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Abstract

Probabilistic Principal Surfaces ( PPS) offer very powerful visualization and
classification capabilities and overcome most of the shortcomings of other neural
tools such as SOM, GTM, etc. More specifically PPS build a probability density
function of a given data set of patterns lying in a D-dimensional space (with D >> 3)
which can be expressed in terms of a limited number of latent variables laying in a
Q-dimensional space (Q is usually 2-3) which can be used to visualize the data in
the latent space. PPS may also be arranged in ensembles to tackle very complex
classification tasks. Competitive Evolution on Data ( CED) is instead an evolutionary
system in which the possible solutions (cluster centroids) compete to conquer the
largest possible number of resources (data) and thus partition the input data set
in clusters. We discuss the application of Spherical– PPS to two data sets coming,
respectively, from astronomy (Great Observatory Origins Deep Survey) and from
genetics (microarray data from yeast genoma) and of CED to the genetics data only.

Keywords: neural networks, genetic algorithms, data mining, visualization

1. INTRODUCTION

The explosive growth in the quantity, quality and accessibility of data which is currently
experienced in all fields of science and human endeavor, has triggered the search for a new
generation of computational theories and tools capable to assist humans in extracting useful
information (knowledge) from huge amounts of distributed and heterogeneous data. The field
of Knowledge Discovery in Databases or KDD is therefore becoming of paramount importance
not only in its traditional arena but also as an auxiliary tool for almost all fields of research.

In this paper, we shall first focus on the visualization and classification capabilities of Ensembles
of Spherical Probabilistic Principal Surfaces (PPS; Sect.2) [1, 2, 3] and then on a new genetic
algorithm method: Competitive Evolution on Data (CED; Sect.3) which seems to offer several
advantages in the field of data classification. We also discuss two applications in the fields
of astronomy (Sect.4) and genetics (Sect.5), respectively. All results have been obtained in
the framework of the Astroneural [4] collaboration: a joint project between the Department
of Mathematics and Informatics of the University of Salerno and the Department of Physical
Sciences of the University Federico II in Napoli.
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2. ENSEMBLES OF SPHERICAL PROBABILISTIC PRINCIPAL SURFACES

Probabilistic Principal Surfaces or PPS [1, 2] are a nonlinear extension of principal components,
in that each node on the PPS is the average of all data points that projects near/onto it. From
a theoretical point of view, PPS may be seen as a generalization of the Generative Topographic
Mapping (GTM) [5], which on the other hand, can be seen as a parametric alternative to Self
Organizing Maps (SOM) [6]. PPS are governed by their latent topology [7] and, owing to their
intrinsic flexibility, a large variety of PPS topologies can be created. Among these, that of a 3D
sphere (Spherical-PPS) is particularly appealing since a sphere is both finite and unbound and,
being the nodes distributed at the edge of the sphere, they are ideal for emulating the sparseness
and peripheral property of high-D data. Furthermore, data points projecting near a principal
surface node have higher influences on that node than the points which project far away from
it (Fig.1). Finally, the sphere topology (with no edges such as, for instance, is the case for SOM)
can be easily comprehended by humans and thereby be extremely effective for the visualization
of high-D data.
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FIGURE 1: Under a spherical Gaussian model of the GTM, points 1 and 2 have equal influences on the
center node y(x) (a) PPS have an oriented covariance matrix so point 1 is probabilistically closer to the
center node y(x) than point 2 (b).

A detailed description of how (Spherical) PPS work and of their advantages over more traditional
tools such as GTM or SOM can be found in [8, 9]. Since PPS build a probability density
function (pdf ) as a mixture of Gaussian distributions trained through Expectation-Maximization
(EM) algorithm, their performances may degrade with increasing data dimensionality due to
singularities and local maxima in the log-likelihood function. One way to circumvent this problem
is to build committees of spherical–PPS to gain improved pdfs and hence classification rates.

Ensembles of learning machines have so far been successfully and extensively applied to neural
networks especially in the case of supervised learning algorithms. Fewer instances can instead
be found of unsupervised learning methodologies and of density estimations: among these, those
introduced by [10] and [11] exploit consolidated techniques such as stacking [12] and bagging
[13], and represent the basis of our implementation.

2.1. Ensembles via Stacking

Let us suppose we are given S probabilistic principal surface models (i.e., S density estimators)
{PPSs(t)}S

s=1, where PPSs(t) is the s-th PPS model. Note that in the original formulation given
in [11], the S density estimators could also be of different types, for example finite mixtures with
a fixed number of component densities or kernel density estimate with a fixed kernel and a single
fixed global bandwidth in each dimension.

