
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Die life estimation in hot forging processes is a compelling challenge, due to the number of factors, mainly wear and plastic deformation 
induced by thermal effects (tempering). The extent of the heating-cooling cycle and the steady state die temperature are known only after 
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1. Introduction 

The prediction of hot forging die life is an open research 
subject because there are several damaging factors that 
influence the wear and the failure of forging dies, as much as 
there are several process parameters that can control the 
insurgence of failure or reduce the wear rate. The main 
reasons for die substitution are abrasive wear, plastic 
deformation, fatigue cracks either mechanical or thermal [1]. 
The damaging factors are thermal shocks, load cycles, 
pressures exceeding yield stress of the die. 

Typical service life of dies ranges between 10,000 and 
50,000 cycles, but early die failures can occur. If there are not 
die failures, the die life is terminated when there are excessive 
unconformities in the shape of the final product, because of 
cracks on the product surface, because of difficult part 
extraction from the die [2]. It is apparent that the exact number 
of cycles defining the die life can be a question of choice 
among different production technicians.  

The industrial interest for models that predict die life is 
considerable as dies in hot forging have a short life span, so 
die replacement is one or the main cost item in the production 

of forged components. Furthermore, die life can vary 
significantly during production, introducing cost variability. 

Unfortunately, the parameters affecting production are 
numerous and many of them are difficult to control 
particularly if the factory is adopting manual production. 

There is another factor that is responsible for the variability 
of die life, even when the same die materials are employed in 
the same factory and all the main process parameters are 
unchanged: the transient nature of the process. During 
repeated forging blows, die temperature increases because of 
the heat exchanged with the workpiece and because of the heat 
generated by plastic deformation. After several blows 
temperature tends to an asymptotic steady state value. Elapsed 
time between two blows and the employ of lubricant have the 
effect of increasing the time before the steady state condition 
is reached. The arrests during the shift change take back the 
die to the initial preheating temperature. Therefore, it is 
possible to claim that dies spend the most part of their life in 
transient conditions. 

Experiments on fatigue usually repeat an identical fatigue 
cycle. Finite Elements (FE) Simulation of the process usually 
reproduces the process with nominal temperature conditions: 
the uniform preheating temperature of the dies and the work 
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temperature of the part. The knowledge of the actual 
temperature figures is important not only for the thermal 
fatigue estimation but also to evaluate the amount of plastic 
deformation of the die that is generated when some zones of 
the die reach the tempering threshold.  

It is very difficult to estimate correctly the transient rate, 
but it is possible to reproduce the transient phenomenon by a 
repeated simulation of the same forging process. In this way 
the zones of the die that are more likely to overcome failure 
can be easily spotted. Present analysis cannot give a realistic 
approximation of the transient duration, continuously variable 
in factories that adopt manual production. Therefore, the 
results cannot fit with real measures directly. The fitting to 
predict die life is therefore operated by training a Neural 
Network (NN). 

In present study, FEM simulations were executed on an 
axisymmetric steel disk that represents one of the most 
common forged products. Simulations were executed for 
different values of disturbance factors. NN was trained, 
validated by additional set of tests data and eventually used to 
create a complete response surface to feed the optimization 
procedure.  

Then several cycles of forging were simulated in 
succession leaving the heat flow between dies and part and 
outside of the die. The main damaging factors on the die were 
reported along the forging cycles and their steady state value 
was estimated by extrapolation of the given points on the 
curves. As a matter of fact, the simulation of all the thousands 
forging cycles along the full life of the die is unpractical (not 
impossible in a research study, but unthinkable as an industrial 
procedure). 

In section 2 the damaging models used for the study are 
discussed, in section 3 the Neural Network inference is 
described. Section 4 deals with the case study description and 
the assumptions made to simulate repeated forging cycles. 
Section 5 presents the results and discusses the outcomes of 
the extrapolated figures. 

The method was developed having as a target the 
applicability in the context of industrial process design, so 
paying attention to easy implementation and to computational 
time requirements. NN allow to replicate the expert reasoning 
based on the experience. 

2. Damaging models of forging dies 

2.1. Process parameters 

The process parameters involved in hot forging and their 
role have been subject of investigation by [3] and [4]. They 
can be clustered under the following main groups [5]: 

 Product geometry 
 Product material 
 Tooling 
 Machine 
 Process 
 Tool-workpiece interface effects 

Every group is composed by several parameters, each of 
them needing thorough investigation to understand its effect 
on the different quality and performance indicators and to 
define the guidelines for their optimal setting. As an example, 
flash allowance has important and conflictive effects on both 
the die filling and the die life [6]. Several models have been 
proposed to design the flash land. [7] compared 6 models, 
used them to design the flash land and verified the results by 
FEM simulation. They chose one model focusing on the 
minimization of die wear, but they recognized that, 
considering all the outputs, there was not a clear winner. In 
table 1 the most significant parameters are listed, concerning 
the process and the tool-workpiece interface.  

