
PHYSICAL REVIEW A 82, 013835 (2010)

Spatiotemporal structure of biphoton entanglement in type-II parametric down-conversion
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We investigate the spatiotemporal structure of the biphoton correlation in type-II parametric down-conversion
(PDC). As in type-I PDC [Phys. Rev. Lett. 102, 223601 (2009)], we find that the correlation is nonfactorizable in
space and time. Differently from type I, the type-II correlation in the spontaneous regime displays an asymmetric
V-shaped structure in any cross section including time and one transverse dimension. This asymmetry along
the temporal coordinate originates from the signal-idler group velocity mismatch and tends to disappear as the
parametric gain is raised. We observe a progressive transition toward a symmetric X-shaped geometry similar
to that found in type I when stimulated PDC becomes dominant. We also give quantitative evaluations of the
localization in space and in time of the correlation, analyze its behavior for different crystal tuning angles, and
underline qualitative differences with respect to type-I PDC.
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I. INTRODUCTION

Many quantum communication and quantum information
schemes exploit the entanglement properties of the photon
pairs generated in the process of parametric down-conversion
(PDC). In particular, a number of applications in the field
of quantum metrology and quantum imaging [1] rely on the
strong correlation of the signal and idler photon arrival times
and/or transverse positions. Examples are clock synchroniza-
tion and positioning measurements [2,3], optical coherence
tomography [4–6], and nonlinear microscopy [7] where the
employment of biphotons with extremely short correlation
times is required. Consequently, a number of methods for
generating strongly localized biphotons, and more in general
to tailor their spectral and temporal properties have been
developed in recent years [6,8–11].

In a recent paper [12], we addressed this issue from a novel
point of view, by investigating the full spatiotemporal structure
of PDC entanglement in the source near field. Considering
a type-I phase-matching configuration, we showed that the
biphoton amplitude displays a hyperbolic geometry which
does not factorize with respect to the space-time coordinates.
By looking at cross-section planes along the temporal dimen-
sion and one transverse dimension, the structure appears as
X-shaped, the X being traced by the asymptotic behavior of
the hyperbola. It can be seen as the microscopic counterpart,
at the level of quantum fluctuations, of the “X waves” studied
in classical nonlinear optics which form spontaneously in
many wave-mixing phenomena [13]. As for these classical
objects, the nonfactorizable X-shaped structure arises from
the interplay of dispersion and diffraction governed by the
phase-matching mechanism, and following this analogy, we
coined the name of “X entanglement.” More importantly
from an applicative point of view, this structure is highly
localized both in the spatial (few µm) and in the temporal
(few fs) domain, the correlation time and length of the twin
photons being determined by the full spatial and temporal
emission bandwidth of the PDC process. The experimental
observation of such a geometry would, therefore, allow one to
achieve twin photon temporal and spatial localizations in the
femtosecond and in the micrometer range. In particular, the

predicted temporal localization compares with that obtained in
a recent experiment [9], where a 7-fs Hong-Ou-Mandel dip was
observed through the use of a chirped quasi-phase-matched
nonlinear grating.

In this paper we turn our attention to a type-II phase-
matching configuration. As is well known, in standard
measurement schemes where only small angular portions
of the PDC emission are collected, the group velocity
mismatch (GVM) between the signal and the idler photons
that characterizes type-II crystals drastically deteriorates the
correlation of the twin-photon arrival times, a feature which
does not occur in type-I PDC. We will show that this issue
can be in principle overcome when the full nonfactorizable
spatiotemporal geometry of the biphoton amplitude is taken
into account. Provided one considers near-field correlation
measurements that discriminate the twin photons spatially,
one finds indeed an extreme temporal localization of the
biphotons in the femtosecond range, similar to what we
recently found in type I [12]. However, unlike type-I PDC,
the type-II biphotonic structure displays a strong asymmetry
along the temporal dimension due to the signal-idler GVM.
The temporal region corresponding to “slow” photons arriving
before their “fast” twin is indeed forbidden, as long as
one considers the purely spontaneous regime of PDC. This
makes the biphoton amplitude appear as V-shaped in the
allowed half-plane that corresponds to positive time lag of
the “slow” photons (like a halved X). It turns out, however,
that this asymmetry tends to disappear as the parametric
gain is raised and stimulated down-conversion becomes the
dominant source of photon pairs: a transition from the
V-shaped to an X-shaped structure is observed, recovering
thereby the symmetrical structure encountered in type-I phase
matching.

The paper is organized as follows: in Secs. II and III we
define the spatiotemporal biphoton amplitude ψ and introduce
the model used to evaluate ψ in the plane-wave pump limit.
In Sec. IV A we describe the approximations that are used in
the numerics to evaluate ψ within the paraxial approximation,
further details being given in the appendixes. The behavior
of the biphoton amplitude is illustrated in Secs. V and VI
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in the coincidences regime and for increasing parametric
gains, respectively. In Sec. VII the effect of different phase-
matching conditions are investigated by considering the crystal
orientations.

II. THE BIPHOTON CORRELATION IN TYPE-II PDC

We assume a coherent pump field propagating along the
z-axis direction is injected into a χ (2) crystal slab cut for
type-II phase matching. The signal and idler fields emitted
in the PDC process are measured in the near field of the source
and we indicate with B1(�x,t) and B2(�x,t) the corresponding
field operators in the planes where the measurement is
performed. Their normalization is such that the expectation
value of Nj (�x,t) = B

†
j (�x,t)Bj (�x,t) gives the mean photon flux

density of field j as a function of time and the transverse
spatial coordinates �x = (x,y). The quantity of interest is the
spatiotemporal cross-correlation function of the signal and
idler intensities:

G(2)(�x1,t1,�x2,t2) = 〈N1(�x1,t1)N2(�x2,t2)〉 (1a)

= 〈N1(�x1,t1)〉〈N2(�x2,t2)〉 + |ψ(�x1,t1,�x2,t2)|2. (1b)

The last equality derives from the Gaussian factoriza-
tion properties of the fourth-order PDC correlation function
which can be expressed as a sum of products of second-
order field correlation functions together with the relation
〈B†

1(�x1,t1)B2(�x1,t1)〉 = 0 that holds for type-II phase match-
ing. The first term in Eq. (1b), the product of the measured
photon number, usually acts as a background term, while
the signal-idler field correlation function, also called biphoton
amplitude,

ψ(�x1,t1,�x2,t2) = 〈B1(�x1,t1)B2(�x2,t2)〉, (2)

contains all the desired information about the spatiotemporal
structure of the PDC correlation. We shall see in the next
section that in the regime of low parametric gain |ψ |2
scales as the number of photons 〈N1〉, so that when the
number of detected photons is small the correlation term
prevails with respect to the background term 〈N1〉〈N2〉 in
Eq. (1b). At low parametric gain G(2) ≈ |ψ |2 reproduces,
therefore, the measured coincidence rate as a function of the
spatial and temporal coordinates of the emitted twin photons:
|ψ(�x1,t1,�x2,t2)|2 gives the joint probability of detecting a
signal photon in position �x1 at time t1 and an idler photon
in position �x2 at time t2. In this same regime, the biphoton
amplitude can be analytically evaluated in the Fourier domain
in the general case where the pump beam has a finite transverse
size and duration [12,14,15]. On the contrary, in a regime
of high parametric gain such an analytical expression does
not exist, except in the limit of a stationary monochromatic
plane-wave pump (PWP). In [12,14] we have shown that
the biphoton amplitude in direct space (space and time) is
well approximated by the PWP result provided the duration
and waist of the pump pulse are sufficiently large compared
to the temporal and spatial walk-off between the ordinary
and extraordinary waves. For our purpose, we shall assume
this condition of quasistationarity is fulfilled, so that ψ can
be evaluated at any gain regime from the PWP theory as
a function of the relative spatial (�x1 − �x2) and temporal

coordinates (t1 − t2). This will allow us to illustrate straight-
forwardly the transition from the low-gain to the high-gain
regime.