Now, going back to our model, each of the S PPS models can be chosen to be diverse enough,
i.e. by considering different πs values, number of latent variables and latent bases. In order to
stack the S PPS models, we follow the procedure described below:

1. Let D the training data set, with size |D| = N . Partition D v times, as in v-fold cross-
validation. The v-th fold contains exactly (v− 1)N

v training data points and N
v test data points

both from the training set D. For each fold:
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• (a) fit each of the S PPS models to the training subset of D.
• (b) evaluate the likelihood of each data point in the test partition of D, for each of the S

fitted models.

2. At the end of these preliminary steps, we obtain S density estimators for each of the N data
points which are organized in a matrix A, of size N × S, where each entry ais is PPSs(ti);

3. Use the matrix A to estimate the combination coefficients {πs}S
s=1 that maximize the log-

likelihood at the points ti of a stacked density model of the form:

StPPS(t) =
S∑

s=1

πsPPSs(ti)

which corresponds to maximize

N∑

i=1

ln

(
S∑

s=1

πsPPSs(t)

)
,

as a function of the weight vector (π1, . . . , πS). Direct maximization of this function is a non-
linear optimization problem. We can apply the EM algorithm directly, by observing that the
stacked mixture is a finite mixture density with weights (π1, . . . , πS). Thus, we can use the
standard EM algorithm for mixtures, except that the parameters of the component densities
PPSs(t) are fixed and the only parameters allowed to vary are the mixture weights.

4. The concluding phase consists in the parameters re-estimation of each of the S component
PPS models using all of the training data D. The stacked density model is then the
linear combination of the so obtained component PPS models, with combining coefficients
{πs}S

s=1.

2.2. Ensembles via Bagging

A second combining scheme uses bagging as a method to average single density estimators, in
our case the PPS, in a way similar to the model proposed in [10]. All we have to do is to train
a number S of PPS with S bootstrap replicates of the original learning data set. At the end of
this training process, we obtain S different density estimates which are then averaged to form the
overall density estimate model. Formally speaking, let D be the original training set of size N and
{PPSs}S

s=1 a set of PPS models:

1. create S bootstrap replicates (with replacement) of D, {DBoot(s)}S
s=1 with size N ;

2. train each of the S PPS models with a bootstrap replicate DBoot;
3. at the end of the training we obtain S density estimates {PPSs}S

s=1;
4. average the S density estimates {PPSs}S

s=1 as

BgPPS(t) =
1
S

S∑
s=1

PPSs(t).

3. COMPETITIVE EVOLUTION ON DATA

The Competitive Evolution on Data (CED) model [14] is an evolutionary system [15, 16]
specifically tailored to perform clustering on noisy data in absence of a priori knowledge. The main
feature of CED is that it uses a double metaphoric association: i) one, which is also shared by all
evolutionary systems, in which the possible solutions are generic individuals and, ii) a second one
initially introduced by [17] and commonly used to solve multi-modal problems [18], in which each
datum is associated to a resource for which the individuals will compete. The data set therefore
represents the environment in which the individuals (id est, the possible solutions) evolve. The
evolutionary process picks out those individuals which, being better fit to the environment, are
capable to attract a larger number of resources and therefore have also a higher chance to
reproduce. The evolutionary dynamics of such a system is such that individuals tend to conquer
the regions of the environment which are more densely populated and to neglect those which are
empty or scarcely populated. ([19, 14]).
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3.1. Evolutive scheme

The general structure of the CED model is the following:

• first we randomly generate a set of possible solutions (initial population) and to each
individual we attribute a fitness value 0;

• the following steps are iterated (the number of iterations is established via a trial and error
procedure):

– The fitness of each individual is computed from the number of resources they have
been able to conquer;

– Using genetic operators, individual are left free to reproduce with a probability which is
proportional to their fitness and a second generation is produced.

At each generation a set of data is randomly selected to become the resources of the virtual
environment where individuals are competing. Than for each resource takes place a tournament
among a randomly selected number (arbitrarily fixed) of individuals and the individual which is
closest to the resource ”conquests it” and its fitness is increased by one unit. The distance
is defined through a similarity criterion d(x, z). In other words: if D is the input data space,
d : D ×D → R+ and x and y are two individuals, x is closer to the resource z if d(x, z) < d(y, z).
At the end of the process the individuals with higher fitness are those which have conquered the
larger number of resources and therefore are those which better represent groups of data very
similar to each other. In what follows we make use of three different definitions of d:

Euclidean metric: d(x, y) =
√∑

x2
i − y2

i

Pearson centered: d(x, y) = 1/|σ(x, y)| − 1 dove σ(x, y) =
∑

(xi−x̄)(yi−ȳ)√∑
(xi−x̄)2

∑
(yi−ȳ)2

Pearson non–centered: d(x, y) = 1/σ(x, y)− 1 dove σ(x, y) =
∑

xiyi√∑
x2

i

∑
y2

i

3.2. Extraction of the results

The number of solutions (id est, cluster centroids) produced during the evolution may in general
be quite high and, in order to extract the most significant ones it is necessary to run an extraction
phase.

