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Compared with triangular, square and Kagome honeycombs, hexagonal honeycomb has superior heat
dissipation capabilities, but its lower in-plane stiffness hinders its multifunctional applications. Regard-
ing this problem, in this paper we propose a multifunctional hierarchical honeycomb (MHH) with nega-
tive Poisson’s ratio (NPR) sub-structures. This MHH is constructed by replacing the solid cell walls of the
original regular hexagonal honeycomb (ORHH) with two kinds of equal mass NPR honeycombs, the
anisotropic re-entrant honeycomb or the isotropic chiral honeycomb. Based on the Euler beam theory,
formulas for the Young’s moduli of these two kinds of MHH structures are derived. Results show that
by appropriately adjusting the geometrical parameters both the re-entrant honeycomb (when the cell-
wall thickness-to-length ratio of the ORHH is less than 0.045) and the chiral honeycomb (when the
cell-wall thickness-to-length ratio of the ORHH is less than 0.75) can greatly tune the in-plane stiffness
of the MHH structure. The presented theory could thus be used in designing new tailorable hierarchical
honeycomb structures for multifunctional applications.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction ducing the concept of hierarchy and surface effects of nanoscale
As one kind of typical low density cellular solids, honeycomb
structures have been applied in many fields such as aerospace
and automotive industries in which they are mainly used as cores
of the light-weight sandwich panel structures [1–4]. In addition to
the appealing low-density and specific mechanical properties, hon-
eycombs also have other attractive functionalities, e.g., heat trans-
fer, thermal protection, catalysis application, and so on [5–8].
Referring to the heat transfer properties, comparing with triangu-
lar, square and Kagome honeycombs, regular hexagonal metal hon-
eycombs provide the highest level of heat dissipation when used as
heat sink media [5,6,9]. However, the regular hexagonal honey-
combs have much lower in plane stiffness which greatly restricts
their multifunctional applications. To improve the in plane stiff-
ness of regular hexagonal honeycombs, the crucial role on stiffness,
strength and toughness that hierarchy plays in both natural and
bio-inspired materials has already been exploited [10–22]. Intro-
into honeycombs, Pugno and collaborators studied elastic proper-
ties, in-plane buckling and bending collapses of such new materials
[23–25]. Chen and Pugno [26] reviewed the hierarchical structures
and mechanisms behind their mechanical properties, from animals
(nacre, gecko feet, mussel, spider silk, crabs, armadillo and turtle
shells) to plants (diatoms and plant stem). Also, Sun and Pugno
[27] proposed hierarchical fibers with a negative Poisson’s ratio,
which provide a new strategy for the design of fiber reinforced
hierarchical bio-inspired composites with a superior friction dur-
ing the pull-out mechanism, and thus a superior toughness.

Taylor et al. [28,29] introduced functionally graded hierarchical
honeycombs, and their finite element results suggested that the
elastic modulus of the functionally graded hierarchical honeycomb
can be up to 2 times that of its equal-mass first-order hexagonal
honeycomb if the structure is designed properly. Different from
Taylor’s work, Ajdari et al. [30] developed a new hierarchical hon-
eycomb structure by replacing every three-edge joint of a regular
hexagonal lattice with a smaller hexagon, and showed that the
elastic moduli of the hierarchical honeycombs with one level and
two levels can be 2.0 and 3.5 times stiffer than their equal-mass
regular hexagonal honeycomb, respectively. In a previous paper
we [31] proposed multifunctional hierarchical honeycombs
(MHH), which are formed by replacing the solid cell walls of an ori-
ginal regular hexagonal honeycomb (ORHH) with three different
isotropic honeycomb sub-structures possessing hexagonal,
triangular and Kagome lattices, respectively. Analytical results
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show that, compared with the ORHH, triangular and Kagome sub-
structures could greatly increase the in plane Young’s modulus of
the MHH structure, up to 1 order or 3 orders of magnitude depend-
ing on the cell wall thickness-to-length ratio of the ORHH.

