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Abstract. A small crystal approach (SCA) is a real-space approach that
allows one to introduce local symmetry breaking which is difficult to consider
in a reciprocal space approach. We apply the SCA to the case of double-
wall nanotubes, for which the effects of the orientation-dependent intertube
interactions have to be taken into account. The results suggest a solution for
the usual difficulties in assigning the resonance Raman spectra of double-
wall nanotubes since important variations of the electronic spectra of these
carbon nanotubes are found with respect to those of the constituent single-wall
nanotubes.
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1. Introduction

Since the discovery of multi-wall carbon nanotubes (MWNTs) in 1991 by Iijima [1] and
the following synthesis of single-wall nanotubes (SWNTs) [2], considerable effort has been
devoted to the theoretical investigation of the optoelectronic properties of these systems [3, 4].
One of the important aims at the basis of this effort is to provide an interpretative tool for the
available experimental measurements provided by resonance Raman spectroscopy (RRS) and
photoluminescence (PL) [5]–[7]. The excitonic nature of the optical spectra of SWNTs [8, 9]
has been addressed in recent years [10]–[15] (see section 3.7 and references therein in [16]),
but many experimental RRS and PL results are also successfully interpreted, with reasonable
approximation, by semiempirical tight-binding (TB) calculations ([3], [17] and references
therein). This has been related to the opposite effects, on the electronic energies, of the elec-
tronic correlation and of the excitonic interaction together with the one-dimensional structure
of nanotubes (NTs) and the related van Hove singularities (vHs) [18].

A reciprocal space approach like that followed by the usual TB approach finds, however,
difficulties for problems in which local symmetry is broken like in the case of functionalization,
doping and other disorder effects such as interactions among NTs and with the surrounding
environment. For instance, the solution of the TB Hamiltonian in reciprocal space for the
simplest form of MWNTs, i.e. double-walled nanotubes (DWNTs), was obtained only for a
restricted number of NT geometries with higher symmetry [19]–[22].

Using a real-space representation one can understand symmetry breaking effects due to
defects and/or other interactions in the ideal NT system in a simple way since local effects can
be directly introduced. A real-space approach has been considered with models for transport
properties [23]. However, the translational periodicity of the NT, which is important for the
computation of optical properties, was not introduced. In this work, we use a real-space
approach, called the small crystal approach (SCA) ([24], [25] and references therein), to sample
the points of the NT Brillouin zone (BZ) which determine vHs in the density of states (DOS).
This allows us to calculate the optical absorption spectra of NTs, and in particular of DWNTs,
for which the interaction of the two NTs cannot be fully considered in a reciprocal space
approach. The results show important symmetry breaking effects on the electronic spectrum
of the DWNT with respect to that of the constituent tubes which suggests that the RRS and PL
spectra of these NTs cannot be simply understood on the basis of the electronic spectra of the
constituent tubes, as is usually done.

2. SCA for the optical properties of CNTs

The SCA considers a small number of unit cells with appropriate boundary conditions to
calculate the electronic states only at some selected points of the first BZ. For a SWNT, we
can use, in the simplest case, one unit cell with periodic boundary conditions (PBCs). In this
case the cluster samples the centre of the 1D NT BZ, for each of the 2N bands labelled by
the azimuthal quantum number index µ, where 2N is the number of atoms in the unit cell. In
figure 1, we report the cutting lines of the reciprocal space of the (5, 0) NT superimposed on
the graphene hexagonal reciprocal space structure. The points sampled by a unit cell with PBCs
are those at kz = 0. One can follow two ways to sample more and/or other points within the 1D
BZ. In the first case, one can use a super-cluster including U translational unit-cells. In this case
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Figure 1. NT BZ of (5, 0) tube superimposed on the 2D graphene BZ: points
sampled with one unit-cell cluster and PBCs are shown as red dots. Additional
points (blue dots) at the edges of each 1D BZ are sampled with a two unit-cell
cluster and PBCs.

one samples k-states at(
µ, kz = ±

2πκ

U T

)
with κ = 0, . . . , U − 1, (1)

where T is the norm of the translation unit vector T = (2m + n)/dRa1 − (2n + m)/dRa2, a1 and
a2 are the unit vectors of the graphene lattice and the integer dR is the greatest common divisor
of 2m + n and 2n + m with n and m the chiral indices of the NT.

