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Abstract— Today, thanks to the development of advanced wearable devices, it is possible to track patient conditions outside hospital 
setting for several days. One of the most important bio-signals used for health analysis is the electrocardiographic (ECG) signal. It 
provides information about the heart rate, rhythm, and morphology of heart. Many algorithms are proposed over years for 
automated ECG analysis. Due to their computational complexity, not all these techniques can be implemented on wearable devices for 
real-time ECG detection. In this frame, a particular interest is toward the algorithms for automatic QRS detection. Different 
algorithms have been presented in the literature. Among all, more suitable class for the implementation on embedded systems is 
based on the use of signal derivatives and thresholds. These algorithms are composed by pre-processing stage, for the noise removal, 
and decision stage for the QRS detection. In literature, the different algorithms were discriminated only with respect to their pre-
processing stages. Furthermore, not all algorithms were tested with standard database: this makes the results difficult to compare and 
evaluate. Moreover, the algorithms performance in case of pathological behaviours was not compared. This paper is motivated by the 
need to perform a comparison of the whole algorithms, both pre-processing and decision stages, under a standard database (MIT-
BIH ECG database of Physionet), either for non-pathological and pathological signals. The results confirm that the Pan & Tompkins 
algorithm has the best performance in terms of QRS complex detection. However, in some cases, its performance is comparable with 
the other algorithms ones. For this reason, in the applications in which the reduced of computational complexity is an important 
constraint, it is possible to implemented algorithms with comparable performance but with lesser complexity with respect to P&T 
algorithm. 
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I. INTRODUCTION 

The electrocardiographic signal (ECG) is one of the most 
commonly bio-signals used for the analysis and monitoring 
of health conditions. It represents a non-invasive method to 
evaluate pathophysiological condition of the heart. In Fig.1 
a normal ECG signal is shown. It consists of P wave, QRS 
complex and T wave. 

 
 

 
 

 
 
 

 
          Fig. 1 ECG signal. 

 
The QRS complex is the most important part of the 

waveform and represents the electrical activity of the heart 
during the ventricular contraction. The position of its peak 

(R-peak) is the most evident feature and the distance 
between more consecutive R-peaks (RR period) is a relevant 
parameter in the analysis of heart pathologies [1]. Heart 
disease has become one of the leading causes of death 
worldwide [2]. The incidence of cardiac diseases could be 
reduced by predicting the acute phase of the disease with 
long-term trend analysis. For this reason, in the last 30 years, 
several techniques are developed to recognize and analyse 
the ECG waves, particularly for the detection of QRS 
complexes. 

In the past, different classes of QRS recognition 
algorithms were developed. They can be categorized in 
terms of complexity and performance [3]. For example, we 
can consider the algorithms derived from the artificial 
intelligence [4], such as neural networks, genetic algorithms, 
wavelet transformations, filter banks, as well as heuristic 
methods. All these algorithms are complex in terms of 
computational cost. This is because the automatic QRS 
detection is a computationally intensive operation, not only 
for the physiological variability of the QRS complexes, but 
also because there are various types of noise that can be 
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present in the ECG signal [5]. Typical examples of these 
disturbs are baseline noises, power line interference, 
electrode contact noise, and motion artifacts. The presence 
of these noises makes the automatic detection of QRS 
complexes very difficult and it is necessary an onerous pre-
processing stage to treat the signal. Therefore, in order to 
provide real-time ECG analysis, most of these algorithms 
must be implemented on high-performance computing units, 
such as a personal computers, very powerful micro-
controllers or DSP. Today, the need to monitor heart 
conditions outside the hospital for several days has 
increased the use of processing systems characterized by 
low costs and small size, such as wearable devices [6]. On 
these wearable systems, the implementation of low 
computational cost algorithms is the main solution to ensure 
real-time operation. The speed and the complexity of 
elaboration are important parameters to obtain the real-time 
detection. Reducing the computational complexity, it is 
possible to use less powerful systems with respect to 
personal computers (such as low-power micro-controllers). 
These devices can operate without connection to an external 
power supply, or using, for a very long time, a battery. In 
this context, not all the algorithms for the QRS detection 
can be implemented on wearable devices. The trade-off 
between the algorithm performance and the computational 
cost is an important issue that reduces the algorithm classes 
that can be used in this class of applications. In this case, the 
less complex class of algorithms (i.e., those with lower 
calculation time) is based on the use of signal derivatives 
and thresholds. In general, these algorithms are composed of 
two different parts, the pre-processing stage, for the noise 
removal, and the decision stage for the detection of the QRS 
complexes in ECG signal (Fig. 2). 
 