III. MODELING BROADBAND PDC IN THE
PLANE-WAVE PUMP LIMIT

In this section we illustrate the model we use to investigate
the PDC quantum correlation in the PWP limit. It is similar
to that described in [16,17], except we shall not perform the
usual quadratic dispersion approximation with the purpose of
describing the full bandwidth of the PDC emission process in
the temporal frequency domain.

In the regime where pump depletion effects are assumed
negligible, the pump field can be treated as a coherent
c-number field that propagates linearly. We shall assume it is a
monochromatic plane wave of frequency ω0 and wave number
k0 = ω0n0/c that propagates along the z-axis direction. The
signal and idler fields are treated as quantized multimode
fields. We denote with A1(z,�x,t) and A2(z,�x,t) their respective
envelope operators, taken with respect to the common central
frequencies ωs ≡ ω1 = ω2 = ω0/2 and wave numbers k0/2.
We introduce their Fourier transforms with respect to time and
to the transverse spatial coordinates �x = (x,y),

Aj (z,�q,�)=
∫

d2 �x
2π

∫
dt√
2π

Aj (z,�x,t)e−i �q·�x+i�t , (j =1,2),

(3)

where � is the frequency offset with respect to the degenerate
frequency ωs = ω0/2 and �q is the transverse wave-vector
component. The propagation equation for the signal field A1

in Fourier space takes then the simple form,

∂A1(z,�q,�)

∂z
= i

[
k1z(�q,�) − k0

2

]
A1(z,�q,�)

+ g

lc
A

†
2(z,−�q,−�). (4)

The coupled equation for the idler field A2 is obtained by
exchanging the wave indexes 1 ↔ 2. The first term on the
right-hand side describes the linear propagation of field j ,

with kjz(�q,�) =
√

k2
j (�q,�) − q2 indicating the z component

of the k vector associated to the (�q,�) Fourier mode. Rather
than performing the usual expansion in power of �, in the
numerics (see Secs.V and VI), we shall evaluate the wave
numbers,

kj (�q,�) = ωs + �

c
nj (�q,�), (5)

by using the complete Sellmeier dispersion formula giving
the refraction indexes nj (�q,�) for a broad range of temporal
frequencies [18]. This is required by our interest in mod-
eling the full bandwidth of the PDC emission. Notice also
that the case of anisotropic propagation is here taken into
account through the assumption of an explicit dependence
of nj (�q,�) on the transverse wave vector �q. For the β-
barium-borate (BBO) crystal cut for type-II phase matching
we shall consider for the numerical examples, this occurs for
the pump field and one of the two down-converted fields,
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say the idler field j = 2, which are both extraordinarily
polarized.

The second term in Eq. (4) describes the nonlinear interac-
tion of the signal and idler waves. Its strength is determined by
the parametric gain g, a dimensionless quantity proportional
to the pump field peak value, to the crystal length lc and to
the effective second-order nonlinearity of the χ (2) medium.
By solving Eq. (4), the field operators at the crystal output
face Bj (�q,�) ≡ Aj (z = lc,�q,�) can be expressed as functions
of those at the entrance face Aj (�q,�) ≡ Aj (z = 0,�q,�)
through a unitary input-output transformation of the form
[16,17],

B1(�q,�) = U1(�q,�)A1(�q,�) + V1(�q,�)A†
2(−�q,−�), (6a)

B2(�q,�) = U2(�q,�)A2(�q,�) + V2(�q,�)A†
1(−�q,−�). (6b)

We see that only conjugate modes of opposite transverse wave
vector ±�q and conjugate frequencies ω0/2 ± � are coupled, a
feature expressing the perfect entanglement of the twin-photon
energy and transverse momentum taking place in the PWP
limit. The explicit expression of the gain function Uj , Vj can
be found in [16,17]. We mention here that they satisfy the
unitarity conditions,

|Uj (�q,�)|2 − |Vj (�q,�)|2 = 1, (j = 1,2), (7a)

U1(�q,�)V2(−�q,−�) = U2(−�q,−�)V1(�q,�), (7b)

which guarantee the preservation of the commutation relations
at equal z:

[Ai(z,�q,�),A†
j (z,�q ′,�′)] = δij δ(�q − �q ′)δ(� − �′), (8a)

[Ai(z,�q,�),Aj (z,�q ′,�′)] = 0, (i,j = 1,2). (8b)

Using these commutation rules together with the fact that the
input fields are in the vacuum state, the PDC field correlation
function in Fourier space can be readily evaluated, giving
[16,17]

〈B†
i (�q,�)Bj (�q ′,�′)〉 = δi,j δ(�q − �q ′)δ(� − �′)

× |Vj (�q,�)|2, (9a)

〈Bi(�q,�)Bj (�q ′,�′)〉 = (1 − δi,j )δ(�q + �q ′)δ(� + �′)

×Ui(�q,�)Vj (−�q,−�) (i,j = 1,2).

(9b)

The last relations can be used in order to evaluate the
near-field biphoton amplitude (2). Noticing that the stationary
and homogeneous conditions that characterize the PWP limit
lead to a dependence on the spatiotemporal coordinates only
through the relative position �x = �x1 − �x2 and time delay
t = t1 − t2, we find

ψ(�x1 − �x2,t1 − t2)

=
∫

d �q
(2π )2

∫
d�

2π
ei �q·(�x1−�x2)−i�(t1−t2)U1(�q,�)V2(−�q,−�).

(10)

We need, therefore, to evaluate the Fourier transform of
the function U1(�q,�)V2(−�q,−�), whose explicit expression
reads

F12(�q,�) ≡ U1(�q,�)V2(−�q,−�) = g sinh 	(�q,�)

	(�q,�)

×
[

cosh 	(�q,�) + i

(�q,�)lc
2	(�q,�)

sinh 	(�q,�)

]
,

(11a)

	(�q,�) =
√

g2 − 
2(�q,�)lc
4

, (11b)

where


(�q,�) = [k1z(�q,�) + k2z(−�q,−�) − k0] (12)

is the PWP phase-mismatch function, which depends on the
dispersion properties in the nonlinear medium of both the ordi-
nary and the extraordinary waves. Notice that generally ψ(�x,t)
is not even with respect to the space-time coordinates, as a
consequence the spatiotemporal walk-off between the ordinary
and the extraordinary waves. This feature characterizes type II
with respect to type-I PDC, as in the latter case the signal and
idler waves are identically polarized [i.e., k1(�q,�) ≡ k2(�q,�)]
and both the phase-mismatch function (12) and the biphoton
amplitude (10) are symmetric functions of their arguments.

Other quantities of interest are the near-field self-correlation
functions 〈B†

j (�x,t)Bj (�x ′,t ′)〉, which describe the phase-
coherence properties of each down-converted field in the
space-time domain. They can be written in the form,

〈B†
j (�x,t)Bj (�x ′,t ′)〉

=
∫

d �q
(2π )2

∫
dt

2π
e−i �q·(�x−�x ′)+i�(t−t ′)|Vj (�q,�)|2, (j = 1,2),

(13)

as it can be inferred by using Eq. (9b). This relation
expresses a generalization of the classical Wiener-Khintchine
theorem [19] extended to the space-time domain, since the
functions,

F11(�q,�) ≡ |V1(�q,�)|2 = g2 sinh2 	2(�q,�)

	2(�q,�)
, (14a)

F22(�q,�) ≡ |V2(�q,�)|2 = |V1(−�q,−�)|2, (14b)

are the photon number density fluxes of the signal and
idler fields in Fourier space and can be identified with their
spatiotemporal emission spectra. By exploiting this relation-
ship, the spatiotemporal structure of PDC coherence has
been recently investigated experimentally through angularly
resolved spectral measurements in the case of a type-I BBO
crystal in a regime of high parametric gain [20,21].

