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Purpose: Targeted proteomics of potential biomarkers is often challenging. Hence, 
we developed an intermediate workflow to streamline potential urinary biomarkers of 
prostate cancer (PCa). Materials & methods: Using previously discovered potential PCa 
biomarkers; we selected proteotypic peptides for targeted validation. Preliminary in silico 
immunohistochemical and single reaction monitoring (SRM) verification was performed. 
Successful PTPs were then prevalidated using parallel reaction monitoring (PRM) and 
reconfirmed in 15 publicly available databases. Results: Stringency-based targetable 
potential biomarkers were shortlisted following in silico screening. PRM reveals top 12 
potential biomarkers including the top ranking seven in silico verification-based biomarkers. 
Database reconfirmation showed differential expression between PCa and benign/normal 
prostatic urine samples. Conclusion: The pragmatic penultimate screening step, described 
herein, would immensely improve targeted proteomics validation of potential disease 
biomarkers.
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Prostate cancer (PCa) is the leading cause of cancer deaths and the most frequently diagnosed can-
cer in Africa, ahead of liver and lung cancer which are in second and third places, respectively [1]. 
In spite of this high burden, it receives suboptimal public health attention in Africa due to a 
concurrently high burden of infectious diseases like HIV/AIDS, tuberculosis (TB) and malaria. 
Putative diagnostic biomarkers like prostate-specific antigen (PSA) albeit highly useful in con-
junction with other clinical tests, have fallen short in the lower reference ranges (2–10 ng/ml) in 
terms of specificity and negative predictive values [2]. Additionally, why men of African descent 
more frequently tend to carry aggressive phenotypes of PCa compared with other ethnicities is 
poorly understood. A few emerging molecular diagnostic biomarkers with clinical promise for 
risk stratification, treatment response and recurrence prediction include PCA3, TMPRSS2–ERG 
fusion gene, PTEN, E-Cadherin and EZH2 [3]. Considering the low socioeconomic status of most 
African patients, minimally invasive and affordable novel biomarkers form early diagnosis and 
treatment monitoring is most desirable.

Currently, the normative sequence of event in biomarker discovery pipelines is validating dis-
covery based potential biomarkers with targeted proteomics method. However, validating mul-
tiple candidate biomarkers from high-throughput shotgun discovery proteomics can be quite 
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challenging. Considering inter alia, the number 
of ‘proteotypic peptides’ (PTPs), charge states 
and replicates needed for each biomarker. An 
important drawback of biomarker research has 
been the paucity of robust highly multiplexed 
quantitative methods to measure hundreds of 
analytes in the shortest time possible. Hence, 
many promising biomarkers have been discov-
ered, however only a few are clinically useful 
or implementable [4–7]. With the emergence 
of novel high throughput omics-based tech-
nologies, there is a concomitant need for better 
in silico computational and bioinformatics tools 
to improve clinical inferences drawn from these 
huge databases generated [8]. Despite the major 
advances made in statistical software, workflows 
and algorithms for analysis and absolute quanti-
fication of targeted proteomics data, multiplex-
ing and analysis of large numbers of potential 
biomarkers can be an arduous task. Hence 
adjunctive databases use, offer researchers a 
platform to address a host of biological infor-
mation generated from proteomics ex periments 
in a seamless manner.

Broadly speaking, databases for cancer pro-
teomics research can be classified into five 
groups [9] which are; gene/protein expression, 
gene mutation and SNP, tumor antigen, cancer-
associated genes and protein interaction/path-
way databases. A gamut of proteomics databases 
have been emerging for translation of systems 
biology data into useable diagnostic and thera-
peutic tools such as CancerResource [10], Global 
Proteome Machine Database (GPMDB) [11], 
Yale Protein Expression Database (YPED) [12], 
NeXtProt [13] and Proteomic Identifications 
database (PRIDE) [11]. The Human Protein 
Atlas [14] is an online resource using antibody-
centered proteomics to create an atlas of Ca. 
400,000 high quality images of expression level 
and localization characteristics of over 700 
human proteins in 48 and 20 different normal 
human and cancerous tissues, respectively [14]. 
Careful antibody design with rigorous recom-
binant affinity purification protein epitope sig-
nature tags (PrESTs) [14,15]; using only antibod-
ies with reduced sequence homology to other 
human proteins and increased tissue specific-
ity. In addition, all antibodies were tested on 
human tissue microarray and computationally 
analyzed for protein expression, localization 
and where possible gene expression and tran-
script level. Following stringent quality assur-
ance protocols, validation scores were assigned 

to antibodies using bioinformatics comparison 
between experimental data and literature based 
data [14].

