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Abstract. Electrodeposition is well-known as a versatile and economical processing technique 
to produce metal coatings on conductive substrates. Recently, it has been gaining increasing 
interest also for the production of tailored composite coatings, containing for instance 
floropolymers or silicon carbide. A more novel approach concerns the use of carbon nanotubes 
or even graphene, in the form of graphite nano-platelets. The production of Ni- and Cu-based 
nanocomposites containing carbon nanoreinforcements was carried out by using standard 
electrodeposition conditions, but with a particular attention to the dispersion of the nanotubes. 
The obtained coatings were strong and well adherent to the steel substrate, and presented rather 
well dispersed carbon nanotubes or graphite nanoplatelets, even if some agglomerates could be 
present in samples obtained from highly concentrated suspensions. In the case of nickel-based 
composite coatings, the size of nickel grains was reduced, and pin-on-disc tests demonstrated a 
significant increase in the life of the coating. In the case of copper-based composite coatings, 
thermal diffusivity measurements demonstrated that the carbon nanomaterial does not reduce 
the conductivity of the pure copper coating. 

1. Introduction 
Electrodeposition is nowadays a well-known and low cost technique for the preparation of metallic 
coatings on a conductive substrate [1]. Many metals can be deposited by this technique, with 
controlled thickness and properties [2]. Recently, composite coatings started to gain interest, due to the 
possibility to tailor the behaviour of the deposited film by controlling the composition, thus becoming 
an interesting alternative to standard deposition methods, like PVD [3,4]. In particular nickel coatings 
are industrially modified with silicon carbide or other ceramics [5-10], for improving hardness, or 
fluoropolymers [11-12], for reducing attrition and wear, without modifying mechanical properties of 
core material like it happens when using traditional or novel MMCs [13-15]. Since the discovery of 
carbon nanotubes [16], carbon nanostructures are gaining significant interest in the field of materials 
science, as they present very interesting properties, both mechanical and thermal [17-22]. In recent 
papers, carbon nanotubes or similar materials have also been used to modify the properties of 
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electrodeposited nickel coatings [23-28]. The composite coating seem to have increased properties 
with respect to un-modified nickel coatings [27,29,30], and they present interesting hardness [25,31] 
and wear properties [32]. In particular, both Carpenter and co-workers [31] and Khabazian and Sanjabi 
[25] demonstrated an increase in hardness with the increase of nanotubes. In both cases however the 
increase in hardness was possible only with pre-treated nanotubes, while untreated nanotubes hardness 
was not so different than the pure nickel coating. Functionalization was in both cases obtained by 
oxidation, in order to increase polarity of the nanotubes so that they could disperse easily in water. 
Regarding wear properties, Carpenter and co-workers [32] observed a significant reduction of wear 
rate for carbon-containing composites. 
 Recently, graphene has also gained much interest as a strong reinforcing carbon nanomaterial 
[33,34]. However, to the authors’ knowledge, the deposition of graphene in electroplated coatings has 
not been widely studied.  
 In this work, we deposited nickel and copper coatings containing both carbon nanotubes (CNTs) 
and –COOH modified graphite nanoplatelets (GNPs). Oxidised graphite nanoplatelets are very similar 
to graphene since they consist of a very limited number of graphene sheets, oxidised on the surface to 
make them partially compatible with water-based solutions. The coatings were studied in term of the 
size of nickel crystallites, hardness, wear/frictionl properties, thermal conductivity. 

2. Experimental 
Carbon nanotubes with mean diameter of 13 nm and length between 2.5 and 20 μm were obtained 
from Sigma Aldrich. Pristine and –COOH functionalized Graphene Nano Platelets (GNPs) were 
obtained from Cheaptubes USA. The GNPs had diameter of 1-2 μm and a surface area of around 700 
m2/g. The –COOH content in the functionalised ones was declared as 7%. 
 The solutions used for the electrochemical deposition of nickel were Watt’s bath (NiSO4 + NiCl2 + 
H3BO3) and Wood’s bath (NiCl2 + HCl) purchased from Coventia. The solution used for 
electrodeposition of copper was a self-prepared sulphate bath, containing 0.85 M of CuSO4·5H2O 
(purchased from Sigma Aldrich) and 0.55 M of H2SO4. Poly acrylic acid (PAA) with mean molecular 
weight MW 5100, obtained from Sigma Aldrich, was used as dispersing agent. 
 The homogenous and stable suspensions for the plating solutions were obtained by ultrasonic 
agitation for 45 minutes with a probe (Sonics VCX750) and magnetic stirring for 16 hours at 200 rpm. 
To ensure the homogeneity of the baths, gentle magnetic stirring at 100 rpm was done during the 
deposition process too. A three electrode cell was used for the deposition, and 99.98% pure Ni plates 
(10 x 2.5 x 1 cm) and 99.99% pure Cu plates (10 x 3 x 0.1 cm) were used as anodes for nickel and 
copper depositions respectively. In case of wear test samples, the cathode substrates were 42CrMo4 
steel while for thermal analysis samples the used substrates were C20 mild steel. The electrochemical 
deposition for producing the composites was obtained by means of a switching rectifier AF00 by 
Giussani S.r.l.  The deposition was realised at 30 °C with a controlled pH in the range between 3 and 
4. 
 The compositions of the samples are shown in Table 1. and the aspect of the coating in Figure 1. 
The N series are the nickel-based coatings, while the C series are the copper-based ones. 
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Table 1. Composition of coatings. 