In the second case one can multiply the Hamiltonian matrix elements, related to periodic
axial boundary conditions, by a complex exponential factor of period 2π

hi, j = h̃∗

j,i = tπ exp (iφ) with − π 6 φ 6 π, (2)

where tπ is the hopping parameter. In this case one can study points at kz = ±π/nT using
φ = ±π/n. For example, points at kz = ±π/T are sampled by applying a phase φ = ±π . This
kind of condition is called antiperiodic boundary conditions (APBCs), while the previously
employed PBC implies φ = 0. Figure 1 shows the points of the first BZ sampled by using
PBC (red points) or APBC (blue points) for the (5, 0) NT. By changing φ over the full
2π range within the 1D BZ, as indicated in equation (2), the π -TB electronic dispersion
relation from the zone-folding (ZF) method is completely recovered for a given (n, m) NT. In
figure 2, we show the calculation obtained with tπ = 2.9 eV, which is considered appropriate for
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Figure 2. Band structure of (5, 0) calculated by SCA (orange dots) superimposed
on the ZF electronic dispersion (black lines).

Figure 3. DOS of (5, 0) tube calculated by (a) SCA including only kz = 0 points
and (b) full BZ integration of ZF dispersion relation.

SWNTs [3, 26] and will be used also in the following. In general, the whole first BZ has to
be considered for the accurate prediction of the electronic properties of the system. However,
not all the k-points contribute significatively. In the case of SWNTs the optical spectra are
dominated by the vHs in the DOS which are found at the extrema of the dispersion curves [3, 4].
For example, looking at the plot of the energy dispersion of zigzag CNTs, the states giving vHs
in the DOS are found at the centre of the 1D BZ, i.e. kz = 0. Figure 3 shows, as an example,
the comparison between the DOS obtained by the ZF scheme and that obtained by considering
only the kz = 0 points sampled with the SC approach, for the zigzag NT (5, 0). One can see that
the two results show the same relevant features, as expected. Therefore, one can predict that
also the optical properties can be accounted for by this approach if the sampled points include
those determining the vHs. As an example, we calculate the optical properties of zigzag NTs.

New Journal of Physics 11 (2009) 043002 (http://www.njp.org/)

http://www.njp.org/


5

The transition dipole vector [16], [27]–[31] is

D = 〈9c
|∇z|9

v
〉

=

N−1∑
h=0

∑
l=1,3

∑
s′=A,B

c∗

l,s′

∑
s=A,B

ch,s 〈φz(r − Rl,s′)|∇z|φz(r − Rh,s)〉, (3)

where the index l = 1, 2, 3 labels the interatomic vectors r l
h,s = Rl,s′ − Rh,s pointing from one

site s = A(B) in the hth graphene cell to each of the three nearest neighbours B(A) and ch,s

define the contributions of the pz-like atomic orbitals φz(r − Ru
h,s) to the wavefunctions. The

matrix element between φz(r − Ru
h,s) is written as [16], [27]–[29]〈

φz

(
r − Rl,s′

)
|∇z|φz

(
r − Rh,s

)〉
= Mopt

a
√

3
r l

h,s, (4)

where Mopt is the atomic dipole transition matrix element, parallel to the interatomic vector r l
h,s

and evaluated at the first nearest-neighbour distance aCC = 0.142 nm. As a first approximation,
Mopt can be considered a constant that normalizes the resulting values of the dipole matrix
elements [16, 27, 32, 33]. Developing the summation over s and s ′ in terms of the contribution
to the dipole matrix element from A-sites to B-sites and vice versa, we obtain

Dz =
aMopt

2
√

3

[
N−1∑
h=0

∑
l=1,3

c∗

l,Bch,A

(
r l

h,A

)
z
+

N−1∑
h=0

∑
l=1,3

c∗

l,Ach,B

(
r l

h,B

)
z

]
, (5)

where the projection along the tube axis z has been considered, since it is known that the
transition with the dipole moment perpendicular to the axis is strongly suppressed by the antenna
effect [34, 35]. The selection rules for vertical transitions involving a given (µ, kz = 0) valence
band state and another (µ′, kz = 0) conduction band state are automatically obtained through
equation (5):

δµ,µ′ = 0 H⇒ Dz = 0,

δµ,µ′ = 1 ∧ (µ, µ′
6= 0) H⇒ Dz 6= 0,

(6)

in accord with the ZF selection rules [16], [27]–[29].
The calculation of the optical absorption spectrum can be obtained by the sum over states

(SOS) method [36]. In figure 4, we compare the optical absorption spectrum of the periodic
zigzag cluster (5, 0) based on a SC approach calculation, where a Lorentzian function is used
for each resonance, to that obtained with the ZF approach. The results show that the same
fundamental features (transition energies and relative intensities of the transitions) are obtained.
Therefore, one concludes that the optical properties of NTs can be obtained with a small cluster
and appropriate boundary conditions if they allow sampling of the vHs of the first BZ.