The concept of negative Poisson’s ratio (NPR) can also be ex-
plored to improve the elastic moduli of regular hexagonal honey-
combs. One of the two interesting NPR cellular solids are the
anisotropic re-entrant honeycomb [32,33] and the isotropic (Pois-
son’s ratio �1) chiral honeycomb [34]. The multifunctionality of
these two kinds of honeycombs has been widely studied. Scarpa
and Tomlinson [35] studied the vibration of a sandwich plate with
re-entrant honeycomb cores and suggested that the dynamic per-
formance of a sandwich structure could be significantly improved
using the re-entrant cell cores. Ruzzene [36] analyzed the vibration
and sound radiation of sandwich beams with re-entrant honey-
comb truss cores and indicated that re-entrant configurations are
generally more effective for vibration and sound transmission
reduction applications. Innocenti and Scarpa [37] studied the ther-
mal conductivity and heat transfer properties of the multi-re-en-
trant honeycomb structures and showed that this auxetic
honeycomb configurations show higher out-of-plane conductivity,
strong in-plane thermal anisotropy and the lowest peak tempera-
tures during heat transfer between the bottom and top faces of
honeycomb panels. Besides, numerical and experimental simula-
tions showed that chiral honeycombs have attractive dynamic
properties when used as the core of airfoils [38–40]. At the same
time, Spadoni et al. [41] studied the phononic properties of the
hexagonal chiral lattices and suggested this kind of cellular lattices
as potential building blocks for the design of meta-materials of
interest for acoustic wave-guiding applications.

In this paper, by substituting the solid cell wall of an ORHH with
anisotropic re-entrant honeycombs or isotropic chiral honey-
combs, two new kinds of MHH structures with NPR sub-structures
are introduced. Based on the Euler beam theory, formulas for the
in-plane Young’s moduli of these two kinds of MHH structures
are finally derived. The presented theory could be used in design-
ing new tailorable hierarchical multifunctional honeycombs.

2. MHH with re-entrant honeycomb sub-structures

2.1. Basic theory

At first, we consider the MHH with anisotropic re-entrant honey-
comb sub-structures (Fig. 1). Fig. 1a is an ORHH with cell-wall thick-
ness and length denoted by t0 and l0, respectively; Fig. 1b is an equal-
mass MHH with the cell-wall thickness and length denoted by t1 and
l0, respectively. We can see that the cell-wall lengths of the ORHH
and the MHH are identical. In particular, one of the MHH cell walls
in Fig. 1b is shown in Fig. 1c. The cell-wall thickness, lengths parallel
and inclined to the local direction 2 for re-entrant hexagonal cells are
denoted by tr, hr and lr respectively. The angle between the inclined
cell wall and the local direction 1 is denoted by h (h < 0�). The out-
of-plane depth is a constant and identical for both structures.

For simplicity of the calculation we suppose that both the cell
walls of the MHH structure and re-entrant honeycomb substruc-
tures are Euler beams. That is to say, under small deformations
we only consider the bending of the cell walls of the MHH struc-
ture and the re-entrant honeycomb sub-structures, which requires
that t1/l0 < 0.25, tr/hr < 0.25 and tr/lr < 0.25 [33]. Under the above
assumptions we can approximately treat this MHH structure as
isotropic, even though its cell walls are constituted by anisotropic
re-entrant honeycomb substructures.

Here we define hr/lr = a and tr/lr = b. The geometry of Fig. 1c
implies that:

l0 ¼ nðhr þ 2lr sin hÞ þ ðnþ 1Þhr ¼ nðaþ 2 sin hÞlr þ ðnþ 1Þalr ð1Þ
where n + 1 is the number of solid re-entrant hexagonal cell walls
lying on the middle line of the MHH cell wall (e.g., in Fig. 1c,
n = 15). Defining k = lr/l0 as the hierarchical length ratio and rear-
ranging Eq. (1) provides

k ¼ lr

l0
¼ 1

nðaþ 2 sin hÞ þ ðnþ 1Þa ð2Þ

Then, defining N as the number of re-entrant hexagonal cells away
from the middle line of the MHH cell walls (e.g., in Fig. 1c, N = 1),
from the geometric analysis we get the cell wall thickness of the
MHH structure:

t1 ¼ 2lr cos h� 2N þ tr

2
� 2 ¼ ð4N cos hþ bÞlr

¼ ð4N cos hþ bÞkl0 ð3Þ

that is
t1

l0
¼ kð4N cos hþ bÞ ð4Þ

Then from the precondition t1/l0 < 0.25 we obtain Nmax, the upper
bound of N:

Nmax ¼ fl
1

16k cos h

� �
ð5Þ

where ‘fl[]’ is the floor function, which denotes the largest integer
not greater than the term in the bracket.

