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A method is presented for the estimate of spectral changes in the

absorption properties of turbid media from time-resolved diffuse optical

spectroscopy. The method relies on the hypothesis of constant scattering

over the wavelength range of interest, but no limitations come from the

sample size and shape as the method is derived directly from the Beer–

Lambert law. The effects of a moderate spectral dependence of the

scattering properties and of the non-ideal instrument response function

were investigated theoretically, and the results were confirmed experi-

mentally, showing that the method can be profitably applied in cases of

practical interest.

Index Headings: Absorption spectroscopy; Beer–Lambert law; Photon

migration; Turbid media.

INTRODUCTION

The optical properties of a medium depend on its
composition and microscopic structure. A wealth of informa-
tion on the medium can be gained from their assessment. Thus,
optical techniques, which are also inherently noninvasive, are
presently applied or investigated for their potential use as
diagnostic means in a variety of fields, including—but not
limited to—biology and medicine.

Most often, the optical parameter of direct interest is the
absorption, because its estimate at multiple wavelengths allows
one to derive the composition of the medium under
investigation. However, in many real situations, the absorption
properties cannot be easily assessed by conventional means due
to the strong scattering. When highly diffusive media are
involved, operation in the time domain allows one to
disentangle the absorption from the scattering contribution to
light attenuation, provided that light propagation can be
correctly modeled for the system under study. In most cases,
in order to deal with an analytical solution of the problem,
experimental data are interpreted using simple models that hold
accurately only for infinite or semi-infinite media and typically
rely on the diffusion approximation to the radiative transfer
equation (see, for example, Ref. 1).

An analytical solution of the radiative transfer equation itself
has also been derived, but still for an infinite2 or semi-infinite
medium.3 On the other hand, lately the diffusion approximation
has also been extended to provide straightforward close-form
solutions for specific sample geometries.4–7 These models can
be effectively applied in several situations, but various
conditions of practical interest exist that are far from fulfilling
their hypotheses. This typically occurs for samples of irregular
shape and/or very small size.

As mentioned above, optical techniques (ranging from
Raman to vibrational spectroscopy) are often investigated for
their potential diagnostic use or are even already applied
effectively. As an example, this occurs when agricultural
produce (either fruits or vegetables) is probed for nondestruc-
tive quality evaluation, including nondestructive firmness
testing and the assessment of sugars related to sweetness and
ripening, or of carotenoid levels to provide an indication of
oxidative deterioration.8,9 Time-domain photon migration
techniques have recently shown good promise in the field,10,11

but the irregular shape of the samples can limit their accuracy
in the estimate of the optical properties and consequently the
potential to develop effective quantitative diagnostics.

Furthermore, even samples characterized by cylindrical or
parallelepiped geometry cannot be accurately modeled if their
size is too small.6 This is typically the case for pharmaceutical
tablets that need to be checked for content uniformity.
Conventional quality control methods such as high-perfor-
mance liquid chromatography (HPLC) and mass spectroscopy
(MS) are time consuming, expensive, and require sample
preparation. Even more important, they are destructive, so that
only small samples may be tested from given production
batches. Furthermore, they do not provide any information
about the spatial distribution of components within a sample.
Chemical imaging, which combines conventional imaging and
vibrational spectroscopy, is thus emerging for process
monitoring and control at all stages, from raw material to
packaged product characterization.12,13 Near-infrared and—
more generally—optical techniques require no sample prepa-
ration, are fast and cheap, and provide capacity for remote
measurements through fiber-optic probes. Thus, they could
prove very effective if quantitative results were obtained in real
measurement conditions.

Several years ago an experimental approach relying on the
Beer–Lambert law was introduced, specifically for use in
oximetry. Its aim was the estimate of blood content and
oxygenation level in living tissue from time-resolved reflection
measurements performed at two wavelengths.14 The present
work is essentially founded on the same theoretical base, the
Beer–Lambert law, to derive the spectral dependence of the
absorption coefficient from time-resolved reflection measure-
ments performed over a certain wavelength range. Because the
Beer–Lambert law comes directly from the radiative transport
equation, the proposed method is not affected by the
hypotheses that typically limit the application of the diffusion
approximation for an infinite/semi-infinite medium, such as
high albedo or sample size large enough to make boundary
effects negligible. However, a strong assumption is made that
the scattering properties should not change with wavelength.
Thus, the performances of the proposed method were tested
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against the diffusion equation and experimental measurements
were carried out to investigate the dependence on sample
optical and physical properties (i.e., scattering and size,
respectively) and experimental parameters (i.e., instrument
response function).