3. Optical properties of DWNTs

Carbon DWNTs are interesting systems because their structure can be considered that of a
SWNT protected by the external SWNT on which functionalization can be operated without
affecting the properties of the internal tube [37, 38]. They can be commensurate if the ratio
of the translational periods of the constituent SWNTs is a rational number. According to
this definition, DWNTs with both armchair or zigzag NTs are always commensurate, while
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Figure 4. Optical absorption intensity of a (5, 0) tube calculated by (a) SCA
including only kz = 0 points and (b) full BZ integration of ZF dispersion relation.

a DWNT with a zigzag tube inserted into an armchair one is incommensurate [39]. As recalled
in the introduction, besides PL, RRS allows to characterize the NTs present in a sample by
assigning their radial breathing modes (RBM). The assignment is based on calculated Kataura
plots [6] that correlate SWNT electronic excitations with their diameters. A similar route was
also attempted, without complete success, for DWNTs [40, 41], with the basic assumption
that these systems can be modelled as two almost non-interacting SWNTs. Based on this
assumption, the electronic structure of a DWNT is simply the sum of the electronic structures
of the constituent tubes. Perturbative effects due to weak intertube electronic coupling are
considered negligible or at least responsible for a slight shift on the single-particle transition
energies around the Fermi level. By applying the SC approach to DWNTs, we will show that
this picture is only partially correct and that new transitions can be expected originating from
the symmetry breaking of the band degeneracies, in particular in the visible range. Moreover,
we will show that different mutual orientations between the concentric NTs due to azimuthal
rotation or translation parallel to the DWNT axis can significatively alter the absorption spectra.
To show the new features appearing in the electronic spectrum, we choose to consider DWNTs
obtained with zigzag NTs for which the cluster and the boundary conditions to study the relevant
electronic states are simpler, as recalled in the previous sections, but the calculations can be
done for all other types of NTs as well. Furthermore, among all possible ways to combine
SWNTs into DWNTs, we consider those with an interlayer distance between 0.334 nm (graphite
interlayer spacing) and 0.360 nm, as was experimentally found [42]. For zigzag DWNTs, we
find in this interval all combinations of type (n, 0)@(n′, 0) such that n − n′

= 9 which have
an interlayer of 0.352 nm, for CC bond length of 0.142 nm. We consider in our examples a
semiconductor–semiconductor (S–S) DWNT, such as (5, 0)@(14, 0) and a metallic–metallic
(M–M) one, such as (9, 0)@(18, 0). The TB Hamiltonian for a DWNT can be written as a sum
of the TB Hamiltonians corresponding to the inner and outer NTs plus a perturbative term Hinter

for the electronic hopping from a site l on the inner tube to another site m on the outer tube.
The intertube interaction is considered to decay exponentially with the distance dl,m between
the sites, according to the parametrization first introduced by Roche et al [43] for these systems:

HINTER = βπ

out,in∑
〈l,m〉,σ

cos θl,m exp
[(

dl,m − 1
)
/δπ

] (
c†

l,σ cm,σ + cl,σ c†
m,σ

)
. (7)
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Figure 5. Electronic band structure of (5, 0)@(14, 0) DWNT at default
configuration (φ = 0, 1Z = 0) with non-interacting constituent SWNTs (left
panel) and with intertube hopping (right panel, βπ = 1.0 eV). Colour legend:
black (inner SWNT), red (outer SWNT), green (DWNT with interaction on).