 
Fig. 2 QRS detector. 

 
In literature, there are different works which compare the 

performance of QRS detectors [3] [7]. In [3], the different 
algorithms are discriminated only with respect to their pre-
processing stages. The decision stages are not compared 
because most of them are rather heuristic and the 
performance are mainly dependent on the pre-processing 
section [3]. In addition, the comparison is not homogeneous. 
Different ECG signals are used for the evaluation of the 
performance of the different algorithms. In other 
comparisons, as in [7], the algorithms are tested using a not 
standard database. This makes the results difficult to 
compare and evaluate. Finally, these comparisons do not 
consider the algorithm performance in case of pathological 
behaviours.  

The main objective of this paper is to improve the 
comparison of the QRS detection methods under two 
aspects. The first one is the need to achieve a performance 
comparison of the algorithms using a homogeneous and 
standard ECG database. This makes the results comparable 
and reproducible [8]. The second is to consider the whole 

algorithms, both the pre-processing and decision stages. In 
particular, the authors implemented the algorithms based on 
signal derivatives and digital filters and used the MIT-BIH 
ECG database [9]. Moreover, in order to stress the 
performance of the algorithms, seven typologies of signals, 
physiological and pathological, were used.  

The paper is organized as follows: in Sect. II the material 
and methods are given. In particular, an overview of 
algorithms based on signal derivatives and digital filters and 
simulation setup are proposed. In Sect. III results and 
discussion are provided, and finally, in Sect. IV conclusions 
are discussed. 

II. MATERIAL AND METHODS 

Tab.1 shows a classification of algorithms. There are four 
basic types of algorithms with at least two variants for each 
type. The first class (AF) is based on signal amplitude and 
first derivative. The second (FD) and third (FS) classes are 
based on first and second derivatives.  

TABLE I 
DERIVATIVES AND DIGITAL FILTERS-BASED ALGORITHMS 

AF1 Based on amplitude and 
first derivative 

Moriet-Mahoudeaux [10] 

AF2 Based on amplitude and 
first derivative 

Fraden-Neumann [11] 

AF3 Based on amplitude and 
first derivative 

Gustafson [12] 

FD1 Based on first derivative Menrad [13] 
FD2 Based on first derivative Holsinger [14] 
FS1 Based on first and second 

derivative 
Balda [15] 

FS2 Based on first and second 
derivative 

Ahlstrom-Tompkins [16] 

DF1 Based on digital filtering Engelse-Zeelemberg [17] 
DF2 Based on digital filtering Okada [18] 
P&T Based on derivative, filter, 

non-linear transformations 
Pan & Tompkins [19] 

 
These algorithms, thanks to the derivative, are able to 

exploit the steep slope of the QRS complex for its detection. 
Since the derivative represents a high-pass filter, other 
signal components, such as the P- and T- waves, are 
attenuated, as well as the baseline derivatives. The high-pass 
filter is often realized as a differentiator. In the last two 
classes, DF and P&T algorithm, the algorithms work with a 
digital filtered version of the ECG signal.  In all these 
algorithms, the processed signal is then used for the 
generation of features. The occurrence of a QRS complex is 
detected by comparing the feature with a fixed (in AF1 ÷ 
DF2) or adaptive (in P&T) threshold.  

Below, an overview of working principles of algorithms 
shown in Tab.1 is given. Each algorithm is based on a 
specific work presented in the literature. However, their 
working principle was adapted for a digital implementation, 
as suggested in [7], where all algorithms have been set to 
work with signals characterized by an amplitude between -
10 mV and 10 mV, with a gain of 1000, and sampled at 250 
Hz (sampling rate of 4 ms). The typical time duration of a 
physiological QRS complex is about of 100 ms, which 
corresponds to about 25 samples with the sampling 
frequency of 250 Hz. 
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A. Algorithm Based on Amplitude and First Derivative 

1)  Moriet - Mahoudeaux Algorithm [10]: in the first 
step, the amplitude threshold is calculated. It corresponds to 
30% of the signal maximum value: 

 
 
 
where, ������  represents an array containing M-ECG 
samples. A typical value of M is 8192 corresponding to 
about 30 seconds of ECG signal. 