High-throughput in silico identification of 
peptides generated from tandem mass spec-
trometry experiments, algorithmically mapped 
to eukaryotic cell genome sequence has been 
made easier by the Peptide Atlas Project [16–18]. 
This database evolved to incorporate targeted 
proteomics data in its repositories [17,18]. An 
essential requirement of targeted proteomics 
provided by PeptideAtlas is large scale quanti-
tation and compilation of proteins and PTPs 
across multiple experiments [17]. In 2012, the 
PeptideAtlas initiated a new repository of single 
reaction monitoring (SRM) experiments known 
as The PeptideAtlas SRM Experiment Library 
(PASSEL) which allows researchers submit and 
access targeted proteomics datasets generated 
through SRM experiments [19]. This database 
was also found expedient for optimizing the 
required number of unique transition for each 
peptide; using the SRMCollider software in 
tandem with another newly synthesized exten-
sive SRM database (SRMAtlas) [20]. In addi-
tion, this method can accurately replicate the 
precision of emerging data independent acqui-
sition (DIA) mass spectrometry methods like 
SWATH that combine high-throughput with 
consistent reproducibility. Various data builds 
have been established in SRMAtlas, for exam-
ple, N-Glycoproteome for different cancer types 
have been recapitulated across different dataset 
in SRMAtlas [21]. Without doubt, PeptideAtlas, 
PASSEL and SRMAtlas are highly useful 
web-based resources for potential biomarker 
verification [22].

Traditionally, a triple quadrupole (QQQ) 
mass spectrometer is described as the workhorse 
of a targeted proteomics method known as the 
Single Reaction Monitoring (SRM) in which 
the 1st and 3rd quadrupoles as specified m/z fil-
ters, while the second Quadrupole acts as a col-
lision cell [23]. To overcome some of the setbacks 
of SRM, Parallel Reaction Monitoring (PRM) 
using a high resolution, high mass accuracy 
hybrid Quadrupole-Orbitrap mass spectrometer 
such as the QExactive™ has been employed. 
This instrument allows a highly multiplexed 
simultaneous identification and quantitation of 
multiple transitions in a single run. The modus 
operandi is in some respects similar to the QQQ, 
albeit the third Q is replaced by an Orbitrap 
mass analyzer [24,25]. PRM has been reported 
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to provide comparable performance metrics 
with SRM in terms of precision, linearity and 
dynamic range [26]. We have provided herein, 
a judicious intermediate step in the biomarker 
discovery and validation pipeline using a combi-
nation of in silico database verification and PRM 
prevalidation. This could represent an essential 
penultimate screening step prior to definitive 
targeted validation.

Materials & methods
●● Sample source

Urine samples were collected from PCa and 
benign prostatic hyperplasia (BPH) patients as 
well as normal healthy (NC) individuals attend-
ing urology clinic at Grootes Schuur Hospital 
and two satellite hospitals in Cape Town with 
full ethical consent (HREC 454/2012). These 
samples were processed routinely for shotgun 
discovery proteomics and analyzed using ultra-
HPLC and mass spectrometry. Postanalytic 
statistical evaluation revealed a total of 73 
potential PCa biomarkers as well as nine bio-
markers which demonstrated potential ethnic 
trends in South Africa [27]. Two pooled samples 
were prepared for PRM using peptides from 
15 PCa samples and 15 normal control sam-
ples, respectively. All PCa patients used for this 
study had localized primary disease (≤TNM 
stage III) and evidence of metastatic disease 
was an exclusion criterion. Detailed selection 
criteria and clinicopathologic features such as 
age, race, PSA level and Gleason scores of the 
individual PCa patients used in this study can 
be found in our previously published work [27] 
and shown in here in the online supplementary 
materials (Supplementary Table 1). Patient who 
would be undergoing Transurethral resection 
of prostate (TURP), without history of cancer 
at any other site or history of any other major 
comorbidities like essential arterial hyperten-
sion or diabetes were selected for the study. 
Patients who were unwilling to participate due 
to religious or cultural reasons were excluded 
as well. Patients were drawn from a heteroge-
neous cohort of South African Prostate cancer 
patients made of Indigenous black African, 
Caucasian South African and mixed ancestry 
patients. Prior to PRM experiments, in silico 
methods were employed to identify top rank-
ing potential PCa biomarkers; after which they 
were evaluated retrospectively in our shotgun 
database as well as other urinary proteomics 
databases (Figure 1).

