved in the computation.

P. Molino, G. Pio & C. Mencar

Fig. 2. Performance improvement with multi-core imple-
mentation.

When 200x200 matrices are used (table 1) the
representation of membership degrees in single or
double precision does not affect the required com-
putation time, save for a negligible amount. On the
other hand, when larger 1000 x 1000 matrices are
applied (table 2), there is a significant increase of
required time (about 1 sec.) that can be mainly mo-
tivated by the larger representation of each value (64
bits instead of 32). Thus, we preferred single preci-
sion to reach a compact representation of the ma-
trices and allow fast processing of large matrices.
On the other hand, we did not select a fixed-point
representation (which would benefit of faster pro-
cessing due to integer arithmetic), because most Oc-
tave functions process floating point data, and the
required transformations from floating point to fixed
point would destroy any performance improvement.

4.2. iSM evaluation

The second part of the experimentation was devoted
at assessing the performances of the sparse matrix
implementation, when sparse matrices of different
density degrees are provided.

To this pursuit, five sparse matrices of size
1000 × 1000 have been randomly generated
for each couple of density degrees (d1,d2) in
{.01, .02, .05, .10, .20, . . . , .80, .90, .95, .98, .99}2.

Then, the computation time has been recorded for
each run, and averages depicted in fig. 3.

Fig. 3. Execution times of iSM, with different levels of den-
sity.

We observe a non-monotonic trend of iSM com-
putation time that shows a peak at (70%,70%). This
behavior can be partially related to the distribution
time across the branches in the inner selection of the
iSM procedure, which results in a non-linear dis-
tribution of computation time that can be approxi-
mated as the quadratic model (12).

4.3. Implementation selection

In order to assess the usefulness of the procedure
for automatic selection of the implementation, we
recorded the average time for the composition of
random 1000×1000 matrices with different density
degrees (like the previous experiments, all runs have
been repeated for five times). We recorded the av-
erage time in three cases: i) by forcing iSM, ii) by
forcing iFM, iii) by enabling the automatic selection
procedure. All experiments have been repeated by
varying the number of operating cores. Results are
reported in table 3.

Fast Fuzzy Inference in Octave

Table 3. Average composition time [secs] with forced and auto-
matic selection of the implementation.

num. of cores
Implementation 1 2 4
iSM 4.23 4.23 4.23
iFM 7.30 3.51 1.79
automatic 4.12 2.63 1.60

It is possible to observe that the average time ob-
tained when the automatic selection procedure is al-
ways smaller than the time required when a fixed
implementation is used. In particular, when just one
core is available, the average time is almost identi-
cal to iSM time (which is independent on the num-
ber of cores). On the other hand, as the number of
cores increases, the benefits of iFM parallel com-
putation become apparent, though not in all cases
because very sparse matrices are more conveniently
dealt with iSM. The automatic selection procedure
is capable of well estimating which implementation
to use, thus providing an average time that is smaller
than iFM even when the number of cores is four.

Of course, this procedure is based on estimations
determined by (12), which are not perfect. As an
example, with four operating cores, the procedure
wrongly selects the best implementation when one
matrix is almost full and the other is almost empty.
Nevertheless, we observed that the procedure cor-
rectly selected the best implementation in 99.5% of
the cases for one operating core, 97.3% for two cores
and 87.5% for four cores (mostly related to extreme
cases). These results make automatic selection a re-
liable procedure for choosing the most convenient
implementation in typical applications of the com-
position operators.

5. Conclusive remarks

The proposed implementation shows that fast fuzzy
inference is possible in Octave, also when very large
fuzzy relations are used. Efficiency has been ob-
tained by either profiting of the very common multi-
processor architectures of modern computer sys-
tems, or by taking advantages of the possible spar-

sity of the involved fuzzy relations. Up to now, these
two features are exploited alternatively: future de-
velopments will try to merge both capabilities for
gaining even more efficiency.

Differently from other fuzzy inference systems,
which are usually limited to fuzzy rules, the pro-
posed implementation is capable of dealing with
several forms of knowledge by using fuzzy relations
as elements of knowledge representation. Fuzzy
rules are special cases of fuzzy relations, hence
fast fuzzy rule-based inference is also admitted.
As a consequence, our implementation could be
used as an efficient underpinning for more complex
fuzzy inference systems, where linguistic variables,
knowledge structures and learning schema are in-
volved.

The proposed implementation is freely avail-
able as an Octave package under GNU LGPL
(v3) licence at http://octave.sourceforge.

net/fl-core/index.html.

References

1. J. Alonso and L. Magdalena. Generating Under-
standable and Accurate Fuzzy Rule-Based Systems
in a Java Environment. In A. Fanelli, W. Pedrycz,
and A. Petrosino, editors, Fuzzy Logic and Applica-
tions (WILF 2011), Lecture Notes in Computer Sci-
ence, pages 212–219. Springer-Verlag Berlin Heidel-
berg (ISSN: 0302-9743), Trani, Bari (Italy), 2011.

2. D. Dubois and H. Prade. What are fuzzy rules and how
to use them. Fuzzy Sets and Systems, 84(2):169–185,
1996.

3. I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse ma-
trix test problems. ACM Trans. Math. Softw., 15:1–14,
March 1989.

4. S. Guillaume and B. Charnomordic. Interpretable
fuzzy inference systems for cooperation of expert
knowledge and data in agricultural applications using
FisPro. In International Conference on Fuzzy Systems,
pages 1–8. IEEE, July 2010.

5. D. Nauck, U. Nauck, and R. Kruse. Generating clas-
sification rules with the neuro-fuzzy system NEF-
CLASS. In Proceedings of North American Fuzzy In-
formation Processing, pages 466–470. IEEE, 1996.

6. F. Velo, L. Baturone, S. Solano, and A. Barriga. Rapid
design of fuzzy systems with Xfuzzy. In The 12th
IEEE International Conference on Fuzzy Systems,
2003. FUZZ ’03., pages 342–347. IEEE.

P. Molino, G. Pio & C. Mencar

7. L. Zadeh. Fuzzy logic= computing with words. Fuzzy
Systems, IEEE Transactions on, 4(2):103–111, 1996.

8. L. A. Zadeh. Toward a generalized theory of uncer-

tainty (GTU)an outline. Information Sciences, 172(1-
2):1–40, June 2005.

