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Abstract
Purpose – This study aims tomodel scale effects in nano-beams under torsion.
Design/methodology/approach – The elastostatic problem of a nano-beam is formulated by a novel
stress-driven nonlocal approach.
Findings – Unlike the standard strain-driven nonlocal methodology, the proposed stress-driven nonlocal
model is mathematically and mechanically consistent. The contributed results are useful for the design of
modern devices at nanoscale.
Originality/value – The innovative stress-driven integral nonlocal model, recently proposed in literature
for inflected nano-beams, is formulated in the present submission to study size-dependent torsional behavior
of nano-beams.
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1. Introduction
Micro- and nano-devices are structures whose characteristic size (thickness, diameter, etc.) is
in the order of the micron and the sub-micron. Such elements are diffusely adopted as
sensors and actuators (Li et al., 2008) and are scale-dependent (Kahrobaiyan et al., 2011;

© Raffaele Barretta, Luciano Feo, Raimondo Luciano, Francesco Marotti de Sciarra and Rosa Penna.
Published in the PSU Research Review: An International Journal. Published by Emerald Publishing
Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone
may reproduce, distribute, translate and create derivative works of this article (for both commercial and
non-commercial purposes), subject to full attribution to the original publication and authors. The full
terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

PRR
1,2

164

Received 13 May 2017
Accepted 28 May 2017

PSU Research Review
Vol. 1 No. 2, 2017
pp. 164-169
EmeraldPublishingLimited
2399-1747
DOI 10.1108/PRR-05-2017-0030

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/2399-1747.htm

http://dx.doi.org/10.1108/PRR-05-2017-0030


Tajalli et al., 2009; Lam et al., 2003; McFarland and Colton, 2005). Size effects were observed
duringmicro-torsion tests on thin copper wires (Fleck et al., 1994).

Beam-like components under torsional loading conditions and/or prescribed torsional
displacements are used in several micro- and nano-electromechanical systems, such as
microscanners (Arslan et al., 2010), micromirrors (Zhang et al., 2001; Huang et al., 2006),
micro-gyroscopes (Maenaka et al., 2005) and springs (Papadakis et al., 2004).

A consistent modeling of nano-structures is hence crucial for the design and optimization
of modern nano-systems.

Nowadays, methodologies of nonlocal continuum mechanics are widely exploited for the
analysis of nano-structures (Peddieson et al., 2003; Reddy, 2007; Wang and Liew, 2007;
Aydogdu, 2009; Civalek and Demir, 2011; Thai and Vo, 2012; Rafiee and Moghadam, 2014;
Sedighi, 2014; Sedighi et al., 2015; Barretta et al., 2016b, 2016a; Feo and Penna, 2016a, 2016b).

They are mainly based on nonlocal theory by Eringen (1983).
Material parameters in nonlocal models, in addition to the classical elastic constants, are

introduced to capture size effects.
Evaluation of constitutive parameters can be performed by micro-bending, micro-torsion

and micro/nano indentation tests (Fleck et al., 1994; Paliwal et al., 2012; Brcic et al., 2013;
Song et al., 2014).

However, the strain-driven integral elastic model proposed by ERINGEN cannot be adopted
for nonlocal structural problems at nanoscale. This issue has been discussed in detail in
Romano et al. (2017). A mechanically consistent stress-driven integral elastic model for
inflected nano-beams has been recently developed in Romano and Barretta (2017a, 2017b).
Comparisons between strain-driven and stress-driven nonlocal formulations have been
carried out in Romano and Barretta (2017a, 2017b). Free vibrations of BERNOULLI-EULER nano-
beams have been investigated in Apuzzo et al. (2017).

The motivation of the present paper is in applying the new stress-driven integral elastic
theory to torsion of nano-beams.

The plan is the following. Basic equations governing the elastic equilibrium problem of a
nano-beam under torsion, formulated according to the new stress-driven integral
constitutive model, are provided in Section 2. Size-effects are computed for cantilever and
doubly clamped nano-beams under uniform distributions of couples per unit length in
Section 3. Concluding remarks are given in Section 4.

2. Stress-driven integral elastic model for circular nano-beams under torsion
Let us consider a circular beam at nanoscale of length L subjected to a distribution of
torsional couples per unit length m in the interval [0,L] and concentrated couples M at the
end cross-sections.