●● Human Protein Atlas database biomarker 
verification
Characterization of 82 potential biomarkers 
was performed using the Human Protein Atlas 
(HPA) database. Immunohistochemical proce-
dure was carried out in a high throughput and 
highly automated manner as described in detail 
elsewhere [14]. In brief, standardized immunohis-
tochemical analysis was performed on a specially 
designed tissue microarray (TMA) and opti-
mized with multiple antibody dilutions. Both 
positive and negative controls were spotted on 
the recipient TMA blocks. Antigen retrieval was 
performed in citrate buffer (pH 6.0) using pres-
sure boiler heat method. Optimized monospe-
cific primary antibody dilution was used for each 
unique antibody and secondary antibodies were 
selected in a host species dependent manner. 
Slides were first developed with diaminobezin-
dine and then counterstained with hematoxylin. 
Immunohistochemical images were collected 
with an automated slide scanning system at 
40× magnification. Using web-based annotation 
software, the images are scored by calibrated cer-
tified histopathologists. Differential immuno-
histochemical staining of cancerous and normal 
prostate tissue was assessed by searching either 
the name or the gene symbol of the protein of 
interest. Expression levels of protein and target 
mRNA in cancerous and normal prostate tissue 
and human cell lines, respectively, were assessed, 
albeit it is well established that mRNA levels 
does not always correlate to protein expression 
levels due to factors such as translational control 
and posttranslational modification. In addition, 
subcellular location of proteins can be verified 
from this database. Taking into account that 
many of our previously discovered biomarkers 
were predicted membrane-bound or extracellu-
lar matrix (ECM), we took into consideration 
membrane and extracellular/stromal staining. 
Potential biomarkers with differential staining 
in cancerous and normal prostate tissue were 
c onsidered for further targeted proteomics 
analysis.

●● PTP selection
The specificity of selected peptide for target pro-
tein is largely dependent on its fragmentation 
pattern. Shorter unmodified peptides unique 
to a specific or single isoform of the target pro-
tein with imino acid proline are generally better 
SRM targets than poorly ionized longer pep-
tides. The permissible charge states were +2 and 
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Figure 1. Experimental workflow for potential prostate cancer biomarker prevalidation. Discovered potential biomarkers from 
previous shotgun proteomics experiments were subjected to two steps of in silico screening viz SRMAtlas and Human Protein Atlas 
databases. Top ranking potential biomarkers from these in silico steps were experimentally prevalidated using PRM and potential PCa 
biomarker frequency is reconfirmed in shotgun databases for differential expression between PCa and healthy controls. 
NC: Normal healthy; PCa: Prostate cancer; PEP: Posterior error probability; PRM: Parallel reaction monitoring; PTP: Proteotypic peptide
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+3 for each PTP. Peptides containing too many 
units of tryptophan (W) or methionine (M) 
were avoided because of the high propensity of 
artefactual side chain oxidation. Depending on 
adjacent sequences, glutamine (Q) and aspara-
gine (N) were carefully considered due to their 
chemical instability; particularly N-terminal 
glutamine can change to pyroglutamate when 
exposed to acidic treatment. Maximum missed 
cleavages permitted per peptide were two. The 
chances of having missed cleavages are known to 
be increase in sequences containing two adjacent 
terminal basic amino acids such as -KR, -KK 
or -RR. Due to low ion current in comparison 
to their tryptic peptide counterpart, nontryp-
tic peptides are generally avoided in SRMs, 
albeit they can be used where no good tryptic 
peptides are available. Carefully following the 

above-mentioned considerations, three PTPs 
were selected per protein from the evidence 
file (*txt) generated from the Maxquant analy-
sis of raw Xcalibur data. Less than three PTPs 
were accepted for proteins with fewer identified 
p eptides from shotgun assays.

●● SRMAtlas database verification of PTPs
SRMAtlas is a compendium of high quality 
SRM assays for identification and quantitation 
of proteins. This database has identified over 
170,000 human proteome peptides with Ca. 
99.9% coverage for human proteins [19]. Our 
a priori expectation is that previously assayed and 
documented peptides in the SRMAtlas database 
represent a reliable cohort of targetable peptides, 
particularly if evident in our shotgun proteom-
ics experiments. All selected PTPs from our 
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previous shotgun proteomics assay were searched 
against the SRMAtlas database using the follow-
ing ‘search SRM Assays’ parameters. After filling 
the protein accession identification number, ‘Ion 
Trap’ was selected as ‘transition sources’ because 
of its similarity with the Orbitrap mass analyzer. 
Specified m/z range was 200–2000 m/z while 
only y- and b- ions were permitted without neu-
tral loss. SwissProt, Ensembl and IPI were the 
selected target databases and default settings 
were accepted for all other parameters before 
activating the query.