Then, the first derivative ����� is calculated: 
 

 
Typically, the rise slope of the QRS complex lasts no 

more than 30 ms and its amplitude is typically between 1 
mV and 3 mV. Therefore, there are at least three 
consecutive points (		 , �		 � 	1�  and �		 � 	2� ) of the first 
derivative �����	that exceed the 0.5 mV threshold (Fig.3b, 
dash dot line). 

 
 
 

   
Fig. 3: Processed ECG signal. (a) ECG signal and detection threshold 
(dashed line). (b) First derivative, positive threshold (dash dot line), and 
negative threshold (dash double dot line). 

 
Since a QRS complex, in general, lasts about 25 points, 

in the next 23 points after �		 � 	2�	 the first derivative 
becomes positive. Therefore, the algorithm verifies that the 
samples � and	��	 � 	1�, with	�		 � 	2� � � � �		 � 	25�, exceed 
the -0.3 mV threshold. This value is less than 0.5 mV 
because the slope of the RS segment is less with respect to 
the slope of the QR segment. 

 �����, 	���� � 1� � 	�0.3 

�		 � 	2� 	� 	�	 � 	 �		 � 	25� 
(4) 

Finally, it verifies that the ECG signal is greater than 
amplitude threshold (Eq.1) in all points found (Fig.3a): 

 

2)  Fraden - Neumann Algorithm [11]: this algorithm is 
an adaptation of the analog QRS detection scheme 
developed by Fraden and Neumann in 1980. In this case, the 
amplitude threshold is equal to 40% of the signal maximum 
value: 

							th � 0.4 ∙ max�ECG�n�$     0 < n < M    (6) 

 
The raw signal is then rectified, according to Eq.7: 

 

�%��� � 	 & ������							'			������ ( 0�������					'		������ 	� 0	 (7) 

 
The rectified signal �%��� is subjected to a process called 

"low level clipper": 
 

�)��� � 	 & �% 	���												'			�% 	��� ( *+*+,-.+/01					'		�% 	��� � *+	 (8) 

 
Then, the first derivative ����� is calculated: 

 ����� � 	�)�� � 1� � �)�� � 1� (9) 

Finally, a QRS complex is identified if: 
 ����� 	� 0.7 (10) 

  

3)  Gustafson Algorithm [12]: the first derivative Yd(n) of 
the signal is calculated: 

 ����� � ����� � 1� � ����� � 1� (11) 

Then, a decision rule is applied. A QRS complex is 
identified if the first derivative is greater than 0.15 for four 
consecutive points and if the first derivative and the original 
ECG signal have the same sign in the two centre points: 
 ���	�, 	���	 � 1� � 	0.15 

and ���	 � 2�, 	���	 � 3� � 0.15 
 

(12) 

��	 � 1� ∙ ����	 � 1� � 0	 
and 	��	 � 2� ∙ ����	 � 2� � 0	 

(13) 

 

B. Algorithms Based on First Derivative 

1)  Menrad Algorithm [13]: in this algorithm, the first 
derivative Y4�n� is calculated in according to: 

 ����� � �2����� � 2� � ����� �															1� � 	����� � 1� � ����� � 2�  (14) 

 
Then, the threshold is calculated as 70% of the maximum 

value of the first derivative: 
 *+,-.+/01 � 0.7 ∙ 567������$ (15) 

 
Finally, QRS complex occurs if: 

 8�	� � *+,-.+/01 (16) 
 
 

							*+ � 0.3 ∙ 567�������$     0 < n < M    (1) 

����� � ����� � 1� � ����� � 1� (2) 

���	�, ���	 � 1�, 	���	 � 2� � 0.5 (3) 

����	�, ����	 � 1�, … , ����� � 1� � *+ (5) 
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2)  Holsinger Algorithm [14]: Holsinger algorithm is 
very similar to Menard algorithm. In the first step, the first 
derivative is calculated: 

 
 
 

Then, a decision rule is applied. QRS complex occurs if 
first derivative is greater than 0.45 for four consecutive 
points: 
 ���	�, 	���	 � 1� � 	0.45 

and ���	 � 2�, 	���	 � 3� � 0.45 

(18) 

C. Algorithms Based on First and Second Derivatives 

1)  Balda Algorithm [15]: in this approach, the modules 
of the first Y4�n�  and second Y:�n�  derivatives are 
calculated: 

 Y4�n� � ABS�ECG�n � 1� � ECG�n � 1��$ (19) 

Y:�n� � ABS�ECG�n � 2� � 2ECG�n� �																		ECG�n � 2��$  (20) 

 
The weighted sum of the two modules is calculated: 
 �>��� � 	1.3 ∙ ����� � 1.1 ∙ ����� (21) 
 

A QRS complex occurs if the weighted sum is greater 
than 1.0 for at least six of eight consecutive points.  

