
Fungi
Journal of

Brief Report

Modeling Approaches Reveal New Regulatory
Networks in Aspergillus fumigatus Metabolism

Enzo Acerbi 1, Marcela Hortova-Kohoutkova 2, Tsokyi Choera 3, Nancy Keller 3 , Jan Fric 2,4 ,
Fabio Stella 5, Luigina Romani 6 and Teresa Zelante 6,*

1 Nlytics Pte. Ltd., Singapore 637551, Singapore; contact@nlytics.ai
2 Centre for Translational Medicine, International Clinical Research Centre, St. Anne’s University Hospital

Brno, 65691 Brno, Czech Republic; marcela.hortova@fnusa.cz (M.H.-K.); jan.fric@fnusa.cz (J.F.)
3 Department of Medical Microbiology and Immunology, Department of Bacteriology, University of

Wisconsin, Madison, WI 53706, USA; tchoera@hexagonbio.com (T.C.); npkeller@wisc.edu (N.K.)
4 Institute of Hematology and Blood Transfusion, 12800 Prague, Czech Republic
5 Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336,

Building U14, 20126 Milan, Italy; fabio.stella@unimib.it
6 Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; luigina.romani@unipg.it
* Correspondence: teresa.zelante@unipg.it; Tel.: +39-075-585-8236

Received: 2 June 2020; Accepted: 10 July 2020; Published: 14 July 2020
����������
�������

Abstract: Systems biology approaches are extensively used to model and reverse-engineer gene
regulatory networks from experimental data. Indoleamine 2,3-dioxygenases (IDOs)—belonging
in the heme dioxygenase family—degrade l-tryptophan to kynurenines. These enzymes are also
responsible for the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). As such,
they are expressed by a variety of species, including fungi. Interestingly, Aspergillus may degrade
l-tryptophan not only via IDO but also via alternative pathways. Deciphering the molecular
interactions regulating tryptophan metabolism is particularly critical for novel drug target discovery
designed to control pathogen determinants in invasive infections. Using continuous time Bayesian
networks over a time-course gene expression dataset, we inferred the global regulatory network
controlling l-tryptophan metabolism. The method unravels a possible novel approach to target
fungal virulence factors during infection. Furthermore, this study represents the first application
of continuous-time Bayesian networks as a gene network reconstruction method in Aspergillus
metabolism. The experiment showed that the applied computational approach may improve the
understanding of metabolic networks over traditional pathways.

Keywords: Aspergillus fumigatus; tryptophan metabolism; modeling; Bayesian networks; continuous
time Bayesian networks; gene network reconstruction; gene network inference

1. Introduction

Microbial metabolism is under deep investigation because of the recent advances in enabling
metagenomic technologies and the urgent need to further understand the functions of microbes able
to colonize human tissues. At this stage, information related to different metabolic pathways and
advances in metabolomics represent an important tool for drug development and target discovery.
Mathematical modeling has been recently applied to predict potential interactions between different
pathways in the yeast Saccharomyces cerevisiae [1]. In particular, the production of immunomodulatory
metabolites by the fungus Aspergillus fumigatus is of great interest for the impact on the host immune
system [2–4].
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In this contest, the biological functions of several xenobiotic receptors, which are able to recognize
microbial metabolites, have been investigated [5]. The Aryl hydrocarbon receptor (AhR), for example,
is able to recognize several products of the aminoacidic catabolism, as well as mycotoxins [5,6].

Of interest, in mammalians the activation of AhR in the gut has been proved to monitor
anti-inflammatory responses, with protective effects as in candidiasis or in inflammatory bowel disease.
In other tissues, such as the pulmonary tract, the role of xenobiotic receptors is very complex and still
under debate [7].