●● Pilot Parallel reaction monitoring
Following verification of discovery MS-based 
candidate biomarker PTPs with Human 
Protein Atlas databases and SRMAtlas, selected 
‘best flying’ PTPs were further prevalidated by 
PRM. Initial PRM runs on the QExactive Mass 
spectrometer is aimed at narrowing the list of 
candidate biomarkers. A spectral library is first 
created using data from the original shotgun 
proteomics assay, followed by isolation list gen-
eration in Skyline (MacCoss Lab software) an 
open sources tool for targeted proteomics analy-
sis [28]. Isolation list generation involves creating 
a randomized order of precursors, ensuring that 
no subsequent precursor m/z values are similar as 
well as randomizing the order of +2 or +3 charge 
states of the same precursor ions. These experi-
ments were not scheduled because observed 
retention time range varied quite widely across 
all potential PCa biomarkers (Supplementary 
Figure 1). Samples were singly injected because 
we did not observe much variability in multiply 
injected technical replicates in our previous PRM 
experiments on urine samples of HIV-infected 
patients, possibly due to the high r esolution and 
mass accuracy of the instrument used.

Ultra-HPLC
We ensured that liquid chromatography gradi-
ents and column used in these pilot PRMs were 
similar to those used in the shotgun discovery 
proteomics experiments. Pooled PCa (n = 15) 
and NC (n = 15) samples at 50 ng/μl in HPLC 
grade water containing 0.1% (v/v) Formic acid 
were subjected to Nanoflow ultra-HPLC inline 
on a Dionex UltiMate® 3500 RSnano UPLC 
system (Thermo Fisher, CA, USA) equipped 
with a 100 μm × 5 cm; 5 μm; 100Å; C-18 pre-
column and a 75 μm × 50 cm; 5 μm; 100Å; 
C-18 analytic column. Temperature for gradient 
chromatography was set at 23°C using a flow rate 

of 300 nl/min. Peptides elution spanned over 
0–180 min at a 5–80% water to acetonitrile gra-
dient. The binary mobile phase system used was 
as follows: buffer A contained water and 0.1% 
formic acid, while buffer B contained acetoni-
trile and 0.1% formic acid. Elution gradient for 
peptides was 5% B from 0–20 min, then increas-
ing to 80% B over 180 min. Following each 
run, the flow rate was increased to 450 nl/min 
at 50% B to equilibrate the analytic column and 
then dropped to 300 nl and 5% B again prior to 
the next sample run.

QExactive quadrupole-orbitrap analyzes
Parallel reaction monitoring was carried out on 
a QExactive Hybrid Quadrupole-Orbitrap Mass 
Spectrometer (Thermo Fisher) which combines 
high-resolution quadrupole precursor ion selec-
tion with accurate mass Orbitrap detection. 
For the nanoelectrospray ionization source, an 
ionization voltage of 1.86 kV and spray current 
of 0.1 μA was used at capillary temperature of 
320°C and S-lens RF level of 50.0. We used an 
unscheduled 4- plex MS2 targeted methodol-
ogy at a mass spectra acquisition resolution of 
35,000. Full scan All Ion Fragmentation (AIF) 
mode was used at a scan range of 79–1945 
m/z with positive polarity, maximum time per 
peptide of 30 ms and charge exclusion z = 2. 
Requisite cycle time was 2 s with a total scan 
time of 140 ms. Automatic gain control (AGC) 
target was fixed at 5 × E6. Normalized Collision 
Energy (NCE) set at 27eV with in-source High-
energy Collision Dissociation (HCD) was used 
for peptide fragmentation. The method of acqui-
sition comprises of targeted PRM scan events 
directed at the +2 and +3 charge states of the 
PTP precursor. An isolation window of 2 m/z 
units was used for each precursor ion at a starting 
m/z of 80 and final m/z is automatically derived 
from the charge state and m/z of the PTP pre-
cursor. Once MS2 data is generated by PRM, 
raw files were imported into Skyline for further 
analyzes. This is repeated with the isolation list 
in a different order to confirm that interference 
from multiplexing had not biased our results 
and further quantitative analysis to compare 
biomarker transitions between pooled PCa and 
Normal control samples.

●● Discovery database verification of 
successful biomarkers
Successful candidate biomarkers using HPA, 
SRMAtlas and PRM were identif ied and 
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assessed in previous discovery shotgun analysis. 
These were also searched against other urinary 
proteomics databases to assess their differen-
tial expression and ability to distinguish pros-
tate cancer from normal healthy individuals or 
patients with benign prostatic hyperplasia.