 �>�	 � 1�, �>�	 � 2�, … , �>�	 � 8� � 1 (22) 

2)  Ahlstrom-Tompkins Algorithm [16]: the modules of 
the first Y4�n� and second Y:�n� derivatives are calculated: 

 

 
Then, the first derivative module is filtered, according to 

the differentiated equation: 
 �>���� � ���� � 1� � 2����� � ���� � 1�	 (25) 

 
The filtered first derivative module and the second 

derivative module are summed: 
 �@AB��� � 	�>����	�	�C��� (26) 

The two thresholds for decision rule are calculated (Fig. 
4): 

 *+D � 0.8 ∙ 567��@AB���$ 
 *+E � 0.1 ∙ 567��@AB���$ 
 

(27) 

 
 

 

 
 
 
 
 
 
 
 
 

Fig.4: The weighted sum, the first threshold th1 (dashed line), and the 
second threshold th2 (dash dot line). 
 

Finally, decision rule is applied. A QRS complex occurs 
if one point of �@AB���  is greater than th1, and if the 
following six points are greater than th2: 

 �@AB�	� � 	 *+D 
 �@AB�	 � 1�, … , �@AB�	 � 6� � 	 *+E 

(28) 

D. Algorithms Based on Digital Filter 

1)  Engelse-Zeelenberg Algorithm [17]: the first 
derivative Y4�n� is calculated as follow: 

 ����� � ������ � ����� � 5� (29) 
 

The result is then filtered through the low-pass filter 
according to the differentiated equation: 

 �>���� � ����� � 4���� � 1� � 
    +	6���� � 2� � 4���� � 3� � ���� � 4�  (30) 

 
Finally, the rule of thumb is applied. A QRS complex 

occurs if exists a point where YG4�n�> 21 and if at least one 
of the conditions in Tab.2 is true. 

 

TABLE II 
ENGELSE-ZEELENBERG ALGORITHM CONDITIONS 

Condition 1 �>��	 � �� � �21									0 � � � 16 
 

Condition 2 �>��	 � �� � �21									0 � � � 16 

�>��	 � H� � 21							 � � � H � 16 

Condition 3 �>��	 � �� � �21									0 � � � 16 

�>��	 � H� � 21							 � � � H � 16 

�>��	 � 0� � �21					 � H � 0 � 16 

 

2)  Okada Algorithm [18]: the first step of this algorithm 
is different with respect to the others. The ECG signal is 
filtered by moving-window-low-pass filter, in according to 
Eq.31: 

 

���� � 	����� � 1� � 2������ � ����� � 1�4  
(31) 

 
Then, another low-pass filter is applied to reduce baseline 

artifacts: 
 

���� � ����� � 1� � ����� � 1� (17) 

Y4�n� � ABS�ECG�n � 1� � ECG�n � 1��$ (23) 

Y:�n� � ABS�ECG�n � 2� � 2ECG�n� �																		ECG�n � 2��$  (24) 
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�>��� � 	 125 � 1 ∙ I ��H�
JKB

LMNOB
 

(32) 

 
where, N = Okada number. Then, the square of the 
difference between input and output is calculated: 

 

Y4PQ�n� � RY�n� � YG�n�SE (33) 

 
The resulting Y4PQ�n�	is filtered: 
 

�>�TU��� � 	��TU��� ∙ V I ��H�
JKB

LMNOB
W
E
 

(34) 

 
The final signal is calculated in according to Eq.35: 
 

X��� � 	 & �>�TU���						'				Y � 00																			/*+-,Z	.- 
(35) 

 
The decision rule is fixed at 12.5% of maximum value of 

the signal. A QRS complex occurs if: 
 X��� � 0.125 (36) 
 

E. Pan & Tompkins Algorithm 

Pan & Tompkins algorithm identifies QRS complex 
based upon digital analyses of slope, amplitude and width 
[19]. An overview of the algorithm is shown in Fig.5. 
 