Sample CNTs 
(mg/l) 

GNPs 
(mg/l) 

PAA       
(mg/l) 

N0 0 0 0 
N1 165 0 140 
N2 1000 0 100 
N3 0 80 100 
C0 0 0 0 
C1 1000 0 100 
C2 165 0 140 
C3 0 65 100 
C4 0 190 190 

 

       
Figure 1. Picture of Ni-coated (left), Cu-coated (middle) 
and uncoated (right) samples  

 
 
 The morphology of the samples was studied by using Reichert-Jung MeF3 optical microscope 
(Leica Microsystems S.P.A, Austria) and Hitachi S4000 scanning electron microscope. The 
microhardness was tested using a LEICA VMHT hardness tester. The wear properties were studied by 
using a self-made pin on disk apparatus, by using a pin of Co-cemented WC, with 3 mm radius. 
Surface roughness profiles were also measured by using surface profilometer HOMMEL TESTER 
T1000. Thermal diffusivity of the samples was measured using a thermal properties analyser FLASH 
LINE 4010. 

3. Results and Discussion 
In the first part of this work, the deposition conditions were studied in order to obtain a good and 
adherent deposit of nickel or copper on the substrate. The chosen substrate was a 42CrMo4 steel for all 
samples subjected to mechanical testing and a mild steel with 0.2% carbon for thermal tests. 
 By optical microscopy it was judged the aspect of the deposit, that is shown in Figure 2 for a pure 
nickel coating (on the left) and a CNT containing one, sample N2 (on the right). A good interface 
between steel and nickel is observed in both cases and the coating results rather good, without evident 
defects.  
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Figure 2. SEM images of pure nickel layer N0 (left) and nickel-CNT composite N2 
(right) on steel support. 

 
 The realization of CNTs or GNPs containing coating however is much more complicated than the 
realization of a pure nickel one. In fact, when CNTs or GNPs are added, a significant problem of 
dispersion of the carbon nanomaterial occurs. While GNPs are functionalized with –COOH groups, 
that give some polarity to the surface, increasing their dispersibility in water, CNTs are non-polar, and 
don’t disperse easily in water. Since it was thought not to damage the nanotubes with an acid 
treatment, pristine nanotubes were used, that were dispersed through the addition of polyacrylic acid 
(PAA), as suggested in the literature [23]. To break the CNTs agglomeration and homogenise the 
suspension, ultrasonication was applied for 45 minutes, and afterwards the solution was left overnight 
under magnetic stirring. Magnetic stirring was also continued during the whole course of deposition, in 
order to avoid re-agglomeration.  
 In the case of –COOH functionalized GNPs, PAA was also added with the same aim, to improve 
dispersion and avoid re-agglomeration of the carbon nanomaterial. 
Two SEM images with a larger magnification of the nickel coatings containing CNTs and GNPs are 
shown in Figure 3. The coatings can present zones with good quality and no defects, on the left, or 
zones with agglomerates of CNTs or GNPs, as shown on the right.  
 

      
Figure 3. CNTs containing nickel layer with good quality (left); GNPs agglomerate in a nickel layer 
(right). 

 
 In order to measure the size of the nickel or copper crystallites, X-ray diffraction (XRD) was 
performed and the Scherrer formula was applied, 
 d = K λ / b cosθ 
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where d is the crystallite size, K is a constant depending on the geometry of the grains, λ is the copper 
Kα wavelength, b is the width of the XRD peaks, and θ is the diffraction angle. 
 The deposition of pure nickel already gave a rather low grain size, with submicrometric dimension, 
around 400 nm. The copper grains were a little larger, with a size close to 700 nm. As shown in Table 
2, the presence of CNTs or GNPs brought to a significant reduction of nickel grain size, while copper 
grains were not affected by the presence of carbon nanomaterial. 
 

Table 2. Grain size, calculated by the Scherrer equation, 
and roughness of nickel and copper-based coatings. 