Results
●● Potential biomarker screening

We screened 82 previously discovered potential 
urinary protein biomarkers of PCa. Even though 
we aimed at 3 PTPs selection per protein, we 
found a total of 235 PTPs (Supplementary Table 2). 
Out of 235 PTPs, a total of 115 (48.9%) PTPs 
have not been previously reported; while there 
were 120 (51.1%) PTP found in the SRMAtlas 
database. Considering peptide length, poste-
rior error probability (PEP) score, charge state, 
retention time range, modification status, HPA 
analysis and SRMAtlas verification, the list of 
82 biomarkers were downsized to 32 top rank-
ing potential biomarkers which were found 
most suitable for targeted proteomics analysis 
(Table 1). Some potential protein biomarkers were 
not found in the Human Protein Atlas database 
(Supplementary Table 2) and new unreported 
PTPs in SRMAtlas were found. An overview 
of the workflow which involved in silico verifi-
cation steps, experimental PRM prevalidation, 
and database reconfirmation of the top ranking 
b iomarkers is presented in Figure 1.

●● Immunohistochemical patterns for 
potential biomarkers
Differential immunohistochemical staining 
patterns between cancerous and normal pros-
tate tissue were found in 32 of the 82 potential 
biomarkers from shotgun experiment, using the 
human protein atlas database. We focused on the 
top ranking seven potential biomarkers (Table 1) 
and prospectively, five other good biomarkers by 
PRM (Supplementary Figure 2). For PGLYRP2, 
there is heavy staining of the ductal acinar cells 
and nonspecific staining of the glandular stroma 
of PCa tissue in contrast to a low level of staining 
of the ductal epithelium and nonspecific staining 
of the stroma in normal prostate tissue. HPR 
demonstrated a medium staining with PCa tis-
sue, while the normal tissue stained negative 
(Figure 2A & E). PROS1 showed moderate stain-
ing of cancerous prostate tissues and low staining 
with normal prostate tissue (Figure 2B & F). Both 
normal and cancerous prostate tissues stained 
positive for CPN1 albeit stronger positivity was 

seen in PCa tissue. PZP was diffusely positive 
for cancerous prostate tissue and light stromal 
staining was observed for normal tissue. There 
was distinct positivity for ACTN1 in PCa 
while normal prostate tissue stained completely 
negative. Similar pattern of staining was seen 
in MYOC which stained positive for PCa and 
negative for normal tissue. ACPP could not dis-
tinguish immunohistochemically between PCa 
and normal tissue (Figure 2C & H). KLK3 could 
reasonably distinguish between PCa and nor-
mal prostate tissue which stained positive and 
negative, respectively (Figure 2D & G). There were 
nonspecific staining patterns for NID1 both 
for PCa and normal prostate tissue; however, 
the normal tissue demonstrated more stromal 
staining. Cancerous prostatic tissue stained posi-
tively for CTSZ while there was no signal found 
for CTSZ in normal prostate tissue. SLAIN1 
stained remarkably for PCa tissue in compari-
son to mild stromal staining of normal prostate 
 tissue (Supplementary Figure 2).

●● SRMAtlas biomarkers PTP evaluation
Using this database, all 32 top ranking potential 
biomarkers with differential expression in the 
HPA were analyzed, and we selected the best out 
of three PTPs per potential biomarker. Detected 
y- and b-ion transitions are automatically ranked 
by the database and best flying transitions are 
easy to detect. PTP mass and charges both at 
the first (Q1) and third (Q3) quadrupole mass 
analyzers are shown. The preceding amino acid 
towards the N-terminus (pre-AA) and the one 
following towards the C-terminus (Fol-AA) are 
reported. Adjusted suitability score (AdjSS) of 
transition which is derived from weighting of 
the predicted and empirical suitability score is 
also reported. Relative intensities (RI) of peaks 
in the collision-induced dissociation (CID) 
spectra and sequence specific retention times 
(SSRT) for hydrophobicity assessment is pro-
vided. Frequency of peptide mapping (N-Map) 
to protein in target proteome is also available 
in the results generated. For instance, PTPs for 
HPR, PROS1, ACPP and KLK3 were found as 
illustrated in SRMAtlas results (Supplementary 
Table 3).