THEORY AND SIMULATIONS

Estimate of the Absorption Coefficient la(k). In reflection
geometry, the impulse response of a homogeneous medium,
i.e., the time distribution of the reemitted light upon injection
of a d-like light pulse, can be modeled as:

Rðk; tÞ ¼ AðkÞuðl0
s; t; qÞexpð�lavtÞ ð1Þ

where la and l0
s are the absorption and reduced scattering

coefficients of the medium, v is the photon velocity in the
medium, and q is the separation between light injection and
collection points on the medium surface. As explicitly shown,
u is independent of the absorption coefficient, while it depends
on the scattering properties and measurement conditions
through the parameter q. Moreover, it is affected by the
boundary conditions and medium shape. The parameter A
accounts for the spectral dependence of the detection
efficiency. Obviously, also the optical parameters la and l0

s

may change with wavelength.
Our aim is to estimate the wavelength dependence of the

absorption properties over a selected spectral range from time-
resolved reflection (or transmission) measurements performed
as a function of wavelength.

Let us make the hypothesis that the scattering properties can
be regarded as wavelength independent in the spectral range of
interest. From Eq. 1, we can calculate the logarithmic ratio
S(k0, k, t) of the reemitted light at two wavelengths k0 and k:

Sðk0; k; tÞ ¼ ln
Rðk; tÞ
Rðk0; tÞ

� �

¼ ln
AðkÞuðl0

s; t; qÞ
Aðk0Þuðl0

s; t; qÞ

� �
� Dlaðk0; kÞvt

¼ ln
AðkÞ
Aðk0Þ

� �
� Dlaðk0; kÞvt ð2Þ

where Dla(k0, k) ¼ la(k) � la(k0) is the absorption change
between k0 and k.

If the absorption coefficient is known a priori at a single
wavelength k0, then the absolute values of the absorption
coefficient as a function of wavelength, namely the absorption
spectrum, can be derived over the entire spectral range.

S(k0, k, t) depends linearly on time t, and its slope, estimated
from the best fit to a straight line, provides an easy estimate of
Dla(k0, k) that is totally independent of the logarithmic
amplitude ratio. If la0 ¼ la(k0) is known, the absorption
coefficient la(k) [otherwise the absorption change Dla(k0, k)]
is obtained at N different wavelengths by applying Eq. 2 for
each of the distinct wavelengths, thus dealing with N
independent linear equations.

Alternatively, if la0 is not known a priori, but the absorption
properties (namely the extinction coefficient as a function of
wavelength) of the constituents are known, the absolute
absorption spectrum of the medium can be derived by means

of a spectrally constrained fitting procedure relying on the Beer
law where the constituent concentrations are free parameters.15

Errors in the Estimate of la(k): Effect of a Change in
Scattering with Wavelength. Other than the assumption of
homogeneous medium, the only strong and potentially limiting
hypothesis we made to derive Eq. 2 is that the scattering
properties are wavelength independent in the spectral range of
interest [l0

sðkÞ ¼ l0
sðk0Þ ¼ l0

s0]. In practice, this occurs with
good approximation when close wavelengths are considered
and for media characterized by large scattering centers that lead
to a rather flat scattering spectrum. In other cases, spectral
changes in scattering affect the estimate of the absorption
properties.

To derive a straightforward estimate of the error introduced
by scattering changes, we consider the simplifying hypothesis
of an infinite homogeneous medium that leads to

uðk; tÞ ¼ AðkÞv 4pvt

3l0
s

� ��3
2

exp � 3q2l0
s

4vt

� �
expð�lavtÞ ð3Þ

Consequently, in the presence of scattering changes, the
logarithmic ratio becomes