The fungus A. fumigatus is able to degrade/utilize the essential amino acid Tryptophan (Trp)
into distinct metabolites following three main pathways. One is via the known rate limiting enzyme
aromatic aminotransferase (Aro), one via indoleamine 2,3-dioxygenase (Ido) activity, and a third
not associated with a specific enzyme but rather several secondary metabolite enzymes that place
Trp and prenylated Trp into small non-ribosomally encoded secondary metabolites. Among the aro
genes, aroH (Afu2g13630) encodes the putative pyridoxal 5′-phosphate (PLP)-dependent aromatic
aminotransferase, which transforms Trp into indolepyruvate [4,8]. Ido genes (idoA Afu3g14250,
idoB Afu4g09830, idoC Afu7g02010) encode putative IDOs, which transform Trp to l-kynurenine.
The secondary metabolites pathways yield four known toxins, fumiquinazoline, fumitremorgin,
fumigaclavine and hexadehydroastechrome [9]. Although the steps of these different metabolite
pathways are well-known, the interactions between the two catabolic axes (Ido and Aro) remain
unclear. In this study, the generation of high granularity time-course data allowed for a computational
analysis of the dynamics of interactions among the genes in these two systems.

The task of uncovering the causal structure (under the following assumptions: causal sufficiency,
faithfulness and the causal Markov condition) of regulatory interactions (often referred to as “gene
regulatory networks”or GRNs) is a fervent area of research in computational biology [10,11]. A number
of approaches have been applied to the GRNs reconstruction problem. Probabilistic graphical models
such as Bayesian networks [12] were shown to be powerful tools for solving the GRN reconstruction
problem [13], and they led to significant discoveries [14]. When richer time-course measurements
started to be made available, Dynamic Bayesian networks (DBNs) gained more and more relevance
in the field. Other probabilistic approaches are state space models [15] and probabilistic Boolean
networks; [16] however, it has been shown that the latter are outperformed by DBNs for GRN
reconstruction problems [17]. Granger causality (GC) is a robust method for analyzing time-course
data; since its early introduction, it has been successfully applied to a multitude of domains, such as
economics, neuroscience and biology. Continuous-time Bayesian networks (CTBNs) are an emerging
approach, which, thanks to their explicit representation of the time, provide state-of-the-art performance
for the problem of gene network reconstruction when time-course data are available [18]. Weighted
gene co-expression network analysis (WGCNA) is another widely applied methodology. Unlike
WGCNA, which is based on pairwise correlation relationships among genes, CTBNs are based on
detecting relationships of causality [19] among random variables whose state evolves over time. CTBNs
were proven to be a comparable choice to both GC and DBNs for small-scale networks and a preferable
choice to both GC and DBNs for networks of large size and when measurements are collected at
unevenly spaced time points [18]. A recent review of existing network reconstruction approaches can
be found in [20].

Nowadays, the finely grained time-course data generated by high throughput technologies are
particularly suitable for computational methodologies which are conceived to exploit the dynamic
nature of datasets, like CTBNs. CTBNs have been recently applied to the analysis of molecular data,
to investigate the regulatory interactions that characterize pathogenic versus non-pathogenic murine
TH17 cells [18] and TH17 cell differentiation in humans, where their application led to the discovery
of a new regulator gene [21]. The graphical component of a CTBN provides an intuitive level of
abstraction (in the form of a network) of how the regulatory process operates over the duration of the
experiment: nodes corresponds to genes, and arcs represent direct probabilistic relationships among
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genes (one gene exerting a direct influence over the other). In this study, the structure of regulatory
interactions controlling Trp metabolism was inferred by using CTBNs.

2. Materials and Methods

Strains and medium. The strains that were used in this study are listed in Table 1. The genetic
background of the primary strain used in this study was A. fumigatus CEA17 (Table 1). All strains
were maintained as glycerol (Panreac, Miami, Florida, USA) stocks, at −80 ◦C, and activated on solid
glucose minimal media (GMM), at 37 ◦C [22].

Table 1. Fungal Strains used in this study.

ID Strain Genotype Reference

CEA17 CEA17 pyrG- KU80 pyrG1, ∆akuB::pyrG, pyrG1 [23]
TTC 22.7 ∆aroH pyrG1, ∆akuB::pyrG, pyrG1, ∆AFUB_029280:pyrG This study

Genetic manipulations for A. fumigatus aroH mutants by protoplasting method. Fungal DNA
extraction, gel electrophoresis, restriction enzyme digestion, Southern blotting, hybridization and probe
preparation were performed according to standard methods [24]. For DNA isolation, A. fumigatus
strains were grown for 24 h at 37 ◦C, in static liquid GMM. DNA isolation was performed as described
by Sambrook and Russell [24]. Gene deletion mutants in this study were constructed by targeted
integration of the deletion cassette through transformation [25,26]. The deletion cassettes were
constructed by using a double-joint fusion PCR (DJ-PCR) approach [25,26]. A. fumigatus protoplast
generation and transformation were carried out as previously described [25,26].