• Inside all populations groups of similar or identical individuals are flagged and a
representative is randomly selected;

• each representative is attributed a weight which is proportional to the size of the group to
which it belongs;

• all nearby representatives are grouped together and only one is selected using a weighted
mean criterium;

• all ”average representative” with weights falling below a given treshold are eliminated.
• the remaining representative define the centroids of the clusters.

All parameters are fixed using a trial and error procedure.

4. AN APPLICATION OF PPS TO ASTRONOMY: THE GOODS DATA SET

The Great Observatories Origins Deep Survey (or GOODS) is a joint project among the American
and the European Space Agencies and several of the most powerful ground-based astronomical
facilities. Aim of the project is to survey the distant universe to the faintest flux limits across the
broadest range of wavelengths and at the end, GOODS data will cover a total of roughly 320
square arcminutes in two fields centered on the Hubble Deep Field North and the Chandra Deep
Field South, respectively [20]. The GOODS catalog used in what follows contained 28405 objects.
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Each object being measured in 7 optical bands, namely the U,B,V,R,I,J,K bands. For each band 3
different types of parameters, astrometric (positions), geometric (i.e., Kron radius, ellipticity etc.)
and photometric (Fluxes and Magnitudes) were measured, adding up to a total of several dozens
of parameters. Objects were also classified as angularly resolved (or galaxies, in the astronomical
jargon) and non resolved (or stars).

GOODS (and more in general astronomical surveys) data present a further peculiarity: the
majority of the objects are ”drop outs”, id est they are detected only in some bands and not
detected in the others due to either instrumental (different detection limits) or intrinsic (different
spectral properties) reasons. Without entering into details we must stress that the characterization
of an object as a ”dropout” (id est as an object with a strong relative flux difference between two
or more spectral regions) is very important from the astronomical point of view since it allows to
discriminate among different classes of celestial objects. From our statistical clustering point of
view, therefore, the data set contains four classes of objects, namely stars, galaxies, stars which
are drop outs and therefore present missing data, and drop out galaxies (at this stage, we do not
take into account the number of bands for which data are missing).

In Fig. 2, we give an example of the visualization capabilities of PPS: colors mark the four classes
defined above.
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FIGURE 2: Different visualizations of the GOODS catalogue. From top left to bottom right clockwise: 3D
PCA projections; PPS projections on the sphere; PPS galaxy density on the sphere and, PPS star density
on the sphere.

As it is clear, The PCA visualization gives very little information since it displays only a single
condensed group of data. The PPS projection onto the spherical latent manifold appears much
more readable than the PCA and contains much more information and clearly shows several well
defined clusters.

4.1. Classification of GOODS data

In the case of StPSS, we built a model in which a group of six different PPS models, each one with
a fixed α value, are put together in an ensemble via stacking. An important parameter for stacking
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is the number v of folds in the cross-validation procedure. In our experiments we tried 5−fold and
10−fold cross-validation. In the case of BgPPS we used, instead, a single PPS model with its own
parameters setting and to bag it in order to improve its performance. In our experiments we bag
ten PPS models (for α = 0.2, 0.4, ...2.0) in order to assess the best α value. The PPS models are
trained on 20 bootstrap replicates of the training data set (hence we have a committee of 20 PPS
models whose responses are averaged).

In all experiments, the classifiers run 25 times and each time new training and test data partitions
(60% for training and 40% for testing) are generated. Moreover, for comparison purposes we
accomplished classification by using single PPS models as well, to

1. compute the reference manifolds for each class (we denote this classifier as PPSRM),
2. compute the posterior class probability (hereinafter denoted as PPSPR).

4.2. Application to the GOODS Catalog: StPPS

In GOODS catalog the behavior of the stacked model, for which the parameters are set as in
Table 1, is inverted in terms of 5−fold and 10 − fold cross-validation. In fact here we have better
results for 10−fold cross-validation (mean classification error 2.87 and standard deviation 0.1344)
with respect to 5−fold cross validation (mean classification error 3.44 and standard deviation
0.4720) as it can be seen from Fig. 3. This is reasonable, since the number of training data for
the first three classes (S, G and SD) is much smaller than the number of training data for class
GD, so a higher number of folds leads to a better fit to data. The confusion matrix corresponding
to the minimum error (1.05) is shown in Table 2.