Table 1. Selection of the most significant process parameters 

Group Parameter Metric Controlled? 

Process Workpiece’s initial 
temperature °C Design 

 Die temperature °C Design 

 Time in air s Disturbance 

 Time in open die s Disturbance 

 Forging sequence - Design 

 Die-part centering mm Disturbance 

 Kinematics - Process 

Interface Friction coefficient - Design 

 Heat conduction °C Design 

 Lubrication properties mm Design 

 
It is easy to understand the level of complexity when the 

parameters are considered all together. An additional difficulty 
is due to the difficulty in controlling all the referred 
parameters. Workpiece and die temperature are defined at 
design stage but could change, due to the waiting time before 
forging and to the variability of the heating procedure. 

The amount of time spent on the die before the blow is 
widely variable and should be considered more a disturbance 
than an input parameter for the process. 

Therefore, the standard procedure adopted in most of 
companies is to adopt proven functioning sets of parameters, 
making changes only on the process variables taken one by 
one. Recently, some authors propose to use the possibility of 
executing FEM simulations to look for optimal values of 
process variables, as in [8] or in [9]. In [10], FEM is used to 
concurrently optimize both process and product, obviously on 
a reduced number of variables.  

The optimization procedure is deeply related to the 
objective of the optimization. Some study researches the 
minimization of the plastic deformation energy, others the 
under-filling of the die, the die wear, the folding defects and 
so on. 

The complexity of global multi-objective optimization of 
every factor in the process is so high that several authors 
prefer to develop empirical expert systems to assist in the 
design phase [11] and [12]. These systems are trained with the 
support of a campaign of experiments. Sometimes expert 
systems are implemented as fuzzy inference rules [13]. Thus, 
the complexity of the problem is so high that nearly all the 
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case studies present in literature are limited to 2D 
axisymmetric processes. 

2.2. Damage models 

The list of damaging mechanisms for the steel dies is long: 
abrasive and adhesive wear, oxidation, fatigue cracking, 
thermal and mechanical fatigue, plastic deformation. Only a 
few of them can be described by a predictive model, while the 
others rely on the results of experiments on the field.  

It is generally believed [2] that abrasive wear accounts for 
70% of the times the dies go out of service, while plastic 
deformation is responsible for the 25% of the cases.  

The other degradation mechanisms are significant but don’t 
lead to the termination of die service life. In the following the 
study will focus only on abrasive wear and plastic deformation 
models. 

Abrasive wear on every point on the surface of the die can 
be calculated using the Archard model [14]: 
 


tcycle

sdtpv
h
kW 
3

 (1) 

where W is the wear traction, k a wear coefficient,  the 
friction coefficient, p the normal pressure on the die surface, vs 
the sliding velocity, h the HRC hardness of the die at the work 
temperature. Dimensionless coefficient k can be determined 
experimentally. Several authors adopt a value of 1.3·10-4 for 
steel tools. The amount of wear that can be accepted before 
terminating die service life is left to factory choice. 

The heating-cooling cycle on the die impacts not only in 
term of fatigue, but also through the softening of the metal 
tool. As a consequence, the die could undergo a tempering 
effect and its strength reduces under plastic yield stress. 
Pressure on the die can produce plastic deformation, making 
the die unable to comply with process specifications.  

The equivalent temperature is the most significant value to 
consider in the models of plastic deformation induced on the 
die by tempering. If Tmax and Tmin are the highest and lowest 
temperature reached on the same die point, a convenient 
expression of Teq is given by (2): 
 

3
2 minmax TT

Teq


  (2) 

 
The effect of tempering on the hardness of steel is given by 
the Holloman-Jaffe parameter M (3): 
 
           , (3) 
 
where T is the tempering temperature, to be replaced by Teq, t 
is the tempering time and C is an empirical constant function 
of carbon concentration in the tool.  

For H13 tool steel it is possible to find the value of M using 
the following diagram (provided by [1]), as a function of 
equivalent temperature and yield stress. 
 

 

Fig. 1. Main tempering curves of H13 (from [1]). 

The length of the die life before exceeding plastic deformation 
can be calculated using (4): 
 

       
       
   

    (4) 

 
In (4) th is the die life, My is the M value for which die 
hardness reaches critical hardness and C is the empirical 
constant used in (3). 

It is apparent that every action that increases the equivalent 
temperature worsens the die life due to plastic deformation. 
Every action that increases the workpiece temperature 
improves the die life following abrasive wear. 