In the above expression for HINTER, 1 is the interlayer spacing (semidifference between
diameters), δπ is the decay constant for π orbitals, θl,m is the angle between π orbitals
pointing perpendicularly to the tubes’ surface and βπ is the intertube hopping amplitude
integral. According to the literature, values for βπ can range from tπ/8 to 1.0 eV and δπ =

0.045 nm [43]–[45] according to ab initio results for turbostratic graphite [21, 46, 47].
Intertube hopping interaction depends, therefore, on the mutual orientation of the

constituent coaxial SWNTs, namely on the azimuthal angle 18 and the translation 1Z parallel
to the tube axis. Therefore, we can write

θl,m ≡ θl,m (18) , dl,m ≡ dl,m (18, 1Z) .

In figure 5, the electronic dispersion relation for the considered DWNTs are shown for
the default configuration (18 = 0, 1Z = 0) using βπ = 1.0 eV. The main effect of HINTER is
the lifting of the doubly degenerate bands and the breaking of the symmetry of valence and
conduction bands with respect to the Fermi level. This is more evident far from the Fermi level
and is stronger for valence bands than for conduction bands. We now consider how the total
π electronic energy varies as a function of the orientational parameters, namely the azimuthal
shift 18 and the translational shift 1Z . Figure 6 shows some results obtained by summing to
convergence the energy of the states sampled over the entire BZ. One observes in figure 6(c) and
(d) two minima around 1Z = ±A/4 (in zigzag NTs A = |T | = 0.426 nm) using 18 = 0 for
(5, 0)@(14, 0) and 18 = π/36 for (9, 0)@(18, 0) (figures 6(c) and (d)). On the other hand, the
dependence on 18, at 1Z = A/4 (figures 6(a) and (b)), shows a periodic oscillatory behaviour,
with an energy minimum located at 18 = π/36, only for (9, 0)@(18, 0). These results agree
with those obtained by symmetry arguments by Damnjanović et al [39, 48], although in this case
one appreciates that the minima are small minima, in particular in the case of the dependence
on 18. In the following calculations, we will use 1Z = A/4 for both DWNTs and 18 = 0
and π/36 for (5, 0)@(14, 0) and (9, 0)@(18, 0), respectively.
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Figure 6. Dependence of total π electronic energy on azimuthal 18 (a and
b) and translational 1Z (c and d) for DWNTs (5, 0)@(14, 0) (left panel) and
(9, 0)@(18, 0) (right panel) with βπ = 1.0 eV (blue colour). Energy data are
normalized to absolute values of the total π electronic energy of the respective
non-interacting constituent SWNTs (purple colour).

By inspection of the electronic band structure of figure 5, one can see that the vHs for
zigzag DWNTs are still determined by the kz = 0 states in the 1D BZ. One finds that for both
DWNT geometries, the azimuthal shift does not affect the DOS structure (not shown), while
the translational shifts have a large influence. Figure 7 reports the DOS by changing 1Z from
0 to A/4 together with the DOS spectra of the constituent non-interacting SWNTs. One can see
important variations, also at low energies, for both types of DWNTs suggesting that the optical
spectra will also have new features with respect to those of the constituent SWNTs. In particular,
one observes that also the DOS at E = 0, which is constant in the case of the metallic tubes and
is calculated as a peak in our calculation due to the finite sampling of the BZ, suffers important
changes.

Using the joint DOS (JDOS) and the DWNT eigenvectors, in which the inner and outer
tube wavefunctions are mixed due to HINTER, the resulting optical matrix elements are obtained
according to the following approximation:

Mopt
z DW = |〈9̃c

DW|P · ∇z|9̃
v
DW〉|

2 u |〈9̃c
in|P · ∇z|9̃

v
in〉|

2 + |〈9̃c
out|P · ∇z|9̃

v
out〉|

2. (8)

In fact, contributions of mixed type between pz orbitals belonging to different NTs can be safely
ignored due to the fast decay rate of the π orbitals. As a matter of fact, the absolute value of
Mopt is already very small at a distance of 2aCC and is practically zero at the typical graphitic
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Figure 7. Electronic DOS (βπ = 1.0 eV) for (5, 0)@(14, 0) (left panel) with
(18 = 0, 1Z = 0) (upper panel) and (18 = 0, 1Z = A/4) (bottom panel).
DOS spectra for (9, 0)@(18, 0) (left panel) with (18 = π/36, 1Z = 0) (upper
panel) and (18 = π/36, 1Z = A/4) (bottom panel). Colour legend: inner
SWNT (black), outer SWNT (red) and DWNT with intertube interaction (green).

