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ABSTRACT 

 
In this work, based on our previously proposed perturbation theory for the diffusion equation, we present 
new theoretical results in time and frequency domains. More specifically, we have developed a fourth order 
perturbation theory of the diffusion equation for absorbing defects. The method of Padé Approximants is 
used to extend the validity of the proposed theory to a wider range of absorbing contrasts between defects 
and background medium. The results of the theory are validated by comparisons with Monte Carlo 
simulations. In the frequency domain, the discrepancy between theoretical and Monte Carlo results for 
amplitude (AC) data are less than 10% up to an absorption contrast of Δμa ≤ 0.2 mm-1, whereas the 
discrepancy of phase data is less than 1° up to Δμa ≤ 0.1 mm-1.  In the time domain, the average 
discrepancy is around 2-3% up to Δμa ≤ 0.06 mm-1. The proposed method is an effective and fast forward-
problem solver that has the potential to find general applicability in a number of situations. 
 
 

INTRODUCTION 
 
In Near Infra-Red Spectroscopy (NIRS) and Diffuse Optical Tomography (DOT), one of the main 
challenges is represented by modeling light propagation in biological tissues. Currently, a wide variety of 
methods have been used: analytical methods1-2, Finite Element Methods (FEM) for solving the diffusion 
equation3-5 (DE), a combination of the discrete ordinate method and the finite volume method for solving 
the more general Radiative Transfer Equation6 (RTE) etc.. Numerical methods can be applied to very 
general reconstruction problems, regardless of the geometry of the medium and distribution of the optical 
properties; however they are characterized by long computation times and sensitivity to artifacts. Analytical 
methods are much simpler but they are limited to the cases of homogeneous or layered media bounded by 
regular surfaces. They have been successfully used on phantom studies for optical properties measurements 
and also as approximate methods for the estimation of the bulk optical properties of tissues in some in vivo 
experiments. Among analytical methods, one can also include those based on perturbation theory of the 
DE, which have been proposed for solving problems of light propagation in media characterized by focal 
changes in the optical properties. Here we remind pioneer studies by Ostermeyer et al.7 and Boas8, in the 
frequency domain, and more recent works in the time domain9-10. In the aforementioned publications, the 
authors have also shown the possibility to apply an iterative method for the calculation and update of the 
fluence rate in order to obtain an nth order perturbation theory. Higher order perturbation theory overcomes 
the limitation of first order theory (Born approximation) rendering it suitable for solving problems where 
the defects embedded in the medium are not “small.” More precisely, nth order perturbation theory can be 
applied when the change in the detected intensity with respect to the initial medium (not including the 
defects) lies outside the region of linearity. In all published studies on perturbation theory, the authors have 
developed more or less sophisticated mathematical methods to find the solution of the DE for both 
absorbing and scattering defects in particular geometries. In our works,11-15 we focused mainly on 
absorption perturbations, since they are directly correlated to concentrations changes of oxy- and deoxy-
hemoglobin which are relevant both in functional imaging and in pathological conditions like in breast
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cancer. Perturbation theory of absorption defects lends itself to be reframed by using the method of the 
pathlength moments. In this way, the developed theory has more physical or statistical connotations than 
other approaches to perturbation theory. It is exactly this physical “flavor” of our approach to perturbation 
theory, which allowed us to develop approximated formulas that are grounded on a rigorous theory and 
have also an intuitive physical meaning. Two are the important results of our theory: a) we show that it is 
possible to develop a fast and efficient forward problem solver in frequency and time domains (the latter is 
usually computationally challenging), at least in those geometries where the Green’s function of the 
medium is available; b) we show that the most important physical parameters needed for higher order 
perturbation theory are the time-resolved partial mean pathlengths <li>(t) in the regions of interest (i 
=1,2,..N). We claim that in several situations, the problem of perturbation theory in an arbitrary geometry is 
solved once the moments <li>(t) are estimated. 
 
 

THEORY 
 
In a scattering medium where the microscopic Beer-Lambert law is valid, we can write the solution of a 
general forward problem for absorbing perturbations by using the formula: 
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where Rin(rb,t,μa) and Rfi(rb,t,μa+Δμa) are the temporal point spread functions (TPSF) calculated at the 
detector’s location (rb) in the initial and final states of the medium (characterized by a different distribution 
of the absorption coefficients), respectively, and )(1