3. The NN optimization procedure 

The NN is trained on examples obtained executing a set of 
FEM simulations that are selected using the DOE 
methodology. The implementation of DOE, used in present 
study, is described in [14].  

The reason for choosing NN instead of a regression model 
is the following. Regression model shape is constrained by the 
need of being able to fit it with polynomial regression or 
kriging. It means that, to obtain fair results, the function 
should be linear or quadratic, possibly without interactions 
among the variables.  

The NN, conversely can be trained with whatsoever 
number of input factors (design parameters and disturbances 
as well) without imposing constraints on the shape of the 
response surface (the metamodel). Furthermore, it is possible 
to train the NN with input distributed in a non-regular way. 
After the first iteration of the algorithm it is therefore possible 
to refine the NN just in the area near the optimum, without the 
constraints posed by DOE construction. 

3.1 Neural network design 

The capability of the NN model to generalize regarding 
unknown data depends on several factors such as appropriate 
selection of input–output parameters of the system, 
distribution of the input–output dataset, and format of the 
input–output dataset presentation to the NN. 
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Accordingly, four steps were followed in the development 
of the NN model: (i) input–output dataset collection, (ii) 
input–output dataset pre-processing, (iii) NN design and 
training, and (iv) NN performance evaluation. 

The optimal NN architecture was determined after several 
simulation trials. Diverse configurations of NNs were trained 
to identify the best arrangement for the prediction of flank 
wear. The parameters that were changed among the different 
configurations are the following: 
 - number of nodes in the hidden layers; 
 - number of hidden layers; 
 - activation function of the node neurons. 
 

In particular, to predict the Teq 3, three diverse NN 
configurations were constructed and tested: NN5, NN8 and 
NN15 with 5, 8 and 15 nodes in the hidden layer, respectively. 
While, to predict the wear_t value, two different NN 
configurations were constructed and tested: NN3 and NN5 
with 3 and 5 nodes in the hidden layer, respectively 

In all tested NN configurations, the input layer had three 
nodes to receive the feature vector (Tp, Td and f) while the 
output layer had only one node to predict the Teq or wear_t,. 

The number of hidden layers was set equal to one and the 
number of hidden nodes was chosen according to a ‘‘cascade 
learning’’ procedure [15]: hidden units are added one at a 
time until an acceptable training speed is achieved. The 
hidden nodes were initially set equal to four and further nodes 
were added incrementally. The addition of hidden nodes 
continued until there was no significant progress in the NN 
performance. 

To set up the NN models, the NNet toolbox of the Matlab 
software package was used. In particular, the Levenberg–
Marquardt backpropagation algorithm was adopted for its 
performance in terms of rapid network error convergence and 
good reliability. 
For optimal NN architecture configuration, weights and 
thresholds were randomly initialized between -1 and +1. 
Learning coefficients were: learning rate between input and 
hidden layer: 0.3, learning rate between hidden and output 
layer: 0.15, momentum: 0.4. The learning rule was the 
Normal Cumulative Delta Rule and the transfer function 
applied to the nodes was the sigmoid function f(x) = 1/(1 + ex) 
[16-20]. 

The number of learning steps for a complete training was 
set at 2000 on the basis of the time to convergence. Epoch 
size, i.e. the number of training presentations between weight 
updates, was set at 100. 

4. Case study: die life in the extrusion of a forged disk 

The case study is a C22 disk obtained in two steps by 
extrusion forging. The first step is the blocking phase. After 
flash removal, it is followed by a finishing step. The 
maximum die wear is found in the blocking phase that 
therefore is subjected to optimization. In this test of the 
method, only the parameters of the process and of the 
interface were considered, together with the disturbances 
variables. Fig. 2 shows the forged part and the dies. 

The original process is executed on a 6.3MN crank press, 
250mm/s ram velocity, the workpiece temperature is 1200°C, 

the dry lubricant is graphite with water vapor for a friction 
factor of 0.4. Both dies are H13 - AISI steel with ion nitride 
surface treatment and are pre-heated to 200°C. The flash is 
3mm thick. 

The process has been chosen as a benchmark because the 
FEM simulation is in good agreement with the experiment. 
The coupled thermos-mechanical simulation is executed with 
the QForm3D software from Quantor. 

The temperature in the workpiece and in the die changes 
consistently during forging. In Fig.3 it is possible to see that 
die temperature after the first blow rises to a maximum of 
669°C. 

 

 

Fig. 2. The forged part inside the dies at the end of first forging blow. 