Sðk0; k; tÞ ¼ ln
uðk; tÞ
uðk0; tÞ

� �
¼ ln

AðkÞ
Aðk0Þ

l0
s

l0
s0

� �
� 3q2

4vt
Dl0

sðk0; kÞvt

ð4Þ

where Dl0
sðk0; kÞ¼l0

sðkÞ� l0
sðk0Þ is the change in the reduced

scattering coefficient between k0 and k.
The corresponding absorption change Dla is obtained from

the time derivative:

dSðk0; k; tÞ
dt

¼ 3q2

4vt2
Dl0

sðk0; kÞ � Dlaðk0; kÞv ð5Þ

The absorption change Dl�a , estimated neglecting the scattering
changes with wavelength (Dl 0

s ¼ 0), derives from the
logarithmic ratio as follows:

dSðk0; k; tÞ
dt

¼ �Dl�a ðk0; kÞv ð6Þ

Thus, from Eqs. 5 and 6 the absolute error eaðDl0
sÞ in the

estimate of the absorption change due to scattering variations
Dl0

s can be calculated as

eaðDl0
sÞ ¼ Dl�a � Dla ¼ �

3q2

ð2vtÞ2
Dl0

s ¼ �KDl 0
s ð7Þ

where

K ¼ 3q2

ð2vtÞ2
ð8Þ

is the leverage factor to obtain the error in the absorption
change from the scattering change.

The following observations can be made:

(1) The error increases linearly with the scattering changes.
(2) The estimate of strong absorption changes is less affected.
(3) The error is independent of the absolute absorption value

la0. Thus, as an example, when measurements are
performed on biological tissues, better results will be
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obtained in the near-infrared range above 850 nm, where
the scattering typically shows a slighter spectral depen-
dence, while the absorption is significant and varies rapidly
with wavelength due to the lipid and water content.

(4) Measurements carried out at small inter-fiber distances will
be less influenced. Recently, the possibility of performing
time-resolved reflection measurements at very small
source–detector separation (,5 mm) was investigated and
proved to provide higher spatial resolution and contrast in
the localization and characterization of optical inhomoge-
neities.16 This opens an interesting field of application for
the differential absorption approach, which is essentially
insensitive to scattering changes with wavelength at very
small inter-fiber distances.

(5) Finally, short times lead to less accurate results. Thus, the
best working condition will be a trade-off between high
signal-to-noise ratio available at short times and small error
achieved at long times.

To obtain a rough quantitative estimate of the error due to
scattering changes, we can consider typical values of the
involved parameters. If t¼1000 ps, q¼ 2 cm, and v¼ 0.03 cm/
ps, then K ’ 3 3 10�3. If Dl0

s ¼ 1 cm�1 in a selected spectral
range, then the estimated absorption change Dl�a in that range
will differ from the real absorption change Dla by approxi-
mately 3 3 10�3 cm�1. Considering again biological tissues,
and specifically breast tissue, Dl0

s ffi 1 cm�1 is typically
observed on average over the range 900–1000 nm, where the
absorption varies from 0.08–0.10 cm�1 to 0.15–0.35 cm�1,
depending on breast type.17 This would lead to an error of ;1–
4% in the assessment of the peak absorption.

Equation 7 provides a simple means to estimate the absolute
error due to scattering changes in cases of practical interest.
However, it is an approximated expression. In particular, it
relies on the hypothesis of infinite homogeneous medium. To
test the validity of Eq. 7 the multiplying factor K in the
expression of the absolute error was calculated as a function of
time from the diffusion equation for a semi-infinite medium
(with extrapolated boundary conditions) for different values of
the inter-fiber distance (q¼ 0.1, 0.5, 1.0, 1.5, and 2.0 cm) and

of the scattering change (Dl0
s ¼ 0.5 and 5.0 cm�1). The

diffusion equation gives similar results for both values of the
scattering change, especially at higher q values (q . 0.5 cm).
As shown in Fig. 1, for q � 0.5 cm the simple approximation
provided by Eq. 7 overestimates the error. However, the
difference between the two approaches reduces upon increas-
ing q and becomes negligible for q ¼ 1.5–2.0 cm. It is
interesting to note that for very small inter-fiber distances, Eq.
7 provides a clear underestimate of the real error. Still, the error
is very small (K , 10�3 for t . 500 ps) and likely negligible in
practical situations. This supports again the potential effective
application of the method to measurements performed at ‘‘null’’
source–detector separation.16

Errors in the Estimate of la(k): Effect of the Non-ideal
Instrument Response Function. The effect of a non-ideal
instrument response function (IRF) was investigated again on
simulated time-resolved diffuse reflection photon distributions
derived using the solution of the diffusion equation under the
extrapolated boundary conditions for a semi-infinite medium.