 
Fig. 5: Pan & Tompkins Algorithm 

 
Software QRS detectors includes linear digital filtering, 

non-linear transformation, and decision rule algorithms. 
The first two operations of the algorithm consist in the 
application of two IIR filters, 15 Hz low-pass filter (Eq.37) 
followed by a 5 Hz high-pass filter (Eq.38) [19]. 

 y�n� � 28�� � 1� � 8�� � 2� � 7��� �														�	27�� � 6� � 7�� � 12�  (37) 

 y�n� � 8�� � 1� � D
\E 7��� � 7�� � 16� �

														�	7�� � 17� � D
\E 7�� � 32�  

(38) 

 
The resulting band-pass filter removes noise due to 

power line interference, baseline wander, motion artefacts, 
muscle contraction, and electrode contact. Then the signal is 
differentiated as shown in Eq.39 to obtain slope information. 

 y�n� � D
] 	�27��� � 7�� � 1� � 7�� � 3� �														�	27�� � 4�$  

(39) 

 

The differentiated output is then squared to maximize the 
amplitude difference of QRS complex with other peaks, as 
shown in Eq.40: 

 y�n� � �7���$E (40) 

 
The squared output signal passes through a moving 

windows integrator to smooth the signal, for removing the 
fluctuations in signal peaks. For a sampling frequency of 
200 Hz, the window width is typically chosen equal to 32, 
as shown in Eq.41. 

 y�n� � D
\E 	�8��� � 8�� � 1� � ⋯�																					�	8�� � 32�$  

(41) 

 
After the signal has been filtered, QRS peaks are detected. 

The detection rules algorithm use peak height, peak location, 
and maximum derivative to classify peaks. When a peak 
occurs, it is classified as either QRS complex or noise. At 
each peak higher than detection threshold and classified as 
QRS complex, the algorithm associates a spike. The 
detection threshold is automatically calculated using the 
estimate of the average QRS peak and the average noise 
peak. 

F. Simulation Environment 

The whole algorithms, both pre-processing stages and 
decision stage, presented in the previous session have been 
implemented in Matlab. The simulation environment is 
shown in Fig. 6.  

 
 
 
 
 
 
 
 
 

Fig. 6: Simulation Environment 
 

The first block represents the ECG signals used as 
simulation input. To achieve comparable and reproducible 
results, the evaluation needs to be carried out on standard 
databases. The real ECG dataset used is available from the 
PhysioNet platform, the research resource for complex 
physiologic signals. In particular, we used files from the 
Apnea-ECG database [20] as input signals. The recordings 
provided in this database are examined by a group of 
physicians and classified as physiological or pathological 
signals. In order to stress the performance of the algorithms, 
we used both typologies of signals. In Tab.3 the signals 
classification is given. The first file represents a normal 
sinus rhythm, whereas the other ones represent different 
pathological behaviours. All the digitized ECGs in Apnea-
ECG database are sampled at 100 Hz, 16 bits per sample, 
nominally 200 A/D units per millivolt [20]. In the pre-
processing stage, a sample rate converter is used to convert 
the sample rate from 100 Hz to 200 Hz. Moreover, all 
signals are normalized and filtered to remove the baseline 
noise. 
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TABLE III 
APNEA-ECG SIGNALS CLASSIFICATION 

 
 
 
 
 
 
 
 
 
 
 
 
 

The second block of Fig. 6 represents the Matlab 
environment in which both pre-processing and decision 
stages are implemented in order to detect QRS complexes. 
Finally, the last block represents the performance 
comparison between all algorithms. In particular, to 
evaluate the performance of the algorithms, two standard 
parameters [21], Episode Sensitivity ( _` ) and Episode 
Predictivity (�P), are calculated according to Eq.42 and 
Eq.43: 
 

_` � 	 bcbc � de 
(42) 

 

�c	 � 	 bcbc � dc 
(43) 

 
where, TP denotes the number of true positives detections, 
FN the number of false negatives, and FP the number of 
false positives. In particular, _` expresses the sensitivity of 
the algorithm to identify QRS complexes. Whereas, �P is a 
measure of the inclination to incur in a false detection. 

III.  RESULT AND DISCUSSION 

The simulation results for 	_`  are depicted in Fig.7 and 
Fig.9, whereas those for �P  in Fig.8 and Fig.10. In 
particular, Fig.7 and Fig.8 show, respectively, the average 
percentage values of Sensitivity and Predictivity with 
respect to the applied algorithms, whereas Fig.9 and Fig.10 
show, respectively, the average percentage values of 
Sensitivity and Predictivity with respect to the type of ECG 
signal used (Table.3).  

Fig.7 shows a substantial difference between the P&T 
algorithm with respect to the other ones. In fact, P&T 
reaches the average percentage greater than 80% for 
Sensitivity	_`, whereas the other algorithms range between 
55% and 75%.  