 

Fig. 3. The temperature on the die at the end of first forging blow (min 
199°C, max 669°C). 
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The simulation was repeated several times, changing the 
workpiece but transferring on the new dies the exact 
temperature figures at the end of the preceding cycle. The 
elastic deformation of the dies and the stress distribution was 
not transferred from one cycle to the following because stress 
is released after part extraction. Tempering effects on the die 
in terms of decreasing hardness were not simulated, even if it 
was possible. The simulation was therefore decoupled. The 
forging was simulated considering the die as a rigid body, 
then the pressure distribution on the surface of the die is just 
used to estimate the abrasive wear. This choice was made 
because small die deformations are important only to 
determine the exact geometry of the forged part but are 
irrelevant on the die damaging study. After 10 cycles the 
simulation was arrested, and further values are obtained by 
extrapolation. Actual forging cycle should be less steep, as 
there is a variable cooling time between two consecutive 
blows. Cooling time has been assumed constant as 10 
seconds. Thus, it is unrealistic to expect that the forging 
operator be able to keep a constant pace of loading-unloading 
the workpiece on the press. 

Fig. 4 shows the maximum, minimum and equivalent 
temperature trend on the die. It also shows the predicted  
temperatures after 50 cycles, using logarithmic regression. 
The regressions have R2 greater than 0.98. The regression 
results are still not satisfying. The asymptotic temperature 
isn’t reached, contrary to real process. The maximum 
temperature that the die could reach is the workpiece surface 
temperature, if there isn’t additional cooling action from the 
lubricant. The number of blows necessary to stabilize the 
temperature on the die is very high, even in actual production 
and it is impossible to simulate all the blows. The position on 
the upper die, the most solicited, of the maximum plastic 
deformation area and of the maximum abrasive wear zone are 
different. Plastic deformation is usually in the flat part of the 
die, while abrasion is maximum in the outward curvature 
radii. This phenomenon is clearly visible in Fig.5, that present 
die temperature and die abrasion as false colors in 
correspondence to the last simulated cycle, the tenth. 

 
Fig. 4. Temperatures on the die after every blow: first 10 simulated and 

following estimated through logarithmic regression. 

  

 

Fig. 5. Position on the upper die after 10 cycles of a) maximum temperature 
(666°C), cause of plastic deformation; b) maximum abrasive wear (7.1·10-4) 

In Fig. 6 it is calculated the estimated die life due to plastic 
deformation, expressed as number of cycles before die 
substitution. Model parameters have values taken from 
literature, therefore die life figures should be considered as 
indication of a trend more than for their exact value. 

It wasn’t possible way to match these figures with actual 
production because there isn’t a constant cooling time and 
there are breaks after every work-hour. It is probable that in 
actual production, the dies are in permanent transient state, 
reverting cyclically to initial values during the hour breaks. 

Even so, the results are impressive. After the first forging 
cycle, tempering did not happen and there is no evidence of 
plastic deformation of the die. After the tenth cycle, die life is 
comparable with the expected figures for this forging 
operation. As we did not reach a steady state value of 
temperature, die life keeps reducing to very low values. 
Which value should be taken for realistic before experiments 
is impossible to determine at the design stage. 

Even if we were unable to determine the steady state die 
temperature (if there is really such value in actual production), 
the results show that using the equivalent temperature of the 
first blow to predict the die life because of tempering effects 
leads to underestimate the damage mechanism. 

 
Fig. 6. Die life due to plastic deformation as a function of the number of 

consecutive repeated cycles. 
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Fig. 7. Die wear due to abrasion in a single cycle. 

 
Fig. 7 is the abrasive wear after each forging cycle. The 

figure is less impressive but there is still a non-negligible 
increase of the wear in the order of 15% between the first and 
the tenth cycle. Increase in the temperature of the die reduces 
its hardness and intensifies the abrasion effects. 

5. Conclusions 

Die life estimation in hot forging processes is a compelling 
challenge, due to the number of variable and often non-
completely known process factors involved. To be able to 
predict die life in the design phase, before manufacturing the 
die leads to significant production saving. Therefore, the study 
focused on the main damaging mechanisms of the die: plastic 
deformation and abrasive wear. The die reduces its hardness 
with the increase of its temperature and this affects both 
damaging mechanisms. 

The extent of the heating-cooling cycle and the steady state 
die temperature are known only after several work cycles. In 
the paper a realistic work sequence of repeated forging is 
simulated by the Finite Elements Method. The simulation 
sensitivity to different process parameters was validated using 
Neural Network Regression. 

Damage models were used to calculate die life using the 
data after the first or after several forging cycles. Results 
obtained are so different that it is questionable if it makes 
sense any longer to try to predict die damaging after one 
simulation and using nominal values of the parameters, like it 
is done in the industrial practice. 

Further developments of the research will be the training of 
the net using dataset obtained by experiments and using it to 

predict the damage evolution on the dies without having to 
execute lengthy and expensive repeated simulations. 
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