The IRF was first modeled with a Gaussian function of
known full width at half-maximum (FWHM). However, in real
cases, the IRF often has a relatively small FWHM but is
characterized by a long tail, more pronounced than in the case
of a Gaussian function. To investigate the effects of this
feature, an exponential decay of known time constant was also
tested as a model of IRF. For the Gaussian case, the following
values were chosen as representative of situations of actual
interest: la ¼ 0.1 cm�1, Dl0

s ¼ 10 cm�1, q ¼ 1.0 cm, and IRF
with FWHM ¼ 100 ps. Then each parameter was varied
separately to investigate how it affects the relative error er(IRF)
on Dla due to the non-ideal instrument response. The results
are reported in Fig. 2. The finite duration of the IRF determines
a marked negative error at very short times and a positive error
at longer times. Upon increasing the FWHM (Fig. 2a), the
effects of the non-ideal behavior increase and extend up to
longer times. However, for t . 500 ps, the error is always
,3%. A small inter-fiber distance (q , 1.0 cm) essentially
introduces a positive error, while higher q values have the
opposite effect. In all cases considered (q ¼ 0.1–2.0 cm), the
error becomes negligible (,2%) for t . 500 ps (Fig. 2b). A
similar trend, but with even smaller values of the corresponding
error, is observed upon varying l0

s (Fig. 2c). Finally, the
relative error in the estimate of Dla is essentially independent
of the absorption change over the range Dla¼ 0.02–0.1 cm�1,
and it never exceeds 1% for t . 250 ps (Fig. 2d).

For the IRF with exponential decay, the following values
were chosen as representative of situations of actual interest: la

¼ 0.1 cm�1, l0
s ¼ 10 cm�1, q ¼ 1.0 cm, and IRF with decay

constant s¼ 100 ps. The situation becomes more critical when
the exponentially decaying IRF is considered. If the time
constant of the IRF is s ¼ 100 ps, the relative error is always
�6%, but for s ¼ 200 ps the error on the estimate of Dla

becomes exceedingly high at any time (Fig. 3a). The
dependence of the error on the inter-fiber distance (Fig. 3b)
is qualitatively similar to that already discussed for the
Gaussian function, but quantitatively more pronounced. The
error becomes ,5% for t . 500 ps when q � 1.0 cm, while it
requires much longer times to become negligible when smaller
inter-fiber distances are used. The error is more marked for
small scattering values. However, even when l0

s ¼ 5 cm�1, it
becomes ,5% for t . 800 ps (Fig. 3c). Finally, upon
increasing the estimated absorption change Dla, the error tends

FIG. 1. Factor K versus time t as obtained from Eq. 7 for an infinite
homogeneous medium (solid lines) and from the diffusion equation for a semi-
infinite homogeneous medium for Dl0

s ¼ 0.5 cm�1 (dashed lines) and 5.0 cm�1

(dotted lines). In all cases, the results are shown for q¼ 0.1, 0.5, 1.0, 1.5, and 2
cm (different colors; see legend).
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to affect the estimate up to longer times, but it never exceeds
6% (Fig. 3d). It should be taken into account that, as described
previously, the error due to changes in the scattering properties
with wavelength more markedly affects the estimate of small
absorption changes, opposite to what was just observed for a
non-ideal IRF. This reduces the risk that the combined effects
of different sources of error yield an overall exceedingly high
error in the estimate of the absorption properties. A similar
observation holds for the use of small inter-fiber distances that
suffer more from a non-ideal IRF, while favored in cases of
spectral changes of the scattering coefficient.

In summary, a non-ideal IRF affects the time distribution of
re-emitted photons mostly at short times, over a time interval of
approximately 500–1000 ps. For longer times, its effects tend
to become negligible. It is worth noting that the presence of a
long tail seems to be more detrimental for the estimate of Dla

than the finite value of the FWHM.

EXPERIMENTAL TEST

System Setup. The system is fully automated concerning
both data acquisition and analysis18 and operates continuously
between 610 and 1100 nm.

Both optics and alignment of an actively mode-locked

Ti:Sapphire laser were optimized for operation beyond 1000
nm, and it was used to provide picosecond pulses from 900 to
1100 nm. To cover shorter wavelengths (600–900 nm), a
supercontinuum fiber source was exploited. Wavelength
selection was achieved with the computer-controlled rotation
of a Pellin–Broca prism so that the selected wavelength in the
dispersed light could be coupled to a 50-lm optical fiber,
placed distal to the prism.19

Optical fibers delivered the illumination light to the sample
and collected the diffusely reflected light. Time-correlated
single-photon counting was used for the detection.