●● Preliminary targeted proteomics
PRM experiments were used to prevalidate 
the selected 32 high ranking biomarkers from 
in silico verification using HPA and SRMAtlas. 
We found differential expression of peptide 
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Figure 2. Immunohistochemical confirmation of potential prostate cancer biomarkers using the human protein atlas database. 
(A & E) Haptoglobin-related protein showed high to medium staining in comparison to normal tissue. (B & F) Vitamin K-dependent 
protein S demonstrated a low staining in comparison to normal prostate tissue which demonstrated no staining for this biomarker. 
(C & H) Prostatic acid phosphatase demonstrated heavy staining in both cancerous and normal prostate tissues, showing that it is 
prostate tissue specific but not PCa specific. (D & G) Differential expression between PCa and normal prostate tissue were observed for 
prostate-specific antigen and no other cancer was shown to express this biomarker. 
NC: Normal healthy; PCa: Prostate cancer.
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transitions between PCa and NC for most of the 
selected 32 peptides (Supplementary Figure 2) with 
a quantifiable distribution of area under curve 
(AUC) for identified transitions (Figure 3A & B). 
There was differential expression of PGLYRP2 
with a higher expression in PCa in comparison 
to NC. This difference in expression is more 
marked in the +2 charge state in comparison to 
the +3 charge state. There was more than two-
fold difference in peptide transitions between 
PCa and NC for PROS1. For both +2 and +3 
charge state, b-type ions were higher expressed 
in PCa in comparison to NC. Similar trend was 
observed for HPR with more than threefold 
difference between PCa and NC irrespective of 
charge states. Differential expression for CPN1 
was observed with +2 peptide transitions being 
higher in PCa and lower in NC. However, more 
transitions in were found for CPN1 in NC com-
pared with PCa for the +3 state. PZP had more 
transition signals in the NC as compared with 
PCa for both charge states and was mostly y ions. 
ACTN1 was more expressed in NC compared 
with NC in the +3 charge state. Similarly, detec-
tion of transitions for MYOC was higher in NC 
than in PCa. ACPP had better signals in NC in 
comparison to PCa. KLK3 demonstrated higher 
transitions for PCa in comparison to NC. NID1 
had a spectacular performance in PRM with 
over sixfold difference in transition signals for 
both charge states in NC which was higher than 
PCa. CTSZ was higher in transition signal for 
NC compared with PCa for both charge states. 
SLAIN1, a race-based PCa biomarker demon-
strated marked differential expression between 
Pca and NC. We observed very low coefficient 
of variation in multiply injected samples in our 
previous experiments (Figure 3C & D).

●● Potential biomarker confirmation
The frequency of detection of these 12 poten-
tial biomarkers was confirmed in our shotgun 
discovery proteomics database. PROS1, HPR, 
PZP and SLAIN1 were found to be reliable bio-
markers of PCa (Figure 4). PROS1, HPR and PZP 
were only found in PCa and completely absent in 
BPH and NC, while there is greater than twofold 
difference in the expression of SLAIN1 in PCa 
which was higher than NC and BPH. CTSZ, 
NID1, ACPP and KLK3 were also reasonable 
biomarkers of PCa with higher expression in 
NC in comparison to PCA and BPH. NID1 
was notable present in NC, minimally present in 
BPH but completely absent in PCa. ACPP and 

KLK3 were highly present in NC and BPH in 
comparison to PCa. CTSZ was highest in NC, 
present in BPH but absent in PCa. Other bio-
markers were indeterminate with either similar 
expression across groups or similar expression in 
PC and NC. We further queried these biomark-
ers against 14 other urinary proteomics data-
base/literature to see the degree of consonance 
with our findings. The databases are distributed 
as follows: six PCa, six healthy (NC), two BPH 
and one multiple condition (MC) urine (Table 2). 
PGLYRP2 was found in 5 (83.3%) of the NC 
while absent in all PCa, BPH and MC databases. 
PROS1 was found in 4 (66.7%) of NC and 1 
(16.7%) of PCa, but absent in BPH and MC 
databases. HPR was found in 3 (50%) of PCa 
and 1 (16.7%) of NC database; HPR was not 
found in BPH nor MC databases. CPN1 was 
found in 5 (83.3%) of NC and 2 (33.3%) of 
PCa, while absent in BPH and MC. PZP was 
absent in PCa, BPH and NC databases, albeit 
present in the MC database. ACTN1 was found 
in 3 (50%) of the NC and absent in the PCa, 
BPH and MC databases. MYOC was present 
in 2 (33.3%) of the NC and absent in PCa, 
BPH and MC databases. ACPP was found in 
5 (83.3%) of the NC and 3 (50%) of the PCa 
databases; also present in the BPH and MC data-
bases. KLK3 was seen in 5 (87.3%) of the NC 
and 1 (16.7%) of the PCa databases, while pre-
sent in BPH but absent in MC databases. NID1 
was present in 6 (100%) of the NC and absent 
(0%) in PCa, BPH and MC. CTSZ was present 
in 4 (66.7%) of the NC and 1 (16.7%) of the 
PCA databases; while absent for both MC and 
BPH. SLAIN1 was not found in any of these 14 
searched databases.