The mass equivalence between the cell wall of the ORHH and
that of the MHH structure gives the following relationship (see
Appendix A):

BDb3 þ ðADþ BCÞb2 þ ACb� E ¼ 0 ð6Þ

in which A = 2N(2n + 1)(a + 2) + a(n + 1), B ¼ ½2Nð2nþ 1Þ � ðnþ 1Þ�
1
2 tan h� 1

cos h

� �
; C ¼ 1� 2ffiffi

3
p Nk cos h, D ¼ � 1

2
ffiffi
3
p k, E ¼ 1

k2
t0
l0
� 1

2
ffiffi
3
p t0

l0

� �2
� �

.

Through Newton’s method we solve Eq. (6) and get the solutions
for b. Then, through the precondition b < 0.25, we can obtain Nmin,
the lower bound of N.

Defining EO, EM and Er2 as the in plane Young’s moduli of the
ORHH, MHH and the re-entrant honeycomb sub-structure in the
local direction 2, we find [33]:

EO

Es
¼ 2:3

t0

l0

	 
3

ð7Þ

EM

Er2
¼ 2:3

t1

l0

	 
3

ð8Þ

Er2

Es
¼ tr

lr

	 
3 hr=lr þ sin h
cos3 h

¼ b3 aþ sin h
cos3 h

ð9Þ

There are some points needed to be noted here. In the first place,
Eqs. (7)–(9) are only valid for infinite honeycombs, i.e., with large
numbers of cells. Scarpa and collaborators studied the transverse
shear stiffness of thickness gradient honeycombs [42] and the gra-
dient cellular core for aeroengine fan blades based on auxetic con-
figurations [43] and showed that low number of cells tend to
decrease the stiffness compared to the infinite honeycomb case.
Here for simplicity of the analytical analysis we use the ideal
expressions Eqs. (7)–(9). In the second place, in Eq. (9) we neglect
axial deformation of the ribs. This is true for internal cell angles
roughly between �60� and �5�, and 5–60�; smaller angles (in mag-
nitude) would provide cellular configurations where rib stretching
is dominant [44]. Finally, in Eq. (8) only Er2 is used to express the
flexural stiffness EM of the MHH. Because the re-entrant honeycomb
sub-structure is treated as an Euler beam, for the MHH only the
Young’s modulus in the local direction 2, Er2, is considered (for de-
tails, see [33]). Combining Eqs. (7)–(9) gives the relative Young’s
modulus EM/EO:



Fig. 1. (a) The original regular hexagonal honeycomb (ORHH); (b) the tailorable multifunctional hierarchical honeycomb (MHH) with re-entrant honeycomb sub-structures;
and (c) amplification of a re-entrant hexagonal lattice cell wall in (b).
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EM

EO
¼ ðt1=l0Þ3b3ðaþ sin hÞ

ðt0=l0Þ3 cos3 h
ð10Þ
2.2. Effects of a, N, t0/l0 and k on the relative Young’s moduli

To investigate the influence of N on the relative elastic moduli
EM/EO, here we consider the following examples with parameters
n = 30, h = �5�, t0/l0 = 0.01, 0.02, 0.03, 0.04, 0.045 and a = 1, 1.5, 2
and 3. The results of EM/EO vs N for different t0/l0 are shown in
Fig. 2. It is easy to see from Fig. 2 that in general EM/EO increases
with the increases of N and a.

Comparing Eqs. 2(a)–(d) we can see that the parameter a has a
vital influence on EM/EO, which can also be seen from Eq. (10). When
a 6 1.5 the relative elastic moduli EM/EO < 1 (Fig. 2), which means
that for a 6 1.5 the Young’s modulus of the MHH structure with
re-entrant honeycomb sub-structures is smaller than that of the
ORHH. Note that when t0/l0 > 0.045 the assumptions in Section 2.1
are not satisfied. So here we only consider the case of t0/l0 6 0.045.