1 ab
k
N

k t,,ll N μr... ><  is the time-domain mixed pathlength 
moment of order (k1, k2,…..,kN) calculated in the initial state of the medium and defined by the formula: 
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In Eqs. (1) and (2), li= vti is a random variable associated with the pathlength traveled by a detected photons 
in the region “i” and rb is the detector’s location. In Eq. (2) fin(t1,...tN) is the generalized temporal point 
spread function which is defined as the probability density for a detected photon to spend the time “ti” in 

the region “i”; while the region of integration (σN) is the hyperplane in RN defined by: tt
N

i i =∑ =1
. In Fig. 1 

we show a schematic diagram of the scattering medium having homogeneous initial values of the optical 
properties (μab, μ’sb) and N=4 regions of interest where absorbing perturbations are localized. Note that the 
theory is valid for a general distribution of the reduced scattering coefficient, with the only assumption that 
it does not change between the initial and final states of the medium. In our previous work,11 we have found 
a way to calculate the moments by using a formal similarity between Eq. (1) and the solution of the 
Fredholm equation of the II kind which is derived from the perturbation theory of the DE. For example, the 
nth order self moment in continuous-wave (CW) domain was found as: 
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where <li> is the CW mean pathlength in the region “i”, Vi its volume and φ0(ri,rj) is the Green’s function 
for the fluence rate in the initial state of the medium calculated at ri when the isotropic source is at rj.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Schematic representation of a scattering medium which includes four absorbing defects. 
 
A dimensional analysis of the second term of Eq. (3) allowed us to derive the following heuristic formula: 
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where φ0 (r, ri) is the Green’s function of the fluence rate corresponding to the optical properties of the 
background medium and relative to a fixed source point inside the defect (ri). We note that in all above 
formulas, the subscripts “0” and “in” have the same meaning and are used interchangeably. The 
dimensionless parameters cn-1 were calculated when the source point was located at the center of the defect. 
Surprisingly, these parameters have shown very little variability, regardless of the geometry of the medium, 
optical properties, size and location of the defect.12 Therefore they can be considered as quasi-constant 
scaling parameters (characteristic of photon migration in diffusing media) which can be used for deriving 
more precise values of the higher order moments once the first order moments are known. In all the studies, 
we have used: c1 = 1.53, c2 = 3.4 and c3 = 10. In other works,14,15 we have noticed that the structure of 
Eq. (4) shows the dependence of the higher order moments upon two factors: the first one (<li>) which 
depends on more global optical properties, and the second factor (the integral) which depends on more 
local optical properties at the defect location. This observation allowed us to find simple solutions for the 
DE also for initial media that were not homogeneous. To our knowledge, these were the first results 
showing the application of perturbation theory to non-homogeneous background media. 

In a more recent work,13 we have expanded the results of the proposed perturbation theory also to 
the frequency and time domains. The formulas which correspond to Eq. (4) are: 
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in the time domain and frequency domain, respectively. We note that in Eqs. (5) and (6) the dependence of 
the higher order moments upon the initial distribution of the absorption coefficient has been omitted. In 
Eq. (5) the function inside square brackets is convolved “n-1” times with the same temporal function (the 
integral). Also, the integrands in both formulas are the Green’s function in the time domain (Eq. (5)) and 
frequency domain (Eq. (6)). The time-domain mean pathlength, <li>(rb, t), has a direct physical meaning: it 
is the average pathlength traveled by a photon inside the region “i” and detected at the boundary point rb, at 
time t. Therefore, the time domain mean pathlength is a function of the arrival time and in general depends 
on the distribution of the optical properties of the medium and also on the source-detector separation. 
However, two important properties are derived in two particular cases: a) for media having a homogeneous 
absorption coefficient, <li>(rb, t) is independent on the value of the absorption coefficient; b) for media 
having a layered structure in the absorption coefficient and homogeneous reduced scattering coefficient, 
<li>(rb, t) is independent on the source-detector separation. The first property is immediately derived from 
Eq. (2) by using the scaling property of the microscopic Beer-Lambert law with respect to the absorption 
coefficient;11 the second properties derives from the structure of the analytical solution of DE in layered 
media found with the eigenfunction method.16 
The frequency-domain mean pathlength in Eq. (6) is defined by the formula:13 
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where the symbol “FT” means the Fourier Transform and )(~ ω,rbinR is the Fourier Transform of Rin(rb,t). 
We note that the CW mean pathlengths are simply derived from Eq. (7) for ω = 0. As we can see from 
Eq. (7), the frequency-domain mean pathlengths are calculated once the time-domain mean pathlengths and 
Green’s function relative to the background medium are known. The time-domain mean pathlenghts are 
calculated by the formula:13 
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In the frequency domain, a formula formally identical to Eq. (1) holds, with the only substitution of the 
Green’s function and the mixed moments in time domain with those in frequency domain. In our recent 
work,13 we have also derived useful expressions for the mixed moments 
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Finally the changes in AC and phase (α) corresponding to a change in the absorption coefficient are defined 
by the formulas:13 
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As for the methods of Padé Approximants and Monte Carlo (MC), we refer to our recent publications.13, 14 
We only remind that the method of Padé approximants is not independent from the fourth order 
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perturbation theory, since it relies on the correct computation of the moments. In other words, the 
prerequisite for the Padé approximant method to work is that we calculate correctly the values of the 
moments. We remind also that MC data are considered to be “gold standard” in the following simulation 
results. 
 