Fungal cell culture. Fungal strains were put in culture (1 × 108 conidia/mL) in RPMI 1640 medium
(GIBCO, Milano, Italy), for each condition, at 37 ◦C. Supplemental Trp (Sigma-Aldrich Merck Life
Science S.r.l. Milano, Italy) resulted in a final concentration of 100 µM. Cells were harvested for RNA
isolation every 10 min for 3 h.

RNA isolation and qPCR. Fungal biomass was disrupted by using a FastPrep-FP120 (BIO101)
(Qbiogene, Inc, Illkirch, CEDEX, France) at 4.5 m/s for 30 s. Samples were left at room temperature for 5
min, in ice, and subsequently centrifuged for 10 min at 13,000 rpm at 4 ◦C. Total RNA was extracted from
purified cells by the TRIzol method (Invitrogen, Milano, Italy), according to the manufacturer’s protocol.
The cDNA was synthesized by using the PrimeScript RTreagent kit (TAKARA, Saint-Germain-en-Laye
France). Then, qPCR was carried out with primers listed in Table 2, using SybrGreen Expression
Master Mix (Thermo Fisher Scientific, Milano, Italy). The qPCR analysis was performed by using
a LightCycler II (Roche, Basel, Switzerland). The Ct values of genes of interest were normalized to
house-keeping gene 18S (∆Ct), and the relative expression of each gene of interest was calculated as
2−∆Ct. All reactions were repeated at least three times, independently, and normalized with β-actin
gene expression.

Table 2. qPCR primers used in this study.

Gene Primers Sequence (5′-3′) Annealing Temperature (◦C)

18S Sense→GAGCCGATAGTCCCCCTAAG
αSense→ATGGCCGTTCTTAGTTGGTG 58

aroH Sense→AAAGTCCCGACAGCAATCTACA
αSense→TGGGACTTTCACGCTAATCTCT 60

idoA Sense→ATGCCTGTCTCGCTATGC
αSense→CTCGGGTGTACGGTTTCG 55

idoB Sense→AGGAAGTTGTCGCTGATTTACC
αSense→ATGCTCGCCGCCATTCTG 54

idoC Sense→TCAGCCAGGATGGCAGTC
αSense→TCGTCAGTCAGGTCAGGAAG 55
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Data preprocessing and learning parameters. Raw data were analyzed by using R version 3.1.2
and the Bioconductor package. Data were log2 transformed. Four separate networks were learned by
using time-course datasets from the experiments wild type, wild type with the addition of Trp, wild type
with aroH mutant and wild type with aroH knockout with the addition of tryptophan. Missing values
in time-course datasets were replaced with zeroes. The R package ctbn v.1.0 was used for the analysis.
Due to the limited amount of data available for each experimental condition, structural learning of
continuous-time Bayesian networks (CTBNs) was run multiple times, with varying hyperparameter
combinations. Specifically, αwas tested for values equal to 3, 2, 1, 0.1, 0.01 and 0.001, while τ for values
equal to 10, 5, 1, 0.1 and 0.01. The experimental campaign included testing various discretization
approaches, eventually choosing to discretize the data into 3 bins of equal size. This resulted in 30
candidate networks learned for each of the 4 experimental conditions. Only arcs detected in more
than 90% of candidate networks that had at least one arc were considered to be high-confidence and
reported in the final graphs shown in Figure 3.

Statistical analysis. Statistical analysis was performed with ANOVA tests and GraphPad Prism 6
software (GraphPad Software, San Diego, CA, USA).

3. Results and Discussion

The network shown in Figure 1 represents the known, literature-based Trp catabolic cascade in A.
fumigatus, which is organized in two separate axes and activated by Trp. One axis is regulated by the
ido genes, and a secondary axis is regulated by the aroH gene, in a way that each gene controls the
transcription of another gene downstream in the same axis.