Considering, instead, the results shown in Fig.8, the 
average behaviour of all algorithms is similar (between 70% 
and 80%). Of course, in both cases the number of False 
Negative for 	_` and False Positive for �P is not negligible. 
The only P&T algorithm has an average percentage more or 
less similar in both cases 	_` and	�P, whereas the behaviour 
of others algorithms is worse for the	_` . The algorithms 
based on signal derivatives are very simple to implement. 
Moreover, these methods also have the advantage of 

avoiding the manual segmentation of data, training of the 
algorithms, or patient-specific modifications that are often 
required for other detection methods [3]. Although the 
derivatives phase exalts the components at a higher 
frequency of QRS complex and attenuating the components 
at a lower frequency of P- and T-waves, the performance of 
these algorithms strongly depends on the time trend of ECG 
signal.  

 

 
 

Fig. 7: Average percentage Sensitivity (Se) of algorithms (%) 
 

In fact, the fixed threshold is set on the base of the 
processing of the first ECG samples and applied at whole 
signal. In this way, if there is a rapid variation of the signal, 
for example due to motion artifacts, the threshold will be set 
to a high value, with the risk that the amplitude of the 
physiological signal is chopped out. The Pan & Tompkins 
algorithm, instead, presents better performance in term of 
QRS detection. The adaptive threshold makes possible the 
update in real-time of the characteristics of the signal. 
Moreover, the digital filtering removes noise and 
emphasizes the QRS complex with respect to the P- and the 
T wave, limiting False Positive. 
 

   
Fig. 8: Average percentage Episode Predictivity (+P) of algorithms (%) 

 
Fig.9 and Fig.10 give information about the average 

percentage values of 	_` and �P of each single ECG signal 
used.  
 

File Classification 

a01 sinus rhythm 

a02 sinus tachycardia 

a03 ventricular fibrillation 

a04 sinus bradycardia 

a05 atrial flutter 

a07 atrial fibrillation 

a10 ventricular flutter 
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   Fig. 9: Average percentage Sensitivity (Se) for each ECG signal (%) 
 

In both figures, is possible to observe that none algorithm 
was able to detect QRS complex in the ECG signal a03 
(severe ventricular fibrillation). In this case, the algorithms 
attempt to detect the QRS complexes, but their 
identification is impossible due to the absence of the 
electrical activity able to generate the QRS wave. The 
second signal with the lowest average percentage Sensitivity 
for QRS detection was a10. In this case, the algorithms 
under test had a lot of False Negative and False Positive 
making both Sensitivity and Predictivity lower than 30%. 
The last noteworthy ECG signal is a05. It had a low 
identification rate for Sensitivity, whereas the performance 
for Predictivity is similar to the other algorithms.  

 
Fig. 10: Average percentage Episode Predictivity (+P) for each ECG signal 
(%) 
 

In a05, the loss of baseline due to the atrial flutter 
increases False Negatives, making difficult, and often 
impossible, the QRS complexes identifications. In these 
cases, an adaptive tuning of signal characteristics could 
make the QRS detection better with respect to a static 
algorithm. On the other hand, the adaptive algorithm could 
be more vulnerable to errors due to signal noise, with an 
increase of the False Positive cases. 
 
 
 

IV.  CONCLUSIONS 

In this work, the authors analysed algorithms for real-
time QRS detection in order to provide a comparison of 
both pre-processing and decision stages of algorithms. 
Moreover, to achieve comparable results, a homogeneous 
and standard ECG database was used. The algorithms under 
test have been chosen for their suitability to be implemented 
on low-performance devices, such as micro-controllers. 
Algorithm simulations were performed in Matlab. The 
results show that Pan & Tompkins algorithm, on average, 
has the best performance for both Sensitivity 	_`  and 
Predictivity �P in all analysed ECG signals. These results 
also show that all algorithms fail the QRS detection when 
they analyse an ECG signal with a severe ventricular 
fibrillation (signal a03), and they have a bad behaviour 
when atrial or ventricular flutters make the baseline lose 
(signals a05 and a10). In conclusion, despite Pan & 
Tompkins algorithm has always the best performance, in 
some cases, its performance is comparable with the 
performance of other algorithms. In the applications where 
computational complexity and time consuming are 
important constraints, it is possible to implement alternative 
algorithms with comparable performance but lesser 
complexity than Pan & Tompkins algorithm. 
A further improvement for algorithm performance can be 
obtained using a different hardware approach, based, for 
example, on hardware accelerators as shown in [22], [23], 
[24], [25], [26], [27] and [28].  
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