The abscissa along the nano-beam axis will be denoted by x.
The geometric torsional curvature, kinematically compatible with the torsional rotation

field u , is given by:

x ¼ du
dx

: (1)

Equilibrium equations write as:

dM
dx

¼ �m ; in 0;L½ � ;
M ¼ M ; at f 0;L g

8<
: (2)

withM twisting moment.
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The proposed stress-driven nonlocal model for twisted nano-beams is defined by the
following convolution:

x el xð Þ ¼
ðL
0
f l x� jð ÞC jð ÞM jð Þ dj ; (3)

with x el torsional elastic curvature, C local elastic compliance and f l kernel function
depending on a dimensionless nonlocal parameter l > 0 .

Denoting by m is the local shear modulus, the torsional elastic compliance C is the
inverse of the local elastic stiffness:

K :¼ m J ; (4)

with J polar moment of inertia about the center of the circular cross-section.
The kernel function fulfills symmetry, positivity and limit impulsivity:

f l x� jð Þ5f l j � xð Þ � 0 ;

lim
l!0

f l xð Þ5d xð Þ;

8<
: (5)

where d is the DIRAC unit impulse at 0 2 R and the limit being intended in terms of
distributions:

lim
l!0

ðþ1

�1
f l x� jð Þ � f jð Þ dj ¼ f xð Þ ; 8 f 2 C0 R;Rð Þ; (6)

Hereafter, we assume the following special form of the kernel:

f l xð Þ :¼ 1
2 Lc

exp � jxj
Lc

� �
; (7)

where the length characteristic Lc, expressing the amplitude of the range of nonlocal action,
is defined by Lc :¼ lL . It can be proven that the output of the stress-driven integral
convolution Equation (3), described by the special kernel Equation (7), provides the unique
solution of the constitutive differential equation:

x el xð Þ
L2
c

� d2x el

dx2
xð Þ ¼ C �M

L2
c

xð Þ; (8)

With the constitutive boundary conditions:

dx el

dx
0ð Þ ¼ 1

Lc
� x el 0ð Þ ;

� dx el

dx
Lð Þ ¼ 1

Lc
� x el Lð Þ;

8>><
>>:

(9)

Geometric and elastic torsional curvature fields are assumed to be coincident in the sequel
x = x el, since a purely elastic constitutive behavior is considered.
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3. Examples
The stress-driven nonlocal model illustrated in Section 2 is adopted hereafter to
examine the size-dependent structural behavior of nanocantilever and doubly
clamped nano-beams of length L subjected to a uniform distribution m of couples
per unit length.

Twist elastic rotation fields are obtained by substituting Equation (1) in Equations (8)
and (9) and prescribing differential and boundary conditions of equilibrium on the torsional
momentM and kinematic boundary conditions on u .

To this end, let us now introduce the following dimensionless parameters:

j ¼ x
L
;

u * jð Þ ¼ k

mL2 u jð Þ:

8>><
>>:

(10)

Torsional rotations u * versus j of both the nano-beams are displayed in Figures 1 and 2 for
the following values of the nonlocal parameter:

l 2 f 0; 0:1; 0:2; 0:3; 0:4; 0:5 g; (11)

4. Closing remarks
The outcomes of the present paper may be summarized as follows:

� Size-dependent behavior of nano-beams under torsion has been investigated by
an innovative stress-driven nonlocal elastic model;

Figure 1.
Nanocantilever under

a uniform
distributionm of
couples: torsional

rotation u * vs j for
increasing values

of l

Figure 2.
Doubly clamped

nano-beam under a
uniform distribution

m of couples:
torsional rotation u *

vs j for increasing
values of l
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� Unlike the Eringen strain-driven nonlocal integral elastic model which cannot
be applied to nano-structures of technical interest, the stress-driven theory is
mathematically consistent and useful for nano-electromechanical system
applications;

� The proposed nonlocal strategy has been illustrated with reference to nano-
cantilever and doubly clamped nano-beams subjected to a uniform distribution
of torsional couples per unit length; and

� As shown in Figures 1 and 2, the stress-driven model provides an elastic
stiffness increasing with the nonlocal parameter l .
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