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Abstract: In this paper we propose a novel algorithm for adaptive coordination of drones, which performs 
collaborative target detection in unstructured environments. Coordination is based on digital pheromones 
released by drones when detecting targets, and maintained in a virtual environment. Adaptation is based on 
the Differential Evolution (DE) and involves the parametric behaviour of both drones and environment. 
More precisely, attractive/repulsive pheromones allow indirect communication between drones in a flock, 
concerning the availability/unavailability of recently found targets. The algorithm is effective if structural 
parameters are properly tuned. For this purpose DE combines different parametric solutions to increase the 
swarm performance. We focus first on the study of the principal parameters of the DE, i.e., the crossover 
rate and the differential weight. Then, we compare the performance of our algorithm with three different 
strategies on six simulated scenarios. Experimental results show the effectiveness of the approach.  

1 INTRODUCTION AND 

MOTIVATION 

The Differential Evolution algorithm (DE) is a 
stochastic population based algorithm, very suited 
for numerical and multi-modal optimization 
problems. Recently, DE has been applied in many 
research and application areas. Compared with other 
population-based algorithms, such as genetic 
algorithm and particle swarm optimization, DE 
exhibits excellent performance both in unimodal, 
multimodal, separable, and non-separable problems. 
Moreover, it is much simpler to use because it has 
only three parameters (Das, 2011): the population N, 
the differential weight F, and the crossover rate CR. 
When managing the DE algorithm, the main effort is 
to properly set the parameters in order to avoid 
premature convergence towards a non-optimal 
solution. As reported by literature, there is no 
dominant setting, and for each problem a proper 
study of the behaviour of DE is needed to find the 
correct parameterization. 

In this paper, we adopt DE algorithm to optimize 
the behaviour of a swarm of aerial drones carrying 
out collaborative target detection (Cimino, 2015b). 

In our approach, stigmergy and flocking are 
exploited to enable self-coordination in the 
navigation of unstructured environments. Such 
environments typically contain a number of 
obstacles such as trees and buildings. Targets are 
placed according to different patterns. More 
specifically, stigmergy implies the use of an 
attractive digital pheromone to locally coordinate 
drones. When a drone detects a new piece of target, 
it releases the attractive pheromone. Other drones in 
the neighbourhood can sense and follow the 
pheromone gradient to cooperate in detecting the 
pattern of targets. With respect to (Cimino, 2015b) 
in this study we sensibly improve the performance 
of the algorithm, by adopting the parametric DE-
based adaptation, by introducing repulsive 
pheromone and scattering mechanisms. Basically, 
flocking implies a set of three behavioural rules, 
named separate, align, and scatter. It maintains the 
drones in groups enhancing the stigmergy when 
occurring. In contrast, the repulsive pheromone 
helps the drones to avoid multiple exploration of the 
same zone. Indeed, the drone releases a repulsive 
pheromone whereas it does not sense a target. 



Finally, the scattering rule makes a drone to turn by 
an angle when it tails another drone. 

In the literature there are two design methods to 
develop collective behaviours in swarm systems: 
behaviour-based design and automatic design 
(Brambilla, 2013). The former implies the 
developers to implement, study, and improve the 
behaviour of each single individual until the desired 
collective behaviour is achieved. This is the 
approach adopted in (Cimino, 2015b). The latter is 
usually used to reduce the effort of the developers. 
Automatic design methods can be furtherly divided 
in two categories: reinforcement learning and 
evolutionary robotics (Brambilla, 2013). The first 
implies a definition at the individual level of positive 
and repulsive reinforce to give reward to the 
individual. In general, it is usually hard for the 
developer to decompose the collective output of the 
swarm in individual rewards. Evolutionary robotics 
implies evolutionary techniques inspired by the 
Darwinian principle of selection and evolution. 
Generally in these methods each swarm consists of 
individuals with the same behaviour. A population 
of swarms is then computed, where each population 
member has a particular behaviour. A simulation is 
made for each member and a fitness function is 
computed. Then through a mutation and crossover 
procedure a new generation is computed. This 
process iteratively repeats improving the 
performance of the swarm population. 

2 RELATED WORK 

DE has been used in several domains for 
optimization and parameterization tasks (Das, 2011). 
As an example, in (Nikolos, 2005) the authors used a 
classical DE variant, namely DE/1/rand/bin, to 
coordinate multiple drones navigating from a known 
initial position to a predetermined target location. 
Here, DE is set up with N=50, F=1.05 and CR=0.85. 
The algorithm was defined to terminate in 200 
generations, but it usually converges in 30 iterations. 
Our problem sensibly differs, because the target 
position is unknown, and our approach is 
independent of the initial position. 