TABLE 1: GOODS Catalog: StPPS parameter settings

Parameters PPS1 PPS2 PPS3 PPS4 PPS5 PPS6

α 1.4 1.2 0.8 0.6 1.6 2.0

M 266 266 266 266 615 615

L 18 83 83 83 83 83

Lfac 1 2 1.5 1.1 1.3 2

iter 100 100 100 100 100 100

ε 0.01 0.01 0.01 0.01 0.01 0.01

TABLE 2: GOODS Catalog: confusion matrices computed by StPPS best model

Classifier Confusion Matrix

StPPS(2.62)

S G SD GD

S 92 4 2 0

G 76 1234 2 36

SD 0 0 52 36

GD 0 8 134 9688

4.3. Application to the GOODS Catalog: BgPPS

For GOODS catalog the results are more fluctuating for each of the α values. In fact the best
results are obtained between the interval [0.2, 0.6] and [1.4, 2.0]. The overall best result falls in the
second interval, in particular for α = 1.8 (mean classification error 2.74 and standard deviation
0.3987) even though BgPSS with α = 0.6 obtains a lower standard deviation value (0.1725). The
minimum classification error with confusion matrix is shown in Table 4.
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FIGURE 3: Panel a): GOODS Catalog: StPPS classification errors over 25 iterations; Panel b): BgPPS error
bars over 25 iterations for each fixed α; Panel c: PPSRM, PPSPR and BgPPS mean classification errors
over 25 iterations for each fixed α; Panel d): PPSRM, PPSPR, StPPS and BgPPS best model statistics.

TABLE 3: GOODS Catalog: BgPPS parameter settings

Parameter Value Description

M 266 number of latent variables

L 83 number of basis functions

Lfac 1 basis functions width

iter 100 maximum number of iteration

ε 0.01 early stopping threshold

TABLE 4: GOODS Catalog: confusion matrix computed by BgPPS best model

Classifier Confusion Matrix α

BgPPS(2.15)

S G SD GD

S 155 35 12 5

G 8 1160 6 8

SD 0 0 64 7

GD 5 51 108 9740

1.8
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FIGURE 4: Yeast Gene Data Set: (a) 3D PCA projection (b) Data point projections in the latent space (c)
Data probability density in the latent space

4.3.1. GOODS Catalog: PPSRM, PPSPR, StPPS and BgPPS Comparison

GOODS catalog classification task is more complex. The four classes are heavily overlapping
and even in the best cases there are classes (i.e., S and SD) whose objects are classified with
an error rate about 60%. This is evident from the results obtained by the different classifiers
used. However, even in this case BgPPS outperforms all the other models (PPSRM, PPSPR
and StPPS). Moreover, Stacked PPS here outperforms both PPSRM and PPSPR. Among the
two single PPS classifier models, PPSPR is still better than PPSRM (see Fig. 3).

5. APPLICATION OF PPS AND CED TO GENETICS: MICROARRAY YEAST GENE DATA

Gene-expression microarrays, whose development started in the second half of the 1990’s, which
are having a powerful impact on molecular biology. In fact, although the ability to measure
transcription of a single gene is not new, the possibility to measure the transcription of all genes
in an organism at once is a recent advance and is leading to new methods of diagnosis and
of treatment for a large number of diseases. However, it is also becoming increasingly clear that
simply generating the data is not enough and that the extraction of the relevant information is a non
trivial task. Statistical techniques and other classical methods of data analysis, are not adequate
and therefore, in the last decade, much work has focused on the development of machine learning
methodologies suited for the analysis of genetic data.

Just to mention a few, support vector machines have been used for the functional classification
of genes [21]; clustering techniques were used for grouping similar expression patterns across
a number of experiments of all the genes of the yeast Saccharomyces Cerevisiae [22]; Neural
networks have been employed both for clustering and visualization of gene microarray data
[23, 24]. In order to investigate the capabilities of our methods in this different field of applications,
we started from the work of Spellman and his colleagues which is described in [22] and provides
a comprehensive catalog of yeast genes whose transcript levels vary periodically within the cell
cycle. In order to produce the catalogue, samples from yeast cultures synchronized with different
experiments were used. In [22] a type of agglomerative hierarchical clustering [25] was used in
order to identify clusters of genes behaving similarly in each experiment and which represent
groups of apparently co-regulated genes. These clusters provide a solid basis for understanding
the transcriptional mechanism of cell cycle regulation. The data set used by us, consists of a set
6125 genes, subject to four different experiments. Each experiment consists of measurements at
different epochs for a total of 73 parameters.