To see the effect of h on EM/EO, we use the parameters n = 30,
a = 3, t0/l0 = 0.01, 0.02, 0.03, 0.04, h = �60� to�5�. The results involv-
ing the maximum EM/EO and h are given in Fig. 3. It is apparent that
the maximum EM/EO decreases with the decrease of h. At the same
time, to see the effects of k, i.e., n, on EM/EO, we study the parameters
a = 4, h = �5�, t0/l0 = 0.01, 0.03 and n = 10–50. The results are shown
in Fig. 4a which shows that with the increase of n the maximum EM/
EO increases in a sawtooth shape. The reason is due to the change of
Nmax with the increase of n. One example is given in Fig. 4b, in which
EM/EO vs N for n = 10, 11, 12, 13 are plotted. It is easy to see that for
n = 10 and 11, Nmax = 5; for n = 12 and 13, Nmax = 6; and connecting
the maximum EM/EO corresponding to n = 10, 11, 12, 13, respec-
tively, will produce the sawtooth shape shown in Fig. 4a.

3. MHH with isotropic chiral honeycomb sub-structures

3.1. Basic theory

In this section, we substitute the ORHH cell walls with equal-
mass isotropic chiral honeycomb sub-structures, see Fig. 5. The cell
wall thickness, the circular node radius, the distance between the
centers of the adjacent circular cells and the length of the liga-
ments in the chiral honeycomb are denoted by t, r, R and l, respec-
tively (Fig. 5d). Then the geometrical relation r2 + l2/4 = R2/4 holds.
We suppose t/l < 0.25 so that the Euler beam theory can be applied,
i.e., only the bending of the ligaments is considered [33,34].

As defined in Section 3, here the hierarchical length ratio is ex-
pressed as

k ¼ R
l0
¼ 1

n
ðn P 1Þ ð11Þ

where n is the number of the distance R lying on the middle line of
the MHH cell walls. Supposing

R
r
¼ k ð12Þ

and combining it with the relation r2 + l2/4 = R2/4 gives:

r
l ¼ A ¼ 1ffiffiffiffiffiffiffiffi

k2�4
p

l
l0
¼ B ¼

ffiffiffiffiffiffiffiffi
k2�4
p

nk

R
l ¼ C ¼ kffiffiffiffiffiffiffiffi

k2�4
p

8>>>><
>>>>:

ð13Þ

Defining N as the number of circular cells in the thickness direc-
tion of the cell wall of the MHH structure, similar to that done in
Section 2, a geometrical analysis on Fig. 5c provides Nmax, the
upper bound of N, and t1, the thickness of the MHH cell walls:

Nmax ¼ n ð14Þ

t1 ¼
ffiffiffi
3
p

NRþ 2t 1 6 N < Nmaxffiffiffi
3
p

l0 N ¼ Nmax

(
ð15Þ

Then, rearranging Eq. (15) gives

t1

l0
¼

ffiffi
3
p

N
n þ 2Bb 1 6 N < Nmaxffiffiffi
3
p

N ¼ Nmax

(
ð16Þ

in which b = t/l is the thickness-to-length ratio of the ligaments.



Fig. 2. The relative Young’s modulus EM/EO vs N for different t0/l0 with (a) a = 1; (b) a = 1.5; (c) a = 2; and (d) a = 3.

Fig. 3. The maximum EM/EO vs h for different t0/l0.
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If N < Nmax, from Fig. 5c, according to the equal-mass principle,
we can find
t0l0 �
1

2
ffiffiffi
3
p t2

0 ¼ MQ þ 2ðl0 � NRÞt ¼ MQ þ 2
1
B
� NC

	 

tl ð17Þ
where M is the total number of the circular cells in one cell wall of
the MHH structure and Q is the in-plane areas of one circular cell
and six half-length ligaments. In fact, one circular cell in the MHH
cell wall corresponds to six half-length ligaments. M has the follow-
ing relationship with n and N (see Appendix B):