In (Chakraborty, 2008) the authors confront DE 
and Particle Swarm Optimization (PSO) for co-
operative distributed multi-robot path planning 
problem. As for (Nikolov, 2005) initial position of 
the robots and final position are known. Here, both 
centralized and decentralized formulations are 
proposed. In the centralized approach, DE 
minimizes the distance for the next step of each 
robot. In this case all information of the position of 

each robot, the next position, and the possible 
collision are provided to DE. In the decentralized 
formulation, each robot runs DE for itself 
considering the information of neighbour robots. 
Authors conclude that the decentralized approach 
needs less time in comparison to the centralized one; 
moreover the performance is comparable to PSO. In 
our approach, we consider to use DE offline to find a 
proper and general purpose parameter tuning for the 
swarms. Moreover, in our formulation drones have a 
limited computing capability, and then an online 
execution of DE is not feasible. 

 In (Cruz-Alvarez, 2013) DE/1/rand/bin is used 
with F=0.7, CR=1.0, N=120 for 250 generations, and 
another variant called DE/1/best/bin is used with 
F=0.8, CR=1.0, N=150 for 200 generations to tune 
the behaviour of a robot in wall-following task. Here 
it seems that DE/1/best/bin is able to find a slightly 
better solution than DE/1/rand/bin. However, 
authors used different parameters settings (F, N and 
number of generations) for each variant, thus a 
comparative analysis is difficult. In our approach we 
focus on DE/1/rand/bin variant and evaluate several 
combinations of CR and F. 

3 SWARM BEHAVIORAL MODEL 

In this section we improve the swarm algorithm of 
(Cimino, 2015b). We refer to the time unit as a tick, 
i.e., an update cycle of both the environment and the 
drones. Each drone is equipped with: (a) wireless 
communication device for sending and receiving 
information from a ground station; (b) self-location 
capability, e.g. based on global position system 
(GPS); (c) a sensor to detect a target in proximity of 
the drone; (d) processor with limited computing 
capability; (e) a sensor to detect obstacles. 

 
The environment and the pheromone dynamics 
We consider a predefined area that contains a set 

of targets to be identified. The environment is 
modelled by a digital grid corresponding to the 
physical area. The grid has C2 cells, each identified 
by (x, y) coordinates with x, y ∈	 {1,…,C}. The 
actual size of the area and the granulation of the grid 
depend on the domain application. Figure 1 shows 
Pheromone dynamics in an urban scenario. Here, the 
intensity of the pheromone is represented as a dark 
colour, and each target is represented by an “X”. A 
darker gradation means higher pheromone intensity. 
At the beginning, the pheromone is in one cell at its 
maximum intensity, and then it diffuses to 
neighbouring cells. After a certain time the 
pheromone evaporates, disappearing from the 
environment. When a drone detects a piece of the 
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Figure 1: Pheromone dynamics in an urban scenario.
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the repulsive pheromone (b.4) in its 8 neighbouring 
cells is returned to the drone. Then, the drone 
follows the maximum pheromone intensity. 

 The flocking behaviour (b.3) consists in three 
rules, represented by Fig.3. A drone considers as 
flock mates all drones in a flock visibility radius (ρ). 
The first rule is the separation: more specifically, if 
the drone senses another drone closer than the flock 
mobility distance (µ), it turns away by a flock 
separation angle (σ). The second rule is the 
alignment: the drone computes the average direction 
of its flock mates and it adapts its direction by a 
flock alignment angle (α). The third rule is the 
scatter: the follower drone considers the closer 
following drone in front of itself. If the follower is in 
the tail sector of the following defined by angle flock 
tail angle (γ) the follower turns away the following 
by a flock scatter angle (τ). These three rules 
determine the structure of the swarm, permitting the 
drones to navigate in coordinated group, exploring 
the environment and, most important, sensing 
pheromone released by flock mates. 

The fourth priority (b.4) is to move against the 
repulsive pheromone gradient. The drone received 
the information of the lowest cell from the ground 
station (b.2). Finally, if nothing is detected (b.5) then 
the drone is in its basic behaviour (random fly). It 
randomly turns by an angle smaller than the 
maximum rand-fly turn angle (θ). 

 

 
(a) separation 

 
(b) alignment 

 
(c) scattering 

Figure 3: Flock visibility radius and other parameters in 
flocking behaviour. 

4 ADAPTATION WITH 

DIFFERENTIAL EVOLUTION 

The swarm algorithm presented in Section 3 
involves a number of structural parameters to be 
appropriately set for each given application scenario. 
Determining such correct parameters is not a simple 
task since different areas have different topology and 
different targets distribution. In DE algorithm, a 
population member is a real n-dimensional vector, 
where n is the number of parameters to tune. DE 
starts with a population of N members, injected or 
randomly generated. In the literature, the population 
size spreads from a minimum of 2n to a maximum 

of 40n (Mallipeddi, 2011).  A large population 
increases the chance of finding an optimal solution 
but it is very time consuming. To balance speed and 
reliability we use N=20. At each iteration, and for 
each population member (target), a mutant vector is 
created by mutation of selected members and then a 
trial vector is created by crossover of mutant and 
target. Finally, the best fitting among trial and target 
replaces the target.  