The overall time resolution of the system is 70–160 ps,
depending on wavelength. For the present study, time-resolved
data were collected every 5 nm, with an acquisition time of 4 s
per wavelength.

Experimental Measurements. To test the effect of the
inter-fiber distance in critical conditions for method applica-
bility, spectral time-resolved reflection measurements were
performed on a resin tissue phantom every 5 nm from 620 to
890 nm. The inter-fiber distance q was varied between 1 and 3
cm (q ¼ 1.0, 1.5, 2.0, 2.5, and 3.0 cm). k0 ¼ 780 nm was
chosen as a reference for the estimate of absorption changes.
The results are displayed in Fig. 4. The resin phantom is
characterized by a limited variation of the absorption properties

FIG. 2. Error due to a Gaussian instrument response function. The following reference values were chosen: la¼ 0.1 cm�1, l0
s¼ 10 cm�1, q¼ 1.0 cm, and Gaussian

IRF with FWHM¼100 ps, if not otherwise stated. Each parameter was varied separately to investigate how it affects the error on Dla due to the non-ideal instrument
response: (a) FWHM of the IRF ¼ 50–200 ps; (b) q¼ 0.1–2.0 cm; (c) l0

s ¼ 5–20 cm�1; and (d) Dla ¼ 0.02–0.10 cm�1.

APPLIED SPECTROSCOPY 1223



over the measurement range (Dla ffi 0.02 cm�1), while the
reduced scattering decreases significantly upon increasing
wavelength (Dl0

s ffi 4.5 cm�1). Both these features make the
measurement critical and contribute to increase the error in the
estimate of the absorption, as highlighted by Eq. 7. This
notwithstanding, if a small value of the inter-fiber distance is
exploited (q ¼ 1 cm), the absorption line shape can be
estimated. As expected, the error increases progressively upon
increasing q value, with a maximum error on Dla always
,0.03 cm�1.

The insensitivity of the method to the sample size and
specifically to the effect of close sample boundaries was tested
by performing measurements on wet wood samples of interest
for practical applications.20 The samples were parallelepipeds
of fir wood (3.2 cm W 3 1.8 cm D 3 2.5 cm H). The inter-fiber
distance was set to q ¼ 1.0 cm. Time-resolved data were
collected every 5 nm from 910 to 1040 nm, placing the fibers
perpendicular to the top surface and in contact with it: (1) at the
center of the sample side, and (2) near the sample boundary, so
that the collection fiber was actually located at the side edge,
while the injection fiber was 1.0 cm away from it. Due to its
microscopic structure with aligned fibers, wood is a markedly
anisotropic material. Considerably different reduced scattering
properties are estimated when measurements are performed

FIG. 3. Error due to an exponential instrument response function. The following reference values were chosen: la ¼ 0.1 cm�1, l0
s ¼ 10 cm�1, q ¼ 1.0 cm, and

exponential IRF with time constant s¼ 100 ps, if not otherwise stated. Each parameter was varied separately to investigate how it affects the error on Dla due to the
non-ideal instrument response: (a) decay constant s of the IRF ¼ 50–200 ps; (b) q¼ 0.1–2.0 cm; (c) l0

s ¼ 5–20 cm�1; and (d) Dla ¼ 0.02–0.10 cm�1.

FIG. 4. Dla versus wavelength for a resin tissue phantom, estimated for
different values of the inter-fiber distance q ¼ 1.0, 1.5, 2.0, 2.5, and 3.0 cm
(lines). As a reference, the results obtained with a conventional fit to the
diffusion equation are also reported (symbols).
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parallel (par) to the fiber direction as compared to perpendic-
ular to it (per). For the wood samples considered in the present
study, l0

s ffi 15 cm�1 in the former geometry and l0
s ffi 100

cm�1 in the latter one, essentially independent of wavelength,
as the scattering spectra are fairly flat. To test possible effects
of anisotropy on the estimate of Dla, measurements were
performed at the center of the sample in par geometry.