J. Fungi 2020, 6, x FOR PEER REVIEW 4 of 9 

 

type with aroH mutant and wild type with aroH knockout with the addition of tryptophan. Missing 

values in time-course datasets were replaced with zeroes. The R package ctbn v.1.0 was used for the 

analysis. Due to the limited amount of data available for each experimental condition, structural 

learning of continuous-time Bayesian networks (CTBNs) was run multiple times, with varying 

hyperparameter combinations. Specifically, α was tested for values equal to 3, 2, 1, 0.1, 0.01 and 0.001, 

while τ for values equal to 10, 5, 1, 0.1 and 0.01. The experimental campaign included testing various 

discretization approaches, eventually choosing to discretize the data into 3 bins of equal size. This 

resulted in 30 candidate networks learned for each of the 4 experimental conditions. Only arcs 

detected in more than 90% of candidate networks that had at least one arc were considered to be 

high-confidence and reported in the final graphs shown in Figure 3. 

Statistical analysis. Statistical analysis was performed with ANOVA tests and GraphPad Prism 

6 software (GraphPad Software, San Diego, USA). 

3. Results and Discussion 

The network shown in Figure 1 represents the known, literature-based Trp catabolic cascade in 

A. fumigatus, which is organized in two separate axes and activated by Trp. One axis is regulated by 

the ido genes, and a secondary axis is regulated by the aroH gene, in a way that each gene controls the 

transcription of another gene downstream in the same axis. 

 

Figure 1. Known literature-based interactions between catabolic axis and the amino acid Trp in A. 

fumigatus. 

The axis regulated by the ido genes leads to kynurenine production. Those metabolites are very 

well-known in the mammalian metabolism as important modulators of the “Trp starvation” response 

in inflammation and infection. In particular, L-Kynurenine is known to bind the xenobiotic receptor 

AhR and reduce T-cell reactivity [27,28]. In addition, when Trp starvation is induced by IDO 

expression, effector T cells undergo anergy, reducing inflammation. In infections, Trp starvation is 

also described to reduce microbial metabolism and pathogen virulence [29]. In the fungus Aspergillus, 

the role of Trp metabolism is still under investigation, although several studies already characterized 

the protein functions of the catabolic cascade [30]. 

Idos proteins in Aspergillus seem to degrade Trp in to kynurenines, with different affinity for Trp 

and velocity rate [8]. The Aro pathway in Aspergillus is less characterized, although we have recently 

Figure 1. Known literature-based interactions between catabolic axis and the amino acid Trp in A. fumigatus.

The axis regulated by the ido genes leads to kynurenine production. Those metabolites are very
well-known in the mammalian metabolism as important modulators of the “Trp starvation” response in
inflammation and infection. In particular, l-Kynurenine is known to bind the xenobiotic receptor AhR
and reduce T-cell reactivity [27,28]. In addition, when Trp starvation is induced by IDO expression,
effector T cells undergo anergy, reducing inflammation. In infections, Trp starvation is also described
to reduce microbial metabolism and pathogen virulence [29]. In the fungus Aspergillus, the role of Trp
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metabolism is still under investigation, although several studies already characterized the protein
functions of the catabolic cascade [30].

Idos proteins in Aspergillus seem to degrade Trp in to kynurenines, with different affinity for Trp
and velocity rate [8]. The Aro pathway in Aspergillus is less characterized, although we have recently
characterized the protein function, and we have shown that the catabolic cascade induces the release
of indole derivatives as indole acetate from Trp (manuscript submitted) [31].

However, all of these studies highlight the fundamental concept that Trp metabolism can be
activated off or on by culturing cells in low-Trp or in high-Trp concentration, respectively.

Therefore, we placed in culture the fungus Aspergillus in conditions of low or high Trp availability,
in order to switch off or strongly activate the whole cascade, respectively. The scheme of the experiment
and the forward analysis based on expression data are shown in Figure 2. Knowing that both pathways
may potentially degrade Trp [4,31], we maximally induced the catabolism on the other axis by removing
one axis, as shown by qPCR results (Supplementary Materials Figure S2).
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Figure 2. Experimental setting for model construction. A, wild type fungal strain was exposed to
different concentrations of Trp (Low or High). B, ∆aroH fungal strain exposed to different concentration
of Trp (Low or High). X, Y, Z represent generical networks that will be eventually generated in the A
and B conditions.