The functions F11 and F22 depend on the Fourier
coordinates only through the phase-mismatch functions

(±�q,±�)lc (the plus sign holds here for F11, the minus sign
for F22) and we have F11(�q,�) = F22(−�q,−�) according to
unitarity conditions (7). They are strongly peaked in Fourier
space regions where 
(±�q, ±�)lc = 0, as efficient down-
conversion occurs only for those conjugate signal-idler mode
pairs, (�q,�) and (−�q,−�), for which the accumulated phase
mismatch is small.
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In the low-gain limit (i.e., for g 	 1), F12 and F11 are well
approximated by the expressions,

F12(�q,�) ≈ V1(�q,�) ≈ gei

(�q,�)lc

2 sinc

[

(�q,�)lc

2

]
, (15a)

F11(�q,�) ≡ |V1(�q,�)|2 ≈ g2 sinc2

[

(�q,�)lc

2

]
, (15b)

where sinc(x) ≡ sin(x)/x. We see from this result and
Eqs. (10) and (11) that both the mean photon fluxes 〈Nj 〉 =∫

d �q
2π

∫
d�√
2π

|Vj (�q,�)|2 and the square modulus of the biphoton

amplitude |ψ |2 scales as g2 for g → 0. Thus, as anticipated in
Sec. II, the first term in Eq. (1b), namely the background term
〈N1〉〈N2〉, becomes negligible with respect to the correlation
term |ψ |2 at low parametric gains.

IV. APPROXIMATIONS FOR �(�q,�)lc

In this section we illustrate the different levels of ap-
proximation for the phase-mismatch function that are used
in the numerical and analytical calculations. From now on
we shall refer to the case of a uniaxial crystal with e-oe
phase matching. In particular, we shall take as an example the
case of a BBO crystal cut for type II with an extraordinarily
polarized plane-wave pump field injected at λ0 = 352 nm,
with the down-converted ordinary (j = 1) and extraordinary
(j = 2) fields being referred to as the signal and idler wave,
respectively.

A. Paraxial approximation: reduction to the Hankel transform

The first degree of approximation we shall consider is the
paraxial approximation used in the numerics. It is obtained by
expanding 
(�q,�)lc in powers of qx and qy up to quadratic
terms, while keeping the dependence on � expressed by the
Sellmeier relation. This approximation allows one to reduce
the two-dimensional (2D) Fourier transform in the spatial
frequency space that defines the biphoton amplitude (10) to a
one-dimensional Hankel transform. This feature substantially
reduces the time of computation required to evaluate ψ(�x,t)
numerically, though maintaining a good precision level. We
find that the phase-mismatch function can be written in the
form (see Appendix A for a detailed derivation),


(q̄,�)lc ≈ D0(�) − q̄2

q2
0 (�)

, (16)

where q̄ =
√

q̄2
x + q̄2

y denotes the radial coordinate of the

scaled spatial frequencies,

q̄x = βx[qx − qC(�)], (17a)

q̄y = βyqy. (17b)

The parameters depending on � in Eqs. (16) and (17a) are
given by

q0(�) =
√

k̄(�)

lc
, (18a)

k̄(�) = 2k1(�)k2(�q = 0,−�)

k1(�) + k2(�q = 0,−�)
, (18b)

qC(�) = 1

2β2
x

k̄(�)ρ2(−�), (18c)

D0(�) = [k1(�) + k2(�q = 0,−�) − k0]lc

+ 1

4β2
x

k̄(�)lcρ
2
2 (−�), (18d)

with ρ2(�) = − (∂k2/∂qx)�q=0 denoting the walk-off angle of
the idler wave with respect to the pump axis direction. Its
relation to the pump direction angle θ0 (with respect to the
crystal axis) and the ordinary and extraordinary principal axis
refraction indexes, no(�) and ne(�), is given in Eq. (A5) of
Appendix A. Note that according to its definition and the
chosen reference frame orientation illustrated in Fig. 11 of
the appendix, both ρ2 and qC are positive for the negative
BBO crystal. The dimensionless coefficients βx and βy are
defined through the relations,

β2
x = 1 − k1

k1 + k2

(
ρ2

2 − 2ρ2

tan 2θ0

)
, (19a)

β2
y = 1 + k1

k1 + k2

ρ2

tan θ0
, (19b)

where we used the short-hand notation ρ2 ≡ ρ2(� = 0), kj ≡
kj (�q = 0,� = 0). We chose to ignore the slow dependence on
� of the parameters βx , βy , after checking that this does not
affect substantially the precision of the approximation. The
phase-matching “curve,” that is, the surface in the (qx,qy,�)
space defined by the equation,


(�q,�)lc = 0, (20)

exists only in the frequency region where D0(�) � 0. In such
a region, a section at a fixed � is an ellipse in the (qx,qy) plane
(i.e., in the far-field plane) centered on (qx = qC(�),qy = 0)
with the semiaxes q0(�)

√
D0(�)/βx and q0(�)

√
D0(�)/βy

parallel to the qx and qy axes. However, their eccentricity is
usually rather small, since both βx and βy are close to unity.
In the type-II BBO case considered in the numerics, we find
β2

x = 0.9871 < β2
y = 1.0316 for θ0 = 49.05◦; the ellipse is,

therefore, slightly elongated along the qx axis (parallel to the
walk-off plane) with the small eccentricity

√
1 − β2

x/β
2
y =

0.208 and can be hardly distinguished from a circumference
of radius q0(�)

√
D0(�). Expression (16) provides an excellent

approximation for the phase-mismatch function (12) over
a broad range of temporal frequencies. This is shown in
Fig. 1 where the phase-matching curve 
(�q,�)lc = 0 in
the (�,qx) plane for qy = 0 obtained from Eq. (16) (solid
line) is compared with that obtained numerically without any
approximation using an iterative algorithm (hollow circle).

Exploiting the radial symmetry of the phase-mismatch
function with respect to the scaled spatial frequencies (17),
Eq. (10) can be rewritten as a Hankel transform,

ψ( �̄x,t) = 1

βxβy

∫
d�

2π
e−i�t eiqC (�)x̄ ,

∫ ∞

0

dq̄

2π
q̄J0(q̄ r̄)F12(q̄,�), (21)
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FIG. 1. The phase-matching curve in the plane (qx,�) as obtained
from Eq. (16) (solid line) is compared with the numerical result
without paraxial approximation (hollow circle). The dashed line and
the dotted-dashed line correspond, respectively, to the hyperbolic and
the parabolic approximations expressed by Eqs. (26) and (29). In this
example the pump axis direction (θ0 = 49.05◦) is such that collinear
phase matching occurs at degeneracy (i.e., 
0lc = 0).

where J0(x) = 1
2π

∫ 2π

0 eix sin(θ)dθ is the 0th order Bessel func-
tion and

x̄ = x/βx, ȳ = y/βy, r̄ =
√

x̄2 + ȳ2 (22)

are the scaled spatial coordinates. In the numerics, we
first evaluated the Hankel transform in Eq. (21) by using
the quadrature method illustrated in [22] which offers an
excellent precision level. The Fourier transform with respect
to the temporal frequency was evaluated using the FFT-based
Bluestein algorithm which allows one to select an appropriate
time window within the Nyquist interval without resorting to
zero padding [23]. Especially at low gain, the slow decaying
and strongly oscillating behavior of F12 requires a large
number of quadrature points, so that the direct evaluation of
the (2+1)D transform given in Eq. (10) would have been much
more demanding, if not prohibitive, from the point of view of
both computation times and memory use.

B. Quadratic (hyperbolic) approximation in �q and �

As can be seen from Fig. 1, the approximation illustrated
in Sec. IV B, Eq. (16) provides an excellent fit with the exact
phase-matching curve. In order to obtain analytical results, we
shall also resort to a cruder approximation holding close to
degeneracy, obtained by expanding D0(�) quadratically and
setting βx = βy = 1 in Eqs. (16) and (18d) [this corresponds
to neglecting the second-order derivatives of k2(�q,�) with
respect to qx , qy given in Appendix A, Eq. (A6)]:


(q̄,�)lc = D0 + �

�0
+ �2

�′′2
0

− q̄2

q2
0

. (23)

In this expression the parameters q0 =
√

k̄/ lc, k̄ =
2k1k2/(k1 + k2), qC = 1

2 k̄ρ2, and D0 = 
0lc + 1
4 k̄lcρ

2
2 are the

constants obtained by setting βx = βy = 1 and � = 0 into
Eqs. (18a)–(18d), with


0 = k1 + k2 − k0 (24)

denoting the collinear phase-mismatch parameter at degen-
eracy. Notice that if D0 > 0, the quantity qR = q0

√
D0

gives the radius of the phase-matching circumference in the
(qx,qy) plane at degeneracy. Using the short-hand notation
k′
j = (∂kj/∂�)0,0, k′′

j = (∂2kj/∂�2)0,0, to denote the k-vector
frequency derivatives at degeneracy along the pump axis
direction (i.e., for �q = 0,� = 0), the other parameters �0 and
�′′

0 appearing in Eq. (23) are defined through the relations,

�−1
0 ≡ (k′

1 − k′
2)lc, �′′−2

0 ≡ 1

2
(k′′

1 + k′′
2 )lc, (25)

and give the characteristic temporal bandwidths associated to
group velocity mismatch (GVM) and group velocity dispersion
(GVD), respectively. In type-II phase matching, the walk-
off time tcoh = �−1

0 determines the typical coherence time
characterizing the PDC field in a far-field detection scheme,
while in type-I phase matching this role is taken by �′′−1

0 as in
this case the GVM is vanishing at degeneracy (since k′

1 = k′
2).