A reference wavelength k0 ¼ 940 nm was chosen for the
estimate of Dla. The corresponding absorption line shapes are
displayed in Fig. 5. For comparison, a measurement performed
at the center of the sample was also fitted with a conventional
procedure that estimates la and l0

s relying on the diffusion
equation with extrapolated boundary conditions,1,21 and the
result is displayed in Fig. 5. Just one configuration is
considered as a reference (i.e., per geometry), because the
diffusion theory for an isotropic medium allows the correct
assessment of the absorption properties of anisotropic media
when time-resolved measurements are interpreted, leading to
the same results for both par and per configurations.22 To
evaluate the performance of the proposed method, let us first
consider data collected in per geometry placing the fibers in
different positions. When the measurement is performed at the
center of the sample side, the estimated absorption properties
are very close to those obtained with the conventional fitting
procedure. Satisfactory results are still obtained when Dla is
estimated from data collected at the edge of the sample side: in
the peak range (990–1010 nm) it is on average only 6.7%
lower. This confirms that the estimated Dla is not significantly
affected by boundary effects.

The average difference between the par measurement and
the corresponding per measurement in the peak range (990–
1010 nm) is 15.3%. It should be taken into account that, at least
in part, the difference between the absorption line shapes
estimated in distinct geometries (center versus edge of the
sample, parallel versus perpendicular to the fiber direction)
may well be due to local heterogeneity in the optical properties
of wood. However, as compared to the per measurement
carried out at the center of the sample, the time distribution of
the reflected photons is much narrower for both the
measurement performed at the edge and the one in par
geometry. This limits the time t for data interpretation and, as
discussed above, is consequently expected to lead to a higher
error in the estimate of the absorption change, in agreement
with what is shown in Fig. 5.

CONCLUSION

We have proposed a method for the estimate of the
absorption line shape of highly diffusive media. The same
general principle was previously proposed to assess the
absorption change between two wavelengths and then derive
the absolute concentrations of oxy- and deoxyhemoglobin,
considered as the only tissue absorbers.14 We extended the
application of that principle to a full wavelength range with the
aim of estimating the spectral dependence of the absorption
over that range. The method is based on the Beer–Lambert law.
It is thus essentially insensitive to the sample geometry (size
and shape), and it does not need to fulfill the strict hypotheses
of the diffusion approximation. Moreover, it proved to be only
relatively affected by the sample anisotropy.

The proposed differential absorption approach is expected to
be intrinsically more stable than conventional fitting methods

based on the solution of the diffusion equation, as it relies on a
linear procedure as compared to nonlinear inversion ones.

Only a limiting hypothesis is made, regarding the wave-
length independence of the scattering properties. The error
made when this hypothesis is not (or not fully) fulfilled was
shown to be lower when the absorption changes rapidly with
wavelength, measurements are performed with smaller separa-
tion between light injection and collection points, and the data
are interpreted at long times.

The non-ideal IRF introduces an error with value and sign
depending on the measurement conditions, but it is generally
negligible for t . 500–1000 ps, in agreement with the choice
of long times to minimize the error due to spectral changes in
the scattering properties. If both the FWHM of the IRF and the
slope of its trailing edge are considered, the latter seems to be a
stronger cause of non-ideality.

To summarize, in practical measurement conditions, two
contributions can be identified in the absolute error that affect
the estimate of Dla:

ea ¼ �KDl0
s þ erðIRFÞDla ð9Þ

It is noteworthy that the method was introduced and
investigated for application in reflection geometry, but all
considerations can easily be extended to measurements
performed in transmission geometry, and in general to any
other situation, as long as a homogeneous medium is
considered.

A second method, related to the one proposed here, is also
under investigation. It exploits information on the amplitude
A(k), obtained through a preliminary calibration on a medium
of known optical properties, to reduce to a single time point,
instead of the entire time distribution, the information needed
to estimate Dla. This would lead to experimentally simpler
measurements.

Finally, for wider applicability, the proposed method could
in principle also be extended to heterogeneous media. The real
applicability and performance of the differential absorption
approach in the case of heterogeneous media will be
investigated in the near future.

FIG. 5. Dla versus wavelength for silver fir. As detailed in the text,
measurements were performed in various configurations: center-perpendicular
(diamonds), center-parallel (triangles), and edge-perpendicular (squares). As a
reference, the results obtained with a conventional fit to the diffusion equation
are also reported (center-perpendicular configuration, dashed line).
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