  

Sample Grain size   
(nm) 

Roughness Ra 
(μm) 

N0 370 3.43 
N1 277 2.27 
N2 399 8.96 
N3 209 2.08 
C0 687 1.58 
C1 599 1.99 
C2 616 6.46 
C3 717 5.52 
C4 805 6.12 

 
 However, it is important to note that in the case of nickel, samples with too high carbon 
nanomaterial concentration demonstrated no reduction of grain size. This behaviour suggests that the 
highest concentrations are not well dispersed and that carbon nanomaterial remains too agglomerated, 
leaving large bundles of CNTs or GNPs, as the one shown in Figure 2. 
 With copper deposition instead, carbon nanotubes brings to a slight grain size reduction also in high 
concentration, while graphite nanoplatelets produce a slight increase of grain size. 
The SEM observation of the samples, coupled with XRD, thus suggests that high concentration of 
nanotubes in nickel brings to a lower quality coating, as also confirmed by roughness measurements, 
also shown in Table 2. In the case of copper instead, the behaviour is more complicated, probably to 
interactions between the components of the bath. The most concentrated CNTs containing suspension 
provide a low roughness coating, while lower concentration of both CNTs and GNPs brings to a much 
higher roughness of the coating. 
 Hardness tests, shown in Table 3. were performed on Ni-based coatings, again confirm the previous 
results. The high concentration CNT-containing suspension brings to a low hardness coating, with HV 
close to 200. With lower concentration of CNTs or GNPs the hardness is much higher, close to 400 
HV, close to the value of the pure nickel hardness. The fact that the composite coating has a lower 
hardness than the base alloy is due to the presence of low hardness carbon nanomaterial. However, the 
reduction in grain size of the nickel coating counterbalances the presence of carbon. 
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Table 3. Hardness values of nickel-
based coatings. 

  

Sample Vickers 
Microhardness 

N0 486 
N1 327 
N2 212 
N3 400 

 
 Finally, the wear tests shown in Figure 4. allowed to measure the friction coefficient of the nickel 
based coating and the rate of removal of the coating. From curve N0 it is possible to observe how the 
pure nickel behaves. After 200 seconds the coefficient of friction (COF) begins to rise, passing from 
0.65-0.7 to around 1.1, where it stabilises, indicating the removal of the coating. The same behaviour, 
with a faster initial growth, starting immediately, and also with a much higher scatter of the data, is 
observed for the high concentration CNTs suspension (N2 sample). This is due to the fact that the 
coating is very rough, and to the presence of many CNTs agglomerates in the coating. 
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Figure 4. Coefficient of friction behaviour as a function of time for a pin-on-disk test at 5 N weight 
and 0.1 m/s. 

 
 The coatings containing low concentration of CNTs or GNPs (N1 and N3 respectively) instead 
show a much slower increase of COF. For the first 400 seconds the increase is very marginal, and 
begins to grow appreciably only after around 600 seconds. After 15 minutes of test, the COF is yet 
lower than 1 and growing, suggesting that the coating was not yet completely removed by the pin. 
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Comparing the CNTs and GNPs modified coating, it is possible to note that CNTs containing coatings 
present more scattered results than GNPs modified ones. 
 The copper-based samples were submitted to thermal diffusivity measurements, in order to verify if 
the coating could modify substantially the thermal properties of the support. In Table 4. the results at 
various temperatures for CNTs and GNPs containing copper coatings are reported. 
 

Table 4. Thermal diffusivity of copper-based 
coatings. 

Sample 40 °C 440 °C 790 °C 
support 0.144 0.079 0.048 

C0 0.152 0.094 0.06 
C2 0.148 0.068 0.044 
C3 0.133 0.073 0.044 
C4 0.155 0.082 0.047 

 
 It is evident from Table 4. that the pure copper coating has a positive effect on the thermal 
properties of the support at all temperatures. The composite coatings have a more complex behaviour. 
Close to room temperature the samples obtained with 165 mg/l of CNTs or 190 mg/l of GNPs behave 
like the pure copper coating, or even slightly better in the case of sample C4. Increasing the 
temperature the composite coatings show a reduction of thermal diffusivity, probably due to the 
thermal stresses arising at the interface between the copper matrix and the carbon-based reinforcement. 
The thermal mismatch is rather high, so that it is possible that some delamination occurs at the 
interface, increasing the interface thermal resistance. 

4. Conclusions 
In this work the electrodeposition of composite coatings containing carbon nanotubes or graphite 
nanoplatelets has been carried out with success using nickel or copper matrices. It was shown that in 
the case of nickel deposition, the size of the nickel grains is reduced by the presence of the carbon 
nanoreinforcement, with positive effect on the wear properties, even at the cost of a small reduction of 
hardness values. In the case of copper deposition, the study shows the feasibility of using these 
reinforcements to produce well-adherent and solid coatings; regarding thermal properties, probably an 
increase of dispersion of CNTs or GNPs in the deposition solution is yet needed to fully exploit the 
exceptional properties of the carbon nanoreinforcement. 
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