Taking the roots of expression (23) with respect to �, we
obtain the two hyperbolic branch in the (q̄,�) plane,

�±(q̄) = −�0

2ε
± �0

2ε

√
1 + 4ε

(
q̄2

q2
0

− D0

)
, (26)

where ε ≡ �2
0/�′′2

0 . For the 4-mm-long BBO crystal consid-
ered in the numerical examples (see next sections) we have
�′′−1

0 = 18.5 fs, �−1
0 = 985 fs, ε = 3.3 × 10−4. Because of

the smallness of such parameters, it can be easily verified that
only the solution �+(q̄) corresponds to a positive frequency
ω0
2 + � > 0, while �−(q̄) may be discarded. The plot of �+(q̄)

(dashed line in Fig. 1) fits well the “exact” phase-matching
curve obtained with the use of the complete Sellmeier relation
close to degeneracy, but fails for large values of �, as expected.
The asymptotic limit of this hyperbolic branch for large spatial
frequencies (corresponding to high temporal frequencies) is
given by

�+(q̄) ≈ −�0

2ε
+ �′′

0

q0
q̄, for

q̄

q0


√
1

4ε
− D0. (27)

As we shall see in the following section, it turns out that
the large-scale geometry of the biphotonic structure in the
space-time domain is actually governed by this asymptotic
behavior.

C. Linearization with respect to � (parabolic approximation)

Some analytical results will be obtained by using an even
cruder approximation, which neglects the effect of GVD with
respect to GVM, so that the phase-mismatch function (23)
becomes linear in �,


L(q̄,�)lc = D0 + �

�0
− q̄2

q2
0

. (28)

In the same limit, the hyperbolic phase-matching curve (26)
reduces to the parabola

�(L)(q̄) = �0

(
q̄2

q2
0

− D0

)
, (29)

which corresponds to the limit of �+(q̄) for ε → 0. For
finite values of the parameter ε, Eqs. (28) and (29) are good
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approximations of Eqs. (23) and (26) close to degeneracy, in a
range of frequencies such that |�/�0| 	 1/ε. The plot of (29)
is displayed by the dotted-dashed line in Fig. 1.

V. BEHAVIOR OF THE BIPHOTON AMPLITUDE
AT LOW GAINS

We first consider a regime of low parametric gain, taking
g = 0.001, and considering the same BBO parameters as
in Fig. 1: the pump direction, θ0 = 49.05◦, is such that
the collinear phase matching takes place at the degenerate
wavelength λs = 704 nm (i.e., 
0lc = 0).

Figure 2(a) plots on a large scale the phase-matching curves
of the signal field (on the right) and of the idler field (on the
left) in the plane corresponding to the walk-off direction. In
the numerical simulation, both fields were multiplied by a
super-Gaussian filter centered at degeneracy with a full width
at half-maximum (FWHM) frequency bandwidth 
�F ≈ 1.5 ·
1015 Hz corresponding to a ∼400-nm range of wavelength (it
is indicated by the unshaded region in Fig. 2). Its purpose is to
select an appropriate bandwidth of temporal frequencies that
represents, for example, the detection bandwidth.

Figure 3 displays the numerical result for the modu-
lus of the biphoton amplitude in the (x,t) plane on a
femtosecond-micrometer scale. We have a kind of V-shaped
structure that clearly does not factorize with respect to the
space-time coordinates and that extends mainly in the positive
t half-plane while it is almost vanishing for t < 0. This last
feature distinguishes type-II phase matching with respect to
type-I PDC: the latter displays indeed a perfectly symmetric
structure at any gain, both with respect to the spatial and
the temporal coordinates and appears as X-shaped [12,14].
The asymmetry of the biphoton amplitude along the temporal
dimension displayed in Fig. 3 has a simple physical explana-
tion related to the temporal walk-off between the signal and
idler waves that characterizes type-II PDC. As |ψ(�x,t)|2 is
proportional to the probability of finding the signal photon
in the relative position �x = �x1 − �x2 and with a time delay

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-3
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1

2

3
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Ω ( 10
15
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FIG. 2. Plot of the phase-matching curves of the signal and idler
waves in the walk-off direction for the same parameters as in Fig. 1.
The unshaded region centered at degeneracy corresponds to the
chosen frequency range selected by the super-Gaussian filter.

FIG. 3. (Color online) Structure of the modulus of the biphoton
amplitude on a fs/µm scale as a function of the relative coordinates
�x = �x2 − �x1, t = t2 − t1. The modulus of |ψ | normalized to its peak
value has been plotted, rather than |ψ |2, in order to enhance the
visibility of the tails.

t = t2 − t1 with respect to the idler photon, we note that for
the considered BBO parameters:

(a) A signal photon will always arrive with a positive time
delay t > 0 with respect to its idler twin, since the group
velocity of the signal (ordinary) wave v1g ∼ 1/k′

1 is smaller
than the group velocity of the idler (extraordinary) wave v2g ∼
1/k′

2.
(b) In the low-gain regime, coincidences are mainly

produced by couples of photons generated from a single down-
conversion event (i.e., the contribution of photons generated by
secondary stimulated processes to the measured coincidence
rate |ψ(�x,t)|2 is negligible).

Because of this last condition, photon pairs are produced
almost uniformly along the crystal through purely spontaneous
PDC. Accordingly, the distribution of the delay times of the
signal photons with respect to the idler photons at the crystal
output face is nearly uniform within t = 0 and the maximum
delay time allowed by the length of the crystal tcoh = �−1

0 =
(lc/v1g − lc/v2g). It is important to stress that condition (b)
is no more fulfilled in the high-gain regime, with g ∼ 1 or
larger, as stimulated PDC becomes the main source of photon
pairs. We shall see indeed in the next section that by raising
the parametric gain, the asymmetry of the biphoton amplitude
along the temporal axis disappears.

Another distinctive feature of type-II PDC lies in that the
diagonal tails that form the V-shaped structure emerge only
slightly from the overall structure [as it can be seen from
Fig. 3(a)], since the coincidence rate |ψ |2 does not vanish in the
triangular region delimited by those tails [the region delimited
by the dotted diagonals in Fig. 3(b). We shall see in Sec. VII
that the contrast of those tails varies by changing the phase-
matching conditions and reaches its maximum for very large
values of the collinear phase-mismatch parameter 
0lc. In the
case of type-I PDC, on the contrary, the biphotonic structure
appears as perfectly X-shaped, with the highest contrast of
the tails obtained when 
0lc is close to zero. Both in type-
I and type-II PDC, the orientation of the tails in the (x,t)
plane is determined by the asymptotic behavior of the phase-
matching curve for large frequencies given by Eq. (27). To be
more precise, the type-II biphotonic structure extends in the
region with t > 0 and |x/t | � �′′

0/q0 delimited by the dotted
diagonal lines indicated in Fig. 3(b) (a detailed explanation of
this behavior will be given elsewhere [24]).
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FIG. 4. Profile of the coincidence rate |ψ(�x,t)|2 normalized to its
peak value, along the temporal and the transverse x axis, respectively
[the cuts are indicated by the two white solid lines in Fig. 3(b)].
The FWHM of the correlation peaks (indicated in the figure) gives a
measure of the relative localization of the biphotons in space and in
time. The dashed line in (a) plots the analytical approximation given
in Eq. (33b).