5.1. Results from Spherical PPS

In order to make the data set more apt to be processed with PPS, we first applied a preprocessing
phase in which, through the use of a nonlinear PCA [26], we reduced each experiment to 8
measurements and eliminated the genes whose experiments had to much missing data. Hence,
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FIGURE 5: Panel a: PPS cluster prototype periodic behaviors and error bars (3σ) showing the standard
deviation of genes from the prototypes for a fixed cluster. On the top of each subplot are the cluster number
and the number of genes within each cluster. Panel b: PPS and Spellman cluster comparisons. On each row
are reported the 30 PPS clusters, while on the columns are the clusters computed by Spellman. The Aij-th
entry of the table correspond to the fraction of Spellman cluster j falling in the PPS cluster i

the used data set consists of 5425 genes and 32 features. Furthermore, since, in general,
microarray data is noisy, it is necessary to resort to some kind of cleaning procedure, to identify
those genes affected from noise process involved in the generation of data from microarrays. At
this aim, we decided to train a PPS with a high number of latent variables, so that each one is
responsible of a limited number of data points, afterward, we apply a clustering procedure on the
nodes of the manifold in the data space. So doing, a number of identified clusters containing genes
with low variance (i.e. genes whose transcript levels show a poor periodic behavior) were thrown
away. The number of remaining genes turned out to be 2761. We then used a PPS with 266 latent
variables and 40 latent basis functions and a clamping factor α set to 0.5. After the completion of
the training phase we projected the data in latent space and computed the responsibility for each
latent variable as shown in Fig. 4.

On the basis of the probability density functions visualized in Fig. 4 we decided to identify 30
clusters through a hierarchical clustering procedure. For each cluster we plot the prototype trend
with respect to the 32 features, as it can be seen in Fig. 5-a, which highlights the average behavior
of genes belonging to the same cluster. In Fig. 5-b we compare the results of the PPS clustering
procedure with those by Spellman [22]. We wish to stress that the two clustering procedures were
completely different: Spellman in fact clustered the gene properties using an a priori knowledge
of their characteristics and thus he worked with only 209 genes, while our algorithm made use
only of the statistical properties of the data with no a priori knowledge. In spite of this, some
remarkable patterns may be detected: Spellman’s clusters number 1 falls near entirely in our
cluster 8; Spellman’s clusters number 2 and 8 are statistically speaking indistinguishable (together
they form our cluster number 28); Spellman’s cluster number 5 appears to be a sort of statistical
waste basket which groups together rather different clusters (7, 8, 17, 20 plus several others with
lower significance) which, however, are topological neighbors in the PPS latent space and can
therefore be considered as ”substructures” (missed by Spellman) of a larger cluster. Finally,
cluster 21 contains entirely the genes belonging to Spellman’s cluster 3. The most relevant result,
however, seems to be the fact that many (13 out of 30) of our clusters are not mapped by any of
the 209 genes in the Spellman’s sample. Whether these clusters have or have not any biological
significance will be the subject of future studies.
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FIGURE 6: Average behavior of genes belonging to the clusters attributed to the centroids 1–8.
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1 Sp. 2 Sp. 3 Sp. 4 Sp. 5 Sp. 6 Sp. 7 Sp. 8 Sp.
1 0 40 0 0 2 0 0 0
2 31 0 0 0 1 0 0 0
3 0 0 0 0 29 0 0 0
4 0 0 0 0 0 0 22 0
5 0 0 0 0 0 0 0 27
6 0 0 0 0 0 15 0 0
7 0 0 8 0 1 0 0 0
8 0 0 0 10 0 0 0 0

TABLE 5: Results of the clustering of the Spellman data for the CED method. Columns: Spelmann clusters;
rows: CED clusters. The figures give the number of genes falling in that cell.

5.2. CED results

If we apply the CED model to the same Spellman data set we have very interesting results. The
system automatically extracts 8 centroids. If we then label each gene attributing him to the nearest
centroid, we obtain 8 clusters. The average behavior of the genes belonging to each cluster is
shown in Fig.6.

In Table 5 we compare the results obtained using the CED method on the Spellman sample.
The number of genes belonging to the i− th Spellman cluster is obtained by summing along the
colums, while the number of genes in the i − th CED cluster is obtained by summing along the
rows. As it may be clearly seen, the CED clusters coincide almost perfectly with the Spellman
ones (only 4 genes out of 186 are classified differently).

The Astroneural project is funded by the Italian Ministry for University and Scientific Research
(MIUR) and by Regione Campania.
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