In addition to DE, other classes of optimization 
methods, such as Particle Swarm Optimization 
(PSO) attracted attention in the last decade. The 
interested reader is referred to (Cimino, 2015a) for 
further details. Several DE strategies have been 
designed, by combining different structure and 
parameterization of mutation and crossover 
operators (Mezura, 2006 and Zaharie, 2007). As 
noted by (Das, 2011), practitioners mostly prefer to 
use a classical DE variant like DE/1/rand/bin. The 
differential weight F ϵ [0,2] mediates the generation 
of the mutant vector. F is usually set in [0.4-1), and 
a frequently used starting value is 0.8 (Mezura, 
2006). There are different crossover methods in DE. 
A competitive approach is the binomial crossover 
(Zaharie, 2007). With binomial crossover, a 
component of a vector is taken with probability CR 
from the mutant vector and with probability 1-CR 
from the target vector. A good value for CR is 
between 0.3 and 0.9, and a frequently used starting 
value is 0.7 (Mallipeddi, 2011). 

The fitness measure to evaluate the effectiveness 
of a solution is the average time (in ticks), over 5 
runs, which the swarm of drones take to find 95% of 
the targets of the scenario. 

5 EXPERIMENTAL RESULTS 

We implemented our algorithm using NetLogo, a 
leading simulation platform for swarm intelligence 
(ccl.northwestern.edu/netlogo), and MATLAB for the 
adaptation algorithm (www.mathworks.com). We 
evaluated our algorithm by comparing four different 
strategies: the adaptive stigmergic and flocking 
behaviour (S+F*) presented in Section 3; the 
stigmergic and flocking behaviour (S+F) presented 
in (Cimino, 2015b); the stigmergic behaviour (S), in 
which the pheromone grid maintains only the 
positive pheromone intensity information and the 
drones do not perform flocking behaviour; finally, 
the random fly behaviour (R), in which drones 
randomly explore the area with no pheromone nor 
flocking behaviour. We tested the swarm algorithm 
on six different scenarios. For each scenario, each of 
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Table 1: Final results of the evolution of Figure 5 in 
numerical terms. 

F\CR 0.3

0.5 933,67

0.7 966,60

0.9 951,40
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: Evolution of the DE algorithm against 

: Final results of the evolution of Figure 5 in 

0.7 

950,80±16,36 

907,15±12,96 

933,73±54,14 

Table 2 characterizes each scenario with the 
results, in the form “mean ± confidence interval”. It 

he proposed adaptive algorithm 
“S+F*” outperforms the algorithms presented in 
(Cimino, 2015b) in all scenarios. More specifically, 

scenarios, the two algorithms 



“S+F” and “S+F*” are comparable. This is due to 
the simple layout of both scenarios, which does not 
allow a good exploitation of the “S+F*” features. 
Indeed, in the other scenarios, with a more complex 
topology, the advantages of the “S+F*” strategy are 
substantial. 
 

Table 2: Features and numerical results of each scenario. 

Scenario 
N° of targets / 

clusters 

Type / n° of 

obstacles 

Completion time 

(ticks) 

Field 50 / 5 
Trees: 0 

Buildings: 0 

R 1664±220 
S 656±101 
S+F 589±86 
S+F* 582±121 

Forest 20 / 1 
Trees: 400 

Buildings: 0 

R 1862±356 
S 615±67 
S+F 602±124 
S+F* 593±146 

Urban 110 / 2 
Trees: 0 

Buildings: 7 

R 2049±148 
S 998±61 
S+F 890±93 
S+F* 666±100 

Rural 
Mines 

28 / 28 
Trees: 281 

Buildings: 3 

R 1588±216 
S 1570±158 
S+F 1530±225 

S+F* 1123±116 

Urban 
Mines 

40 / 40 
Trees: 54 

Buildings: 28 

R 1844±140 
S 1733±169 
S+F 1704±225 

S+F* 1025±76 

Illegal 
Dumps 

42 / 11 
Trees: 140 

Buildings:19 

R 1548±207 
S 971±160 
S+F 934±216 
S+F* 757±112 

6 CONCLUSIONS 

In this paper, we have presented an algorithm to 
adapt, via the DE algorithm, the coordination of a 
swarm of drones performing target detection on the 
basis of stigmergy and flocking. We first evaluated 
several combinations of the structural parameters of 
the DE. Results show that a crossover rate (CR) of 
0.5 and a differential weight (F) of 0.7 produce 
better solutions. Then, to test the effectiveness and 
the reliability of the approach, we compared our 
algorithm with three search strategies over real-
world and synthetic scenarios. As a result, our 
approach resulted dominant in all scenarios. Future 
work will (i) investigate our approach on additional 
scenarios, (ii) use other optimization methods for the 
adaptation, and (iii) include non-functional 
requirements in the algorithm, such as computing 
power and endurance of drones. 
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