As for type-I PDC [12], an important feature of the
biphotonic function is its strong temporal localization. This
is best shown by the temporal profile of the coincidence rate
|ψ(�x,t)|2 for �x = 0 illustrated in Fig. 4(a), which has a FWHM
as narrow as 4.2 fs. Such an extreme two-photon localization
is not linked to the characteristic coherence time tcoh = �−1

0 ,
as it happens, for example, in the case of far-field measure-
ments [25], but rather depends on the ultrabroad bandwidth
of the whole PDC emission spectrum. This bandwidth can
in principle extend over the whole frequency range up to
the pump field frequency, though, in our case (and in any
practical situation) it is limited by the frequency bandwidth

�F of the filter used in the numerical model. However, it is
important to stress that such a localization is conditioned by
our ability to resolve the photon spatial separation. Assuming
that coincidences are measured by collecting all the photon
in the transverse plane, without discriminating their relative
position, the measured quantity corresponds to the spatially
integrated joint-probability distribution,

C(t) =
∫

d �x|ψ(�x,t)|2 =
∫

d �q
(2π )3

|F12(�q,t)|2, (30)

where the square modulus of the function,

F12(�q,t) ≡
∫

d�√
2π

e−i�tF12(�q,�), (31)

is proportional to the joint probability of finding a pair
of photons with transverse momenta ±�q separated by the
time interval t , obtained, for example, through a far-field
measurement with two symmetrical pinholes in the positions
corresponding to the opposite transverse wave vectors ±�q 1.
As already observed for type I [12], we see from this relation
that C(t) takes the form of an incoherent superposition of such
probabilities and the temporal width of the latter represents

1Strictly speaking, the joint probability density of finding a
signal and an idler photon separated by the time delay t = t1 −
t2 and with the transverse wave vectors �q and �q ′ is given by
the square modulus of the function 〈A1(�q,t1)A2(�q ′,t2)〉 = δ(�q +
�q ′)

∫
d�

2π
e−i�(t1−t2)F12(�q,�). The singularity arising from the presence

of the delta function δ(�q + �q ′) is due to the PWP approximation and
expresses the perfect transverse momentum correlation characterizing
this limit.

therefore a lower bound for the temporal localization of the
coincidence rate C(t).

In contrast, if twin photons can be resolved spatially (e.g.,
by measuring coincidences in the same near-field positions),
the measured quantity is given by the temporal profile of |ψ |2
at �x = 0,

Cx=0(t) ≡ |ψ(�x = 0,t)|2 =
∣∣∣∣
∫

d �q
(2π )5/2

F12(�q,t)

∣∣∣∣
2

, (32)

which behaves as a coherent superposition of the complex
probability amplitudes F12(�q,t). Its temporal localization is
by no means limited by the width ∼ tcoh of the latter and the
numerical result shown in Fig. 4(a) demonstrates that this is
indeed the case.

In Appendix B, Eqs. (B6) and (B8), we performed complete
analytical calculations based on the linear approximations (28)
and (29) outlined in Sec. IV C. According to these results, the
two coincidence rates are roughly given by the relations,

C(t) ∝ Rect

[
t − 1

2 tcoh

tcoh

]
, (33a)

Cx=0(t) ∝ sinc2

[
1

2

�′

Ft

]
Rect

[
t − 1

2 tcoh

tcoh

]
, (33b)

where Rect(x) denotes the rectangular function, equal to
unity for |x| � 1

2 and zero elsewhere, and 
�′
F indicates the

bandwidth corresponding to the portion of the phase-matching
curve selected by the frequency filter [see definition (B5)
in Appendix B]. From these expressions we readily see that
the temporal localizations characterizing the two coincidence
rates may differ, at least for not too short crystals, by
order of magnitudes. When the twin-photon positions are
not discriminated, the coincidence rate temporal width is
determined by the time delay that the photons accumulate
in crossing the nonlinear medium because of GVM, that is
tcoh = lc/v1g − lc/v2g , which for a few millimeters crystal is
on the order of picoseconds. On the contrary, when the photon
positions are discriminated (i.e., twin photons are collected
at the same near-field positions) their typical correlation time
is determined by the full PDC bandwidth intercepted in the
measurement, 
�′

F . This one extends in principle over the
optical frequency range and leads therefore to correlation
times in the femtosecond range. These simple analytical results
are confirmed by numerics. Figure 4(a) plots the analytical
result (33b) (dashed line) together with the more accurate
numerical result (solid line). The predicted FWHM value
for Cx=0(t) derived from Eq. (33b) (i.e., t1/2 = 2.78/
�′

F =
3.7 fs), underestimates the numerical evaluation by about 10%,
as it can be inferred from Fig. 4(a) where the numerical and the
analytical estimates of Cx=0(t) are plotted. The smoother and
broader shape of the numerical result (solid line) is essentially
due to GVD effects which are neglected in the analytical
calculations. The scaling with 1/
�′

F has been fully verified
through the numerical simulations.

Figure 5(b) plots the integrated coincidence rate C(t) and
compares the analytical result (dashed line) with the numerics
(solid line). Again, the slightly smoother and broader profile
of the numerical result is due to GVD effects neglected in the
analytics. A more accurate analytical estimation can be done
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FIG. 5. (Color online) (a) Plot of |F12(q̄,t)|; the vertical dashed
line corresponds to the coherence time tcoh = 985 fs associated to
temporal walk-off. (b) Spatially integrated coincidence rate C(t)
normalized to its peak value (solid line). The dashed line corresponds
to the analytical approximation (33a). The 4.2-fs narrow peak Cx=0(t)
is also shown in the figure for comparison.

on the basis of the quadratic approximation of Sec. IV B and
will be presented elsewhere [26].

Figure 5(a) displays the numerical evaluation of |F12(q̄,t)|
in the plane (t,q̄). As predicted by Eq. (B1) of Appendix B,
its cross section for a given value of q̄ has a box-like shape
extending from t = 0 up to an upper bound on the order
of tcoh = �−1

0 . The slow dependence on q̄ of this upper
bound is related to the dispersion of the GVM, which is
not taken into account in the simplified model that led to
the approximations (B1) and (33a) for F12(q̄,t) and C(t) (see
Appendix B for more details).

VI. TRANSITION TO THE HIGH-GAIN REGIME

In this section we investigate numerically the behavior of
the biphoton amplitude for increasing values of the parametric
gain. As can be seen from Fig. 6, when g is raised, a V-shaped
structure that mirrors that in the t > 0 half-plane develops
in the t < 0 half-plane. Thus, the strong asymmetry along
the temporal axis that characterizes the low-gain regime [see
Fig. 6(a)] progressively disappears and a transition from a
V-shaped to an X-shaped structure is observed. This can also
be inferred from the behavior of the integrated correlation func-
tion C(t) plotted for g = 1.2 and g = 4 in Figs. 7(a) and 7(b),
respectively (solid line). Its shape transforms progressively
from the box-like coincidence rate obtained in the low-gain
regime [see Fig. 5(b)] to a bell-shaped curve whose position
of the maximum tshift shifts toward zero for increasing gains
[Figs. 7(a) and 7(b)]. Figure 8 plots the cross section of the
biphoton correlation, Cx=0(t), for the same gain values. Also
in this case the shift toward positive time delays decreases
at high parametric gains, and the correlation peak becomes
almost symmetric.

We can explain qualitatively this behavior noticing that the
mean number of down-converted photons grows exponentially
with the crystal length in a regime of high parametric gain, as
the produced photon pairs stimulate the generation of many
other photon pairs in a cascading process. The “slow” signal
photons can thus be generated in processes stimulated by
the “faster” idler photons and vice versa, so that the arrival
time distributions of the signal and the idler photons tend
to overlap when this cascading effect becomes the dominant
source of photon pairs. As a result, the strong asymmetry
of the correlation function along the temporal axis, that

FIG. 6. (Color online) Behavior of the biphoton correlation for
increasing value of the parametric gain (from top to bottom). The
modulus of ψ normalized to its peak value is plotted in the (x,t)
plane. The color map of the 2D plots (right) is truncated to 1/4 of the
peak value of |ψ | to enhance the contrast of the tails.
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reveals the temporal delay of the “slow” signal photons with
respect to the idler photons in the low-gain regime, disappears
progressively when the parametric gain is raised.