M ¼ Nð2n� NÞð1 6 N 6 nÞ ð18Þ

and

Q ¼p rþ t
2

	 
2

þ r� t
2

	 
2
" #

þ6
1
2

tl� p
2
� tan�1

ffiffiffiffiffi
2r
t

r !
rþ t

2

	 
2

�1
2

r� t
2

	 
 ffiffiffiffiffiffiffi
2tr
p

 !( )

¼2prtþ3tl�6
p
2
� tan�1

ffiffiffiffiffi
2r
t

r !
rþ t

2

	 
2

þ3 r� t
2

	 
 ffiffiffiffiffiffiffi
2tr
p

ð19Þ

Then, rearranging Eq. (17) gives

2pAþ 3þ 2
BM
� 2NC

M

	 

b� 6

p
2
� tan�1

ffiffiffiffiffiffi
2A
b

s !
Aþ 1

2
b

	 
2

þ 3 A� 1
2

b

	 
 ffiffiffiffiffiffiffiffiffi
2Ab

p

¼ 1
B2M

t0

l0
� 1

2
ffiffiffi
3
p t0

l0

	 
2
" #

ð20Þ

When N = Nmax, it gives

t0l0 �
1

2
ffiffiffi
3
p t2

0 ¼ MQ þ 2ðl0 � NRÞt ¼ MQ ð21Þ

and rearranging Eq. (21) we obtain



Fig. 4. (a) The maximum EM/EO vs n for different t0/l0; and (b) EM/EO vs N for different n with t0/l0 = 0.01.

Fig. 5. Schematics of (a) the ORHH; (b) the tailorable MHH with chiral honeycomb sub-structures; (c) amplification of a chiral lattice cell wall in (b); and (d) geometrical
parameters of the chiral honeycomb cell in (c).
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ð2pAþ 3Þb� 6
p
2
� tan�1

ffiffiffiffiffiffi
2A
b

s !
Aþ 1

2
b

	 
2

þ 3 A� 1
2

b

	 
 ffiffiffiffiffiffiffiffiffi
2Ab

p

¼ 1
B2M

t0

l0
� 1

2
ffiffiffi
3
p t0

l0

	 
2
" #

ð22Þ

Through Newton’s method we can solve Eqs. (20) and (22) and get
the solutions for b. Then from the precondition b < 0.25 we can ob-
tain Nmin, the lower bound of N.

In a previous paper we derived analytical formulas for the Young’s
modulus of the regular hexagonal honeycomb at all densities [31].
Defining EO, EM and EC as the in plane Young’s moduli of the ORHH,
MHH and the chiral honeycomb sub-structures, using our previous
results and referring to the results of Prall and Lakes [34], we find:

EO

Es
¼ AO ¼

3
2 /3

O /O 6 0:5
/Oð2fO�1ÞðfOþgO�1Þ

f3�2/O�2ð2�/OÞð1�fOÞþð2�fO�gOÞ½2/Oð1�fOÞ�1�g /O > 0:5

(

ð23Þ
EM

EC
¼ AM ¼

3
2 /3

M /M 6 0:5
/Mð2fM�1ÞðfMþgM�1Þ

f3�2/M�2ð2�/MÞð1�fMÞþð2�fM�gMÞ½2/Mð1�fMÞ�1�g /M > 0:5

(

ð24Þ

EC

Es
¼ Ac ¼

ffiffiffi
3
p t

l

	 
3 l
r

	 
2

¼
ffiffiffi
3
p

b3 1

A2 ð25Þ

in which

/O ¼
2ffiffiffi
3
p t0

l0
� 1

3
t0

l0

	 
2 t0

l0
6

ffiffiffi
3
p	 


; ð26Þ

/M ¼
2ffiffiffi
3
p t1

l0
� 1

3
t1

l0

	 
2 t1

l0
6

ffiffiffi
3
p	 


; ð27Þ

fO and gO, fM and gM, interpolated from Fig. 6, are the three-
point parameters corresponding to /O and /M respectively; Es

is the Young’s modulus of the solid of which the ORHH is made.
Combining Eqs. (22)–(25) gives the relative Young’s modulus
EM/EO:



Fig. 6. Three-point parameters f and g for the regular hexagonal honeycomb vs the
relative density / [31].