Discussion
Performing targeted proteomics validation of 
biomarkers requires careful planning and rigor-
ous assay optimization [6,29]. Unfortunately, the 
burgeoning number of potential biomarkers dis-
covered for various diseases, do not correspond 
to clinically approved or applicable disease bio-
marker [29,30]. Due to high variations in results 
and methods, particularly for clinical urinary 
proteomics, some researchers have recommended 
standardization of biomarker discovery and 
validation pipelines [6,31–32]. Careful screening 
of potential biomarkers is required to validate 
the glut of candidate biomarkers and amelio-
rate the shortfall between discovery and vali-
dation phases. Considering that a high number 
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Figure 3. Parallel reaction monitoring for quantitation of potential prostate cancer biomarker 
target transitions and replicate comparison (see facing page). (A & B) Transition ion was evenly 
distribution and quantifiable across samples. (C & D) There was limited technical variability in 
peptide quantification reported between similar urinary proteomics experiments using urine from 
HIV-infected patients.

Figure 4. Discovery Shotgun database confirmation of potential prostate cancer biomarker. PROS1, HRP, PZP, NID1 and SLAIN1 were 
found to be good biomarkers of PCa by checking potential biomarker frequencies in our previous shotgun proteomics database. 
BPH: Benign prostatic hyperplasia; NC: Normal healthy; PCa: Prostate cancer.
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of randomized clinical samples are required 
for confidence in validation [29], experimental 
designs with fewer targeted analytes would more 
be realistic. Here we used HPA and SRMAtlas 
to tailor down 82 potential biomarkers we pre-
viously discovered for PCa in a South African 
cohort to 32 candidates. These 32 potential 
biomarkers were prevalidated with a prelimi-
nary PRM experiment to further streamline for 
large-scale targeted proteomics approaches.

In silico database searching is becoming an 
indispensable adjunct to high throughput sys-
tems biology, albeit there are limitations to its 
use [33]. Using the SRM database, we verified 
that over half (51.1%) of our selected PTPs have 

been assayed previously using targeted SRM. 
Another subset (47.7%) of selected PTPs from 
our shotgun proteomics evidence peptides have 
not been previously reported and can be added 
to the SRMAtlas. Up to 80% coverage has been 
reported when comparing in silico with experi-
mental methods [34], showing the prospects of its 
application in the biomarker pipeline. Both pros-
tate epithelial and stromal staining was put into 
consideration in the screening process because of 
the high predicted membrane/ECM localization 
of potential biomarkers. Due to wide coverage 
(11,200 unique proteins) and tissue-specific dif-
ferential immunoproteomics expression profile 
of normal versus cancerous tissue; HPA has been 
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branded as an important tool for histopathologic 
evaluation [35] and biomarkers discovery [36]. 
HPA has also contributed huge proteogenomic 
resources to the Human Proteome Project [37,38]. 
An important caveat to immunoproteomics veri-
fication of potential biomarker is sequence speci-
ficity and avidity of the antibody if a specified 
variant is to be targeted [39,40].

Due to concurrent availability of all product 
ion and minimal interference over the full scan, 
PRM has been said to possess highly depend-
able spectral identification. This is done even 
without prior knowledge or preselection of tar-
get transition. However, a duty cycle of close to 
100% in the triple quadrupole instrument with 
electron multiplier-based detection offers a bet-
ter sensitivity compared with the sensitivity of 
the Orbitrap’s image current detection [41]. This 
calls to attention the tradeoff between the high 
mass accuracy and sensitivity between SRM and 
PRM experiments [24,33,41], PRMs are generally 
preferable in the screening mode of targeted pro-
teomics experiments while SRM may be required 
for precise/absolute quantification of analytes 
across samples [41]. The stochastic nature of ion 
selection in a PRM setup may be responsible for 
occasional poor PTP results as well as the fact 
that we have used pooled samples.