From a more quantitative point of view, we can gain
some insight by investigating the behavior of the probability
amplitude F12(�q,t) defined in Eq. (31) for increasing gain
values. We first notice that the phase of F12(�q,�) close to
perfect phase matching, where |F12(�q,�)| is not negligible, is
well approximated by the expression,

arg[F12(�q,�)] ≈ tanh g

2g

(�q,�)lc ≈ tanh g

2g

� − �(L)(q̄)

�0
,

(34)

where in the last equality we used the linearized approxi-
mations (28) and (29) for the phase-mismatch function. By
extending this approximation to the whole � axis and per-
forming the substitution � → � + �(L)(q̄) for the integration
variable, the Fourier transform (31) can then be written in the
form,

F12(q̄,t) ≈ e−i�(L)(q̄)t
∫

d�√
2π

e
−i�[t− tanh g

2g
tcoh]

h̃(�), (35)

where

h̃(�) = |F12(q̄,�(L)(q̄) + �)| (36)

does not depend on �q, since, thanks to the change of variable,
it is a function of 
(q̄,�(L)(q̄) + �)lc = �/�0 alone, as can
be inferred from Eqs. (11), (28) and (29). Therefore, the square
modulus of F12(q̄,t) depends only on the temporal argument
t − tanh g

2g
tcoh and can be written as

|F12(�q,t)|2 =
∣∣∣∣h

(
t − tanh g

2g
tcoh

)∣∣∣∣
2

, (37)

where h(t) denotes the inverse Fourier transform of h̃(�).
Since h̃(�) is a real function, |h(t)| is accordingly an even
function of its argument and the same holds true for the
integrated coincidence rate defined in Eq. (30):

C(t) =
∫

R�q
d �q|F12(�q,t)|2 ∝

∣∣∣∣h
(

t − tanh g

2g
tcoh

)∣∣∣∣
2

. (38)

We obtain a finite quantity, as we limited the integration in �q
space to the finite region R�q defined in Appendix B, Eqs. (B2)
and (B3), corresponding to the portion of the phase-matching
curve selected by the temporal frequency filter. Equation (38)
tells us that C(t) is evenly distributed in time around tshift =
tanh g

2g
tcoh, with a temporal width on the order of tcoh = �−1

0 ,

the inverse of the typical variation scale of h̃(�) on the � axis.
For low parametric gains tshift takes its maximum value [i.e.,
tshift → tcoh

2 = 1
2 (lc/v1g − lc/v2g)]. Notice that this temporal

value corresponds to the average time delay of the twin photons
at the crystal output face assuming that they are generated
uniformly along the crystal length, as is the case in the purely
spontaneous regime of PDC. On the other hand, this shift
toward positive time delays tshift decreases to zero as the
parametric gain is raised and the stimulated regime of PDC
is reached (i.e., for g well above unity). The distribution of
C(t) becomes, therefore, more and more symmetric around
t = 0 and the same holds true for the temporal behavior of

the functions F12(�q,t) and ψ(�x,t), as can be seen from the
numerical examples illustrated in Fig. 6.

In contrast, the temporal width of the correlation function
with resolved positions, Cx=0(t), is not determined by the
variation scale �0 of h̃(�). As in the low-gain regime,
the phase factor that depends on q̄ in the expression (35)
play a fundamental role in the evaluation of the coherent
superposition of the amplitudes F12(�q,t) that defines Cx=0(t)
in Eq. (32). Substituting Eq. (35) into (32) and using the
identity (B7) derived in Appendix B, we find

Cx=0(t) =
∣∣∣∣∣
∫

R�q

d �q
(2π )5/2

e−i�(L)(q̄)t

∣∣∣∣∣
2

×
∣∣∣∣h

(
t − tanh g

2g
tcoh

)∣∣∣∣
2

∝ sinc2

(

�′

F t

2

)
C(t). (39)

The width of Cx=0(t) is thus determined by the intercepted
PDC bandwidth 
�′

F as in the low-gain regime [see Eq. (33b)],
while the broader function C(t) acts here only as a slow
modulation, since we are always assuming that 
�′

F  �0.
The strong temporal localization of the two-photon correlation
in the same near-field position is, therefore, robust against a rise
of the parametric gain. The more accurate numerical evaluation
shown in Figs. 8(a) and 8(b) (solid line) confirms this result:
we observe only a slight increase of the FWHM correlation
time, by about 50% in the worst case. The two orders of
magnitude improvement with respect to the localization of
C(t) persists, therefore, at high parametric gains, as can be
inferred by comparing Figs. 7 and 8 (the corresponding FWHM
are indicated in the figure).

In order to obtain an explicit expression for h(t), we verified
that |F12(�q,�)|, seen as a function of 
(�q,�)lc, can be replaced
with the Gaussian fit |F12(
 = 0)| exp[−(
lc)2/δ2

g] for g �
1.5, the fitting parameter 1/δ2

g = (1/ tanh g − 1/g)/4g being
obtained by matching the second-order derivative for 
 =
0. We obtain thereby the following expressions for C(t) and
Cx=0(t):

C(t) ∝ e
− δ2

g

2t2coh
[t− tanh g

2g
tcoh]2

, (40a)

Cx=0(t) ∝ e
− δ2

g

2t2coh
[t− tanh g

2g
tcoh]2

sinc2 
�′
Ft

2
. (40b)

Although these analytical approximations fail to reproduce
the exact shape of the correlation functions at intermediate
gains, they provide a good description of their overall behavior
for increasing values of g. Figures 7 and 8 plot these analytical
curves (dashed lines) for comparison with the more accurate
numerical evaluations (solid lines).

According to Eq. (40a), the integrated coincidence rate C(t)
becomes at high gains almost Gaussian, centered around tshift

and with a FWHM t1/2 given by

tshift = tanh g

2g
tcoh ≈ tcoh/2g, (41a)

t1/2 = 2.35tcoh/δg ≈ 1.177tcoh/
√

g, (41b)

the last expressions on the right-hand side giving the asymp-
totic limit at high parametric gains. The numerical estimation
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FIG. 9. The numerical evaluation of the mean temporal shift
toward positive time delays, tshift, and the width t1/2 of C(t), are
plotted as a function of the parametric gain (triangles). The dashed
lines are obtained by fitting the predicted scaling behavior given by
Eqs. (41a) and (41b).

of these parameters at different gain values (triangles) is fitted
with the predicted behavior (dashed lines) in Fig. 9. In this
plot the discrete data have been obtained from the numerical
estimation of C(t) by evaluating the mean and the standard
deviation of the normalized coincidence rate C(t)/

∫
C(t)dt ,

respectively. Notice that the analytical curves (41) have been
fitted by treating the walk-off time tcoh as a fitting parameter,

obtaining a value about 1.25 times larger than its value for
� = 0, namely �−1

0 = 985 fs. It can indeed be verified that
the walk-off time of the best phase-matched modes slowly
increases with the transverse wave vector q̄. By ignoring this
variation in the analytical treatment (see Appendix A), the
values of tshift and t1/2 are therefore slightly underestimated
[this can also be inferred from the dashed curve in Fig. 7
which reproduces the Gaussian approximation (40a) with
tcoh = 985 fs].

The stronger localization of C(t) at high gains can be
explained noticing that in such a regime most photon pairs
are produced through stimulated PDC close to the crystal
end face. The mean temporal walk-off undergone by the twin
photons during propagation in the birefringent media, the main
source of broadening for C(t), is thus reduced with respect to
the purely spontaneous (low-gain) regime. However, because
of the slow decrease of t1/2 ∝ 1/

√
g [see Eq. (41b)], it still

remains on the order of tcoh ∼ 1 ps for realistic gain values.
On the other hand, the faster decrease of tshift ≈ tcoh/2g [see

Eq. (41a)] is sufficient to make the asymmetry of both C(t)
and |ψ(�x,t)|2 diminish substantially, as it can be inferred from
the numerical result shown in Fig. 6 and from the temporal
profile shown in Figs. 7 and 8.