Fig. 7. The relative Young’s modulus EM/EO vs N for different t0/l0.

Fig. 9. EM/EO vs N for different k.

Fig. 10. The maximum EM/EO vs n for different t0/l0.
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EO
¼ AMAc

AO
ð28Þ
3.2. Effects of N, t0/l0, k and k on the relative Young’s moduli

Similar to Section 2, in order to investigate the effect of N on the
relative Young’s moduli EM/EO, we consider here the following
Fig. 8. (a) The maximum EM/EO vs t0/l0; a
parameters n = 20, k = 20, t0/l0 = 0.01, 0.05, 0.1, 0.2 and 0.3. The re-
sults of EM/EO vs N for the above mentioned t0/l0 values are shown
in Fig. 7. From Fig. 7 we can see that different t0/l0 ratios corre-
spond to different ranges of N. For t0/l0 = 0.01 and 0.05 peak values
of EM/EO exist at N = 6, for t0/l0 = 0.1, 0.2 and 0.3 in general EM/EO

decreases with the increase of N. Note that when t0/l0 > 0.75, Nmin -
6 N 6 Nmax cannot be satisfied for any value of N. So the theory
nd (b) EM/EO vs N for different t0/l0.



Fig. A.1. (a) Schematics for the representative cell walls of the MHH with re-entrant honeycomb sub-structures (N = 1) shown in Fig. 1b; and (b) details of the re-entrant cells
in (a).

Fig. B.1. Schematics for the representative cell walls of the MHH with chiral honeycomb sub-structures: (a) N = 1; and (b) N = 2.
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here is only suitable for the ORHH with the thickness-to-length ra-
tio t0/l0 less than 0.75.

To see the effect of t0/l0 on EM/EO, we use the parameters n = 20,
k = 20 and t0/l0 = 0.01–0.3. The results involving the maximum EM/
EO and t0/l0 are shown in Fig. 8a, which indicates that with the in-
crease of n the maximum EM/EO increases in a sawtooth shape. The
reason of this kind of shape is due to the change of the range of N
with the increase of t0/l0. One example is given in Fig. 8b, in which
EM/EO vs N for t0/l0 = 0.07, 0.08, 0.09, 0.10, 0.11 are plotted. It is easy
to see that connecting the maximum EM/EO corresponding to t0/
l0 = 0.07, 0.08, 0.09, 0.10, 0.11, respectively, will produce the saw-
tooth shape shown in Fig. 8a.

To see the effect of k on EM/EO, we consider the parameters
n = 20, t0/l0 = 0.1 and k = 5, 10, 20. The results are shown in
Fig. 9. Apparently EM/EO increases with the increase of k. Finally,
to see the effects of k, i.e., n, on EM/EO, we investigate the param-
eters k = 20, t0/l0 = 0.1, 0.2 and n = 10–100. The related results are
shown in Fig. 10. We can see that the maximum EM/EO also in-
creases in a sawtooth shape with the increase of n. As in Fig. 8,
the reason is also due to the change of the range of N with the in-
crease of n.

4. Conclusions

In this paper, by substituting the solid cell walls of the original
regular hexagonal honeycomb (ORHH) with two equal mass NPR
honeycombs, the re-entrant honeycomb and the isotropic chiral
honeycomb, two new kinds of multifunctional hierarchical honey-
combs are proposed. Based on the Euler beam theory, the analyti-
cal formulas for the Young’s moduli of these two new MHH
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structures are derived. Analytical analysis indicates that both the
re-entrant honeycomb sub-structures and the chiral honeycomb
substructures can greatly increase the in-plane stiffness of the
MHH by appropriately designing its geometry. This paper shows
the possibility to design new hexagonal honeycombs for multi-
functional applications, which combine the advantages of hierar-
chical and NPR materials.
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Appendix A. MHH cell wall with re-entrant honeycomb sub-
structures

In this appendix the mass equivalence between the cell walls of
the ORHH and the MHH with re-entrant honeycomb sub-struc-
tures is derived. As shown in Fig. A.1a, the cell walls of the MHH
with re-entrant honeycomb sub-structures are fabricated by cut-
ting the rectangular re-entrant honeycomb beams at the four red
lines. The angles between the four red lines and the local direction
2 are all 60�. So the cell wall mass of the ORHH is equal to the mass
encased by the four red lines (Fig. A.1a).