For this purpose, we used the comparison between two different strains of fungi: the wild-type
CEA17 and the mutant strain of Aspergillus for the gene aroH (see Table 1), obtained by genetic
manipulation, using the protoplasting method. The obtained mutants were named in this study TTC22
× (∆aroH).

We selected the removal of the well-characterized rate limiting enzyme Aro for one axis (“condition
B”) (Figure 2) in comparison with “condition A”, where, in the wild-type strain, both axes are active
and able to degrade Trp. As mentioned above, for “condition A”, we used the wild-type strain CEA17
pyrG- KU80, and for “condition B”, we used the mutant strain ∆aroH.
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In order to analyze the dynamic behavior of the network, we performed experiments by placing
cells on low Trp (off experiments) to high Trp (on experiments). We collected samples every 10 min,
for up to 3 h. We analyzed expression profiles of catabolic genes by quantitative real-time RT-PCR
(q-PCR), focusing on four genes (idoA, idoB, idoC, and aroH). Thus, our network was indeed composed
of four different genes, which codify for catabolic enzymes of the Trp cascade.

In the off experiments, Trp availability slightly led to the transcription of all the network genes by
inducing two waves of expression for idos and only one wave of expression for aroH. Their dynamic
behavior is obvious, as in the on experiments, a seemingly oscillatory behavior is clearly observable for
all ido genes but not for aroH (Supplementary Materials Figure S1). Higher peaks of expression are
present at 30–40 min and 160–180 min. The aroH gene is activated with a different type of kinetic with
only picks at 150 min (Supplementary Materials Figure S1).

Compared to “condition A” (Supplementary Materials Figure S1), in “condition B” (Supplementary
Materials Figure S2), aroH deletion led to an increase of idoB and idoC expression for both the on and
the off experiments. These results show that the two pathways catalyzed by Ido and AroH are probably
reciprocally regulated. Indeed, the deletion of aroH leads to higher expression of ido genes. This was
clearer for idoB and idoC compared to idoA. Moreover, the deletion of idos increased aroH expression.
Although this was expected, it is still unclear what the reason for it and what the physiological role
of the activation of the two alternative pathways are. Based on the different impacts of metabolites
on host immune system, the release of different metabolites (kynurenines or indoles) is extremely
of interest.

The model successfully predicted the systems behavior during the on experiment: In “condition
A”, all genes in the network are inferred as being independently activated in response to Trp (Figure 3A
and Supplementary Materials Figure S1). This suggests that, in the condition with a higher availability
of Trp, the different enzymes are independently activated in degrading Trp. In aro deficiency (“condition
B”), the model detects interactions between idoA and idoC (Figure 3B). This relationship underlines a
determinant action of idoA and its derived metabolites in the activation of other genes in the network.
This also emerges in the off experiments, where idoA is detected as primarily regulating the whole
network (Figure 3B).

In addition, the CTBNs-based model also suggests that, in condition of aro deficiency, an increased
interaction between ido genes and increased production of Ido-derived metabolites is possible.

Modeling has become recently a significant tool to understand microbial ecosystem in different
contexts, such as clinical microbiology, food fermentation and microbial metabolism. Importantly,
modeling may be used to better understand the co-metabolism between the host and pathogens in the
context of the immune response [32].

These results also underline the aspect that models are simulated laboratories where it can be
artificially improved the experimental design. Future studies, in this particular field, may enhance
our understanding on host–pathogen interactions in conditions of nutrient availability. Studies in the
field of host–pathogen interactions based on Bayesian networks have been already presented [33].
Those models analyzed the impact of climatic variables or the activation of the immune system during
fungal infections in amphibians. Pivotally, in the future, modeling may be used to understand how
co-metabolism may affect the outcome of the infection, together with other validated variables.

In particular, in the context of the model presented, the use of additional Aspergillus mutants for
Trp biosynthesis and catabolism may increase the complexity of the model design.

Based on the result of our study, more comprehensive models based on CTBNs, including,
for instance, a detailed construction of Trp metabolism, or based on different experimental conditions,
can be developed in the future. This study confirms CTBNs to be an effective methodology for
computational gene network reconstruction, and a useful hypothesis generation tool in the study of
Trp metabolism: CTBNs could aid in the discovery of novel interactions, supporting the elucidation
of those biological processes that strongly impact the fungal fitness, as well as the human immune
system during infection.
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