FIG. 10. (Color online) (Top to bottom) The collinear phase-mismatch parameter 
0lc is raised by increasing θ0 (the values are indicated
in the figure). The unshaded region indicates the frequency bandwidth selected by the super-Gaussian filter used in the simulation. (Left) The
phase-matching curve shifts toward negatives �; the dashed lines reproduce the asyntoptes given in Eq. (27). (Middle and right) |ψ | is plotted
in the (x,t) plane for g = 0.001 and g = 4, respectively. As 
0lc is raised, the contrast of the tails of the V-shaped (or X-shaped) structure
improves since the contribution of the phase-matched modes close to the asymptotes increases. Note that the |ψ | has been truncated to 1/2 of
its peak value to enhance the visibility of the tails.
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VII. BEHAVIOR OF THE BIPHOTON AMPLITUDE FOR
DIFFERENT CRYSTAL TUNING ANGLES

In this section we investigate the behavior of the biphoton
correlation in the space-time domain with respect to changes
in the pump axis orientation with respect to the crystal axis.
In the type-II BBO case we are considering, by increasing the
pump axis incidence angle θ0, the collinear phase-mismatch
value 
0lc becomes more and more positive. The central and
right panels in Fig. 10 plot the biphotonic structure obtained
for increasing values of θ0 and 
0lc, for g = 0.001 and g = 4,
respectively. We see that the contrast of the diagonal tails
along the lines t = ± q0

�′′
0
x is strongly enhanced and its V-

like (or X-like) shape becomes more distinguishable as 
0lc
increases (from top to bottom). The strongest x-t relationship
is thus obtained for large noncollinear phase-mismatch values,
in contrast to the case of type-I PDC, where it occurs for

0lc = 0 [12,14].

In the Fourier domain, this feature is reflected in the
behavior of the phase-matching curve (Fig. 10, left, solid
line), which for increasing values of 
0lc approaches more
and more the asymptotic behavior given by Eq. (27) (Fig. 10,
dashed lines) within the region selected by the frequency
filter (delimited by the gray regions). The temporal frequency
�tp ≈ �+(q̄ = 0) corresponding to the turning point of the
hyperbolic branch given by Eq. (26) moves indeed toward
large negative values as 
0lc becomes more and more positive.
It may be shown [24] that under those conditions, the ratio
between the transverse spatial separation 
x and the temporal
delay 
t of emitted twin photons approaches the constant
value q0/�′′

0 for all the collected frequencies, a feature which
explains the highest contrast of the tails displayed by the
biphotonic structure in the (x,t) plane obtained for large values
of 
0lc [see Fig. 10(c), middle and left].

The situation is different in type-I PDC, where the
absence of GVM leads to the symmetric phase-matching

curve �±(q) = ±�0

√
q2

q2
0

− 
0lc, as can be inferred from the
quadratic approximation (23) by taking the limit �0 → ∞,
ρ2 = 0. In this case, the ratio 
x/
t is close to �′′

0/q0 for all
frequencies when the collinear phase-mismatch parameter is
equal to zero [14,24]. In type-I PDC the perfectly X-shaped
geometry of the biphotonic correlation occurs, therefore, for

0lc = 0.

VIII. CONCLUSIONS

We have shown that the spatiotemporal structure of the
biphoton amplitude in type-II phase matching exhibits in-
teresting properties that qualitatively differ from those of
type-I PDC. We verified that in the coincidence regime the
signal-idler GVM generates an asymmetry along the temporal
dimension which progressively disappears as the parametric
gain is increased. Indeed, the purely spontaneous PDC regime
is characterized by a V-shaped structure that extends only in the
half-plane corresponding to the “slow” signal photons arriving
with positive time delays with respect to their “fast” idler twins.
As the parametric gain is raised and stimulated PDC becomes
the dominant source of photon pairs, we observe a transition
from this V-shaped geometry toward a symmetric X-shaped
structure that includes both positive and negative time delay.

By using an approximated model that neglects GVD, we have
been able to quantify analytically how the asymmetry along
the temporal axis progressively disappears as the parametric
gain increases.

On the other side, according to our analysis the localization
in space and time of this structure is comparable to that found
in a type-I PDC and is robust with respect to increases of
the parametric gain. In particular, we evaluated the correlation
times of the PDC field, by considering both measurements
that collect the photons on the whole transverse plane without
spatial resolution and measurements able to discriminate the
relative near-field positions of the twin photons. In the first case
the relative temporal localization is determined by the group
velocity mismatch that characterizes type-II PDC and cannot
go below the picosecond range for usual crystal lengths of a few
millimeters. In the second case, on the contrary, it is determined
by the full emission bandwidth allowed by the phase-matching
mechanism and is therefore unrelated to the length of the
crystal. An improvement of more than two orders of magnitude
can, therefore, be obtained for the temporal localization by
resolving the twin photon spatially. Approximated analytical
expressions for both the spatially resolved and the spatially
unresolved temporal correlation have been obtained within a
simplified model.
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APPENDIX A: APPROXIMATION OF THE
PHASE-MISMATCH FUNCTION �(�q,�)lc

In a type-II phase-matching configuration, the phase-
mismatch function 
(�q,�)lc expressed by Eq. (12) lacks the
radial symmetry with respect to the transverse wave vector
�q that characterizes type-I PDC. In this appendix we shall
briefly illustrate the origin of the approximate expression (16)
that allows us to express the biphoton amplitude (10) as a
Hankel transformation with respect to the spatial frequency
coordinates [see Sec. IV A, Eq. (21)]. We also show that for
the chosen crystal orientation it provides a good fit of the
“exact” phase-mismatch function over a very broad range
of temporal frequencies [i.e., that which can be obtained
by evaluating numerically the longitudinal k-vector kjz(�q,�)
with an iterative algorithm]. The starting point is the paraxial
approximation which assumes that q 	 kj (�q,�) so that we
can write

kjz(�q,�) ≈ kj (�q,�) − q2

2kj (�q,�)
. (A1)

Consistently, we shall now perform the Taylor expansion
of the wave numbers kj (�q,�) up to second order in the
transverse wave-vector components qx and qy around �q = 0,
neglecting all the higher-order terms. We now focus on the
uniaxial BBO crystal cut for type-II (e-oe) phase matching
considered in the numerics. While the ordinary wave (j = 1 in
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FIG. 11. Orientation of the pump field reference frame (x,y,z)
(indicated by the three unit vectors êx ,êy ,êz) with respect to the crystal
axis reference frame (X,Y,Z). The pump axis direction angles θ0,φ0

are also indicated in the figure.

our case) propagates isotropically so that k1(�) ≡ ωs+�

c
no(�)

does not depend on �q, the same is not true for the pump
(j = 0) and the idler (j = 2) field wave numbers which are
both extraordinarily polarized. Let us denote with (θ0,φ0)
the direction angles of the pump k vector (i.e., the z axis)
with respect to the crystal principal axis reference frame
(X,Y,Z) (see Fig. 11). For a given transverse wave vector
�q ≡ (qx,qy) and a given wavelength λ = 2πc/(ωs + �) of
the idler wave, the corresponding direction angles (θ,φ)
in the (X,Y,Z) reference frame are related to �q and � through
the implicit relations,

qx = k2(θ,�)[sin θ cos θ0 cos(φ − φ0) − cos θ sin θ0], (A2)

qy = k2(θ,�) sin θ sin(φ − φ0), (A3)

where we assumed the x axis lies in the z-Z optics plane
determined by the pump axis and optical axis directions as
shown in Fig. 11 (following the conventions used in [18]).