Supposing the density of the solid of which the ORHH is made
and the out-of-plane depth of the MHH structure are both 1, from
geometrical analysis it is easy to obtain the following parameters.
The mass/area of one half-thickness re-entrant honeycomb cell is

A0 ¼ 2trlr þ hr þ
1
2

tan h� 1
cos h

	 

tr

� �
tr

¼ ðhr þ 2lrÞtr þ
1
2

tan h� 1
cos h

	 

t2

r

¼ ðaþ 2Þtrlr þ
1
2

tan h� 1
cos h

	 

t2

r ðA:1Þ

The number of the half-thickness re-entrant honeycomb cells in the
uncut beam is

B0 ¼ 2Nðnþ nþ 1Þ ¼ 2Nð2nþ 1Þ ðA:2Þ

The number of the half-thickness cell walls in the two outward
sides is

C 0 ¼ 2ðnþ 1Þ ðA:3Þ

The mass of one half-thickness cell wall in the two outward sides is:

D0 ¼ hr þ 2
tr=2
cos h

þ hr þ 2
tr=2
cos h

� 2
tr

2
tan h

	 

tr

2
� 1

2

¼ 1
2

hrtr þ
1
4

t2
r

2
cos h

� tan h

	 


¼ 1
2
alrtr þ

1
4

t2
r

2
cos h

� tan h

	 

ðA:4Þ

The ratio of the area encased by the four red lines is

E0 ¼ 1�
1
2�

t1
2 �

t1
2 � 1ffiffi

3
p � 4

t1l0
¼ 1� 1

2
ffiffiffi
3
p t1

l0

¼ 1� 1
2
ffiffiffi
3
p kð4N cos hþ bÞ ðA:5Þ

Then the mass equivalence between the cell walls of the ORHH and
the MHH with re-entrant honeycomb sub-structures gives [31]
ðA0B0 þ C 0D0ÞE0 ¼ t0l0 �
1

2
ffiffiffi
3
p t2

0 ðA:6Þ

Rearranging Eq. (A.6) gives

BDb3 þ ðADþ BCÞb2 þ ACb� E ¼ 0 ðA:7Þ

in which A = 2N(2n + 1)(a + 2) + a(n + 1), B ¼ ½2Nð2nþ 1Þ � ðnþ 1Þ�
1
2 tan h� 1

cos h

� �
; C ¼ 1� 2ffiffi

3
p Nk cos h, D ¼ � 1

2
ffiffi
3
p k; E ¼ 1

k2
t0
l0
� 1

2
ffiffi
3
p t0

l0

� �2
� �

.

Appendix B. MHH cell wall with chiral honeycomb sub-
structures

Fig. B.1 schematically shows the cell walls of the MHH with chi-
ral honeycomb sub-structures (Fig. 5b). The hierarchical length ra-
tio is k = 1/n. M is the number of the circular cells in one cell wall of
the MHH structure, N is the number of circular cells in the thick-
ness direction of the cell wall. It is easy to get the following relation
between M, N and n:

N ¼ 1 : M ¼ ðn� 1Þ þ ðn� 2Þ þ 2 ¼ 2n� ð1þ 2Þ þ 2� 1

N ¼ 2 : M ¼ ðn� 1Þ þ 2ðn� 2Þ þ ðn� 3Þ þ 2þ 1
2
� 4

¼ 4n� ð1þ 2Þ � ð2þ 3Þ þ 2� 2

N ¼ 3 : M ¼ ðn� 1Þ þ 2ðn� 2Þ þ 2ðn� 3Þ þ ðn� 4Þ þ 2þ 1
2
� 8

¼ 6n� ð1þ 2þ 3Þ � ð2þ 3þ 4Þ þ 2� 3

ðB:1Þ

Then, recursively, we find

M ¼ Nð2n� NÞð1 6 N 6 nÞ ðB:2Þ
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