 

RESULTS 
 
We illustrate the performance of the developed perturbation theory and Padé Approximants method with a 
typical example in each domain of investigation. 
 
a) Time domain 
In Fig. 3 are shown some results relative to the slab geometry of Fig. 2. The changes of the TPSF (ΔR/R0 = 
(Rfi – Rin)/Rin; see Eq. (1)) are plotted against the arrival time of detected photons for two values of the 
absorption contrast of the spherical inclusions (which is the same for both inclusions): Δμa = 0.025 mm-1 
(panels (a) and (b)), Δμa = 0.055 mm-1 (panel (c)).  
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.2 Schematics of the slab geometry including two absorbing defects. Geometrical units are in mm. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 The changes of TPSF with respect to that of the background medium are plotted against the arrival time of 
detected photons for two different values of the absorption contrast of the defects in Fig. 2: Δμa =0.025 mm-1 (panels 
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(a) and (b)), Δμa = 0.055 mm-1 (panel (c)). The plots refer to four different orders of perturbation theory, to MC results 
(thick curves) and to the Padé method. 
 
 
As we can see from Fig. 3, the performance of perturbation theory increases with the order of 
approximation considered. We note that for “smaller” values of the absorption contrast (Fig. 3(a)) even a 
fourth order approximation yields good comparison with MC data. However, for higher values of the 
absorption contrast, only the method of Padé approximants shows excellent comparison with MC data 
(Fig. 3(c)). 
 
 
b) Frequency domain 
The changes in AC intensity and phase relative to the background values are plotted against the absorption 
contrast of the spherical defects in Fig. 2.  
 
 
 
 
 
 
 
 
 
 
Fig. 4 Changes of AC (panel (a)) and phase (panel (b)) data with respect to the background values for the situation of 
Fig. 2. The curves refer to the four orders of approximations, Padé approximants and MC data. 
 
Also in the frequency domain, as it is expected, the accuracy of perturbation theory increases with the order 
of the approximation. The method of Padé approximants shows the best match with MC data for a wide 
range of absorption contrasts. These comparisons and others (not shown in this work) prove the excellent 
performance of our proposed perturbation theory also in the frequency domain. 
 
 

CONCLUSIONS 
 
In this work, we have shown that it is possible to develop practical solutions of fourth order perturbation 
theory for absorbing defects also for time domain and frequency domain. The method developed is based 
on approximate formulas for the calculation of higher order pathlength moments. The fourth order 
approximation yields correct calculation of the output flux for a wide range of absorption contrast, which 
cover not only typical values of interest in functional brain studies, but also in pathological conditions like 
breast cancer. If we want to estimate the perturbation in the output flux due to higher absorbing structure, 
e.g. a blood vessel, the method of Padé approximants must be used. We have recently applied this method 
for the modeling of the perturbation induced by vein motion and dilation.17 The proposed heuristic formulas 
for the calculation of higher order moments lighten up the computational burden of higher order 
perturbation theory. For example, all the calculations in the time domain were carried out with a 
computational time that did not exceed about 15 seconds on a Pentium IV 1.66 GHZ personal computer. 
This CPU time was necessary to calculate 5000 points of a TPSF. We have shown that higher order self 
moments in each domain of investigation, can be easily derived once the time domain mean pathlengths are 
known. Another important point is that, in some situations, the mixed moments (which are much more 
numerous than the self moments, given a certain number N of regions of interest) give a negligible 
contribution to the calculation of the perturbed output flux.13 This finding is worth further investigation 
because it may open up the possibility to use our developed perturbation theory to more general situations. 
In the future, we are planning to apply the proposed method to in vivo data for the measurement of 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 0.05 0.1 0.15 0.2
Δμa (mm-1)

Δ
A
C
/A
C

0

MC
Pade'

1

2

3

4

13

(a) -6
-4
-2
0
2
4
6

0 0.05 0.1 0.15 0.2
Δμa (mm-1)

Δ
α

 (d
eg

) MC
Pade'

1

2

3

4

(b)
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 0.05 0.1 0.15 0.2
Δμa (mm-1)

Δ
A
C
/A
C

0

MC
Pade'

1

2

3

4

13

(a) -6
-4
-2
0
2
4
6

0 0.05 0.1 0.15 0.2
Δμa (mm-1)

Δ
α

 (d
eg

) MC
Pade'

1

2

3

4

(b)

Proc. of SPIE Vol. 7896  78961N-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/18/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

localized hemoglobin concentrations associated with pathological conditions and physiological or 
functional processes.  
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