Dealing with uniaxial crystals, the idler wave number
k2(θ,λ) = ω2+�

c
n2(θ,λ) does not depend on the azimuthal

angle φ and the corresponding refractive index varies with
θ according to the relation [27],

n2
2(θ,λ) = n2

e(λ)

1 − γ (λ) cos2 θ
, (A4)

where no(λ) and ne(λ) are the ordinary and extraordinary
principal axis refraction indexes and γ (λ) ≡ 1 − n2

e(λ)/n2
o(λ)

is a positive parameter as we are considering a negative crystal
(for which ne < no). In the numerics we used the Sellmeier
dispersion formula found in Ref. [18], which provides good
approximations for no(λ) and ne(λ) over a broad range of
frequencies. Using Eqs. (A2)–(A4) we now evaluate the
derivatives of k2 with respect to qx and qy up to second order
along the z-axis direction (i.e., for �q = 0). The first order
derivative with respect to qy is equal to zero while

∂k2

∂qx

∣∣∣∣
�q=0,�

= −γ (�) sin θ0 cos θ0

1 − γ (�) cos2 θ0
≡ −ρ2(�), (A5)

gives the walk-off angle ρ2 of the idler wave along the pump
axis direction. The nonvanishing second-order derivatives can
be written as

∂2k2

∂q2
x

∣∣∣∣
�q=0,�

= 1

k2(�q = 0,�)

(
ρ2

2 (�) − 2ρ2(�)

tan 2θ0

)
, (A6a)

∂2k2

∂q2
y

∣∣∣∣∣
�q=0,�

= −1

k2(�q = 0,�)

ρ2(�)

tan θ0
. (A6b)

These expressions can be used to perform the Taylor expan-
sion of k2(�q,�) in the paraxial approximation (A1), keeping
terms up to second order in qx and qy . The corresponding
quadratic expansion of the phase-mismatch function (12) can
then be written in the form,


(�q,�) ≡ k1z(�) + k2z(−�q,−�) − k0 ≈ k1(�)

+ k2(�q = 0, − �) − k0 − ∂k2

∂qx

∣∣∣∣
�q=0,−�

qx

+ 1

2

∂2k2

∂q2
x

∣∣∣∣
�q=0,−�

q2
x + 1

2

∂2k2

∂q2
y

∣∣∣∣∣
�q=0,−�

q2
y

− 1

2k1(�)
q2 − 1

2k2(�q = 0, − �)
q2, (A7)

where we made explicit the independence of k1z on �q
and kept only the nonvanishing derivatives. We obtain the
phase-mismatch function in the form given in Eqs. (16)–(19)
by substituting the explicit expressions of the second-order
derivatives (A6) into Eq. (A7) and by rescaling the Fourier
coordinates according to Eq. (17). By neglecting the slow
dependence on � of the dimensionless parameters βx , βy

given in Eq. (19) (i.e., by taking their values at � = 0), the time
consumption of the numerical algorithm is drastically reduced.
We verified numerically that this latter approximation does not
affect substantially the precision of the calculation.

APPENDIX B: EVALUATION OF C(t) AND Cx=0(t)
AT LOW GAINS

In this appendix we use the parabolic approximation for
the phase-matching function presented in Sec. IV C in order to
obtain analytical expressions for the coincidence rates C(t) and
Cx=0(t) in the low-gain regime. By considering a frequency
region such that |�/�0| 	 1/ε, GVD can be neglected and
we can use the approximated phase mismatch function given
by Eq. (28). Substituting this relation in the low-gain limit
expression of F12(q̄,�) given by Eq. (15a) we can evaluate
its inverse Fourier transform with respect to the temporal
frequency coordinate defined in Eq. (31), obtaining, thereby,

F12(q̄,t) =
√

2πg�0e
−i�(L)(q̄)tRect

[
t − 1

2 tcoh

tcoh

]
, (B1)

where Rect(x) denotes the rectangular function, equal to unity
for |x| � 1

2 and zero elsewhere, tcoh = �−1
0 is the characteristic

walk-off time, and �L
+(q̄) is the parabolic approximation

for the phase-matching curve given in Eq. (29). In order
to provide a finite integration domain in �q space for the
integral that defines C(t) and Cx(t) in Eqs. (30) and (32),
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we now consider a box-shaped temporal frequency filter
that selects the frequency interval − 1

2
�F < � < 1
2
�F

around degeneracy. Accordingly, we restrict the domain of
integration to the region R�q obtained by projecting the portion
of the phase-matching surface 
L(q̄,�) = 0 selected by the
frequency filter into the plane (qx,qy). We obtain thereby the
annular region centered on (qC,0),

R�q = {
(qx,qy) ∈ R2; q̄min � q̄ � q̄max

}
, (B2)

with q̄ ≡
√

(qx − qC)2 + q2
y and

q̄min = q0

√
max

{
D0 − 
�F

2�0
,0

}
, (B3a)

q̄max = q0

√
D0 + 
�F

2�0
. (B3b)

If D0 = 
0lc + 1
4 k̄lcρ

2
2 > 
�F /2�0, the boundary values

q̄min and q̄max are both positive and correspond to the real solu-
tions of the equation 
L(q̄, ± 
�F

2 )lc = 0. This corresponds
in fact to the case illustrated in Fig. 10(c), where the positive
collinear phase mismatch 
0lc is so large that the turning point
frequency of the phase-matching curve �tp = �(L)(q̄ = 0) =
−�0D0 falls outside the selected frequency band [i.e., we have
�(L)(q̄ = 0) < − 1

2
�F ]. On the other hand, if 
0lc is such
that − 1

2
�F < �tp < 1
2
�F , we have q̄min = 0, this being

the situation illustrated in Figs. 10(a) and 10(b). We do not
consider here the case where the whole curve falls outside the
selected frequency band, corresponding to very large negative
values of 
0lc such that �tp > 1

2
�F .
Since the modulus of F12(q̄,t) does not depend on q̄ accord-

ing to Eq. (B1), we can estimate the integrated coincidence rate
defined in Eq. (30) simply by multiplying |F12(q̄,t)|2 with the
area of R�q . According to the definitions (B2) and (B3) this
area is equal to

π
(
q̄2

max − q̄2
min

) = πq2
0

�′

F

�0
, (B4)

where 
�′
F denotes the temporal bandwidth of the phase-

matching curve selected by the temporal frequency filter,


�′
F = min

{

�F ,


�F

2
− �tp

}
. (B5)

From relations (30) and (B4) we thus obtain

C(t) =
∫ q̄max

q̄min

dq̄

(2π )2
q̄|F12(q̄,t)|2,

= g2 q2
0
�′

F �0

4π
Rect

[
t − 1

2 tcoh

tcoh

]
, (B6)

which is a box function that extends in the time interval 0 <

t < tcoh.
While irrelevant for the estimation of C(t), the phase factor

e−i�(L)(q̄)t in Eq. (B1) plays an important role in the estimation
of the spatially resolved coincidence rate Cx=0(t), which,
according to Eq. (32) takes the form of a coherent superposition
of the amplitude function F12(�q,t) [see discussion after
Eq. (32)]. Using again the definition of q̄min and q̄max together
with the explicit expression of �(L)(q̄) given in Eq. (29), we
find for �tp < 
�F

2 ,∫
R�q

d �qe−i�(L)(q̄)t = 2π

∫ q̄max

q̄min

dq̄q̄e−i�(L)(q̄)t

= πq2
0

�′

F

�0
e−i 1

2 max{ 
�F
2 +�tp,0}tsinc


�′
F t

2
.

(B7)

Using this result, we obtain by substituting Eq. (B1) into
Eq. (32),

Cx=0(t) = g2

(

�′

F q2
0

4π

)2

Rect

[
t − 1

2 tcoh

tcoh

]
sinc2 
�′

F t

2
,

(B8)

which, in contrast to C(t), has a temporal width determined by
the full PDC bandwidth intercepted in the detection process,

�′

F , rather than the characteristic GVM bandwidth �0 (as
long as we are assuming that 
�′

F  �0).
The found expressions of C(t) and Cx=0(t) are compared

with the corresponding numerical evaluations in Fig. 5(b)
and in Fig. 4(a), respectively. The smoother behavior of the
numerical results (solid lines) with respect to the analytical
functions (dashed lines) is due to GVD effects, that are
neglected in the linearized phase-mismatch function (28).
However, the overall behavior, in particular the temporal
localization of both correlation functions, is well described
by the previously discussed analytical estimates.
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