Retrospective assessment of the frequency of 
identification of top ranking 12 potential bio-
markers following PRM revealed differential 
expression of most of the biomarkers (Figure 4). 
ACPP and KLK3 which are both putative bio-
markers of prostate cancer were also detected in 
the normal urine, BPH as well as PCa. These 
biomarkers may be more appropriately markers 
of prostate disease rather than cancer-specific. 
Race-based SLAIN1 was found to be relatively 
more expressed in PCa compared with NC and 
BPH, albeit no data existed for this biomarker in 
the SRMAtlas. This may possibly be accounted 
for by the paucity of targeted urinary proteom-
ics data from African cohorts. Notably HRP, 
PROS1, PZP, NID1 and SLAIN1 were good bio-
markers of PCa. Further confirmation based on 
14 other databases and literature showed variable 
reliability of these 12 top ranking biomarkers 
with many of these biomarkers found in healthy 
urinary proteomics databases as compared with 
PCa. Remarkably, NID1 was found only in the 
healthy urine samples. In order to evaluate the 
connection between these prevalidated bio-
markers and the relevant putative existing PCa 
pathways such as ETS and PTEN. Therefore, we Ta
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performed functional network association analy-
sis (data not shown) using GeneMANIA [42] to 
create a network for the top 12 biomarkers in 
addition to ETS and PTEN and found a network 
with predicted 79.19% co-expression, 17.26% 
physical interaction, 2.73% co-localization and 
0.83% of shared protein domains between these 
biomarkers. Despite the relatively low level of 
predicted physical interaction between these 
biomarkers and ETS/PTEN pathways, the high 
level of predicted co-expression between them 
warrants further study.

Conclusion
It has become more evident that a combination 
of in silico and experimental approaches for 
high throughput systems biology approaches 
like proteomics, lipidomics and metabolomics 

is essential. This study was carried out on pooled 
samples drawn from a small population of PCa 
patients and hence the 12 prevalidated biomark-
ers would require further validation in a larger 
cohort of individual PCa patient samples using 
SRM or PRM. Despite its immense benefits, 
an important limitation of database-dependent 
analysis is the confidence measure of the data 
quality and the occasional restricted access to 
independently filter or screen these data [43]. We 
have demonstrated that an intermediate prevali-
dation step such as a combination of in silico 
HPA, SRMAtlas and preliminary targeted pro-
teomics using parallel reaction monitoring was 
highly beneficial in potential PCa biomarker 
screening process. We have taken advantage 
of newly emerging high throughput cutting 
edge technology and existing databases to 

EXEcUtiVE SUMMaRY
 ●  Prostate cancer is a leading cause of death in elderly males globally and particularly in Africa.

 ●  Men of African descent have been known to suffer aggressive phenotypes of the disease.

 ●  Prostate-specific antigen (PSA), an important biomarker of prostate cancer currently available is known to be fraught 
with false positives an overtreatment, particularly in the lower reference ranges.

 ●  There is an increase in the number of potential biomarkers generated from discovery experiment, albeit only a few of 
these biomarkers make it to clinical utility.

 ●  Despite the emergence of novel high-throughput cutting edge technologies for large-scale discovery of candidate 
disease biomarkers, there remains a bioinformatics gap for clinical applicability of these biomarkers.

Materials & methods

 ●  Using freely available online data repositories, we have employed an intermediate in silico verification to streamline 
82 previously discovered potential biomarkers of prostate cancer from our urinary shotgun proteomics experiments.

 ●  We further prevalidated 32 verified biomarkers in prostate cancer and normal sample using parallel reaction 
monitoring (PRM) targeted proteomics in a QExactive™ Hybrid Quadrupole-Orbitrap mass spectrometer in line with 
Dionex UltiMate® 3500 RSnano UPLC system.

Results

 ●  Based on stringency criteria, 32, 25, 13 and 7 top ranking biomarkers were discovered.

 ●  We observed good transition signals in 12 biomarkers, viz the top ranking seven biomarkers in addition to five other 
verified biomarkers (including two putative prostate cancer biomarkers).

 ●  Frequency of occurrence of these 12 prevalidated potential biomarkers was reconfirmed in our previous discovery 
urinary shotgun proteomics data and observed variations in expression of these biomarkers between prostate cancer, 
benign prostatic hyperplasia and normal healthy samples.

 ●  We also observed variation in top 12 biomarker abundance between prostate cancer and controls in another 
14 publicly available urinary proteomics databases.

Conclusion

 ●  This study was carried out on a small study population and hence needs further multiplatform validation in a larger 
cohort of prostate cancer patients.

 ●  The penultimate prevalidation workflow presented herein could help improve clinical translation of potential 
biomarkers from hypotheses generation discovery proteomics experiments.
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potentially address the putative clinical imple-
mentation bottlenecks of targeted potential bio-
marker validation. This approach can provide 
reliable biomarkers for large scale, multiplat-
form, h ypothesis testing targeted proteomics 
experiment.

Supplementary data
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