interlayer distance of 0.344 nm for all kinds of molecular orbital configurations [16]. However,
new features appear in the spectra due to the new JDOS. The optical absorption intensity
can be again calculated for DWNTs employing the SOS method. As noticed for the DOS of
both DWNT species, the effect of geometrical parameters on the optical absorption spectra is
important when a translational shift 1Z is considered. Figure 8 shows calculated absorption
spectra for the two types of DWNT considered. In general, additional absorption peaks can
be found originating from the lifting of the band degeneracies due to the symmetry breaking
effect of HINTER. This is particularly evident in the case of the metallic DWNT (9, 0)@(18, 0)

for which new bands are observed at low frequencies. For (5, 0)@(14, 0) the lowest peak,
corresponding to the E S

11 transition of SWNT (14, 0), is poorly affected by the intertube
coupling, while new features are found around the E S

22 where two peaks are now calculated.
Finally, we also compare the (5, 0)@(14, 0) DWNT optical spectra for three different

values of the intertube hopping amplitude (see figure 9), namely β = tπ/8 [43], β = tπ/4 and
β = 1.0 eV [44, 45]. All the observations made above are still valid for the intermediate value
β = tπ/4, while for β = tπ/8 only the spectral region above 2.0 eV is visibly affected by the
intertube coupling, as shown in figure 10, where a shifted peak related to the inner tube is
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Figure 8. Absorption spectra (βπ = 1.0 eV) for (5, 0)@(14, 0) (left panel) with
(18 = 0, 1Z = 0) (upper panel) and (18 = 0, 1Z = A/4) (bottom panel).
Absorption spectra for (9, 0)@(18, 0) (left panel) with (18 = π/36, 1Z = 0)

(upper panel) and (18 = π/36, 1Z = A/4) (bottom panel). Intensity is given
in arbitrary units. Colour legend: inner SWNT (black), outer SWNT (red) and
DWNT with intertube interaction (green).

found. Although variations of the spectra can be found for all the values of the intertube hopping
parameters a careful evaluation of this parameter must be obtained for appropriate electronic
calculations for DWNTs.

One can recall that, on the basis of the hypothesis that the constituent SWNTs are non-
interacting units, not all the RBM features have been assigned in the resonance Raman spectra
of DWNTs [40, 41]. This is consistent with our results which show that relevant variations of the
electronic spectra of both the inner and outer tubes are expected. In particular, some assignments
were not possible because the Kataura plot for SWNTs does not show tube resonances at some
energies and a tentative assignment based on transitions polarized perpendicular to the NT
axis [49] were proposed [41]. Our results show that the interaction between the inner and outer
tubes determines a symmetry breaking and new dipole allowed transitions polarized along the
NT axis. These new transitions can be used for explaining the Raman assignments. However,
a more detailed study of the interlayer hopping integral must be obtained for considering new
Kataura plots for DWNTs.
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Figure 9. Absorption spectra for (5, 0)@(14, 0) (left panel) with (18 =

0, 1Z = 0) calculated for different values of the intertube hopping parameter βπ .
Colour legend: β = tπ/8 (blue), βπ = tπ/4 (red) and βπ = tπ/8 × 2.75 = 1.0 eV
(green).

Figure 10. Absorption spectra for (5, 0)@(14, 0) (left) with (18 = 0, 1Z = 0)

calculated for non-interacting SWNT constituents (βπ = 0 eV) and βπ = tπ/8.
Colour legend: β = tπ/8 (green), inner SWNT (black) and outer SWNT (red).

4. Conclusion

SCA calculations have been presented for CNTs. We have shown how the appropriate DOS and
the optical absorption of the CNTs can be obtained by sampling k points where the vHs are
present. The method has been applied to the calculation of the electronic structure of DWNTs
with orientation-dependent intertube hopping interactions. The main effect on the electronic
structure of the constituent NTs is the appearance of new dipole transition energies originating
from the lifting of the band degeneracies due to the symmetry breaking effect of the intertube
electronic coupling. The optical spectral features have been shown to be strongly affected
particularly by the translational shift parallel to the DWNT axis. Important changes have been
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found in the calculated electronic energies of both inner and outer tubes suggesting that revised
Kataura plots are needed for the interpretation of experimental data like the resonance Raman
spectra of DWNTs. A small number of sites like those considered by the SC approach could be
very useful to address other problems relevant for NTs like electronic correlations, and further
work is in progress in this direction.
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