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Abstract

The definition of filter model is extended to a variant of Ambient Calculus: the Safe
Ambient Calculus. The types are constructed by means of elementary and higher-
order actions, that define the moves processes can do. Entailment rules for types
allow to translate the parallel composition of moves into a non-deterministic choice
of sequences of interleaved actions, providing a normal form for types assigned to
processes. In the filter model obtained via the introduced type system, any process
is interpreted as the set of all its types. The type assignment system results to be
sound and complete with respect to the given semantics. Moreover the partial order
relation induced by the filter model is compared with observational equivalence: the
model is proved adequate, but it fails to be fully abstract.

Key words: Ambient Calculus, Safe Ambient Calculus, Types,
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1 Introduction

One of the fundamental aspects of Wide Area Networks is that of barriers:
the notions of locality, communication, mobility and security assume partic-
ular importance due to the necessity of crossing barriers. The calculus of
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Mobile Ambients (MA) [5] is a process calculus for describing mobile compu-
tations, that is computations that cross barriers. Unit of the movement is
the ambient n[P] that represents a bounded space named n enclosing a multi-
threaded process P. Ambients can be nested and can run concurrently. Inside
ambients, processes can make computations and interact with other parallel
processes of the same ambient, but not with processes running inside other
ambients. To interact with processes of different ambients, a process can ex-
ercise the movement capabilities: in m, out m and open m to enter or exit
other named ambients or dissolve ambient boundaries. The ambient object
of the movement undergoes the action, because it has no means to control if
and when the movement occurs. To provide processes with tools to protect
themselves from unwanted movements, a variant of MA: the calculus of Safe
Ambients (SA) [12] has been proposed. SA is obtained from MA by adding
to the three mobility actions three corresponding coactions: in m, out m and
open m. In SA to cross a barrier is always the result of a handshaking between
two ambients. So ambient behaviors result from a subjective control exerted
by the migrating ambient and an agreement given by the ambient where the
coaction is consumed. The introduction of coactions is explicitly motivated
by the aim of studying a dangerous form of interferences, situations where
"the activity of a process is damaged or corrupted because of the activities
of the other processes” [12]. An interesting topics in Ambient Calculi is the
study of an appropriate notion of semantics equivalence and of the methods
for establishing such equivalences [6], [14]; the principal equivalence relation
proposed for the Ambient Calculi is a contextual equivalence based on the
observability of ambients [5]. In [9] the equivalence between processes of a
variant of MA is studied by means of a filter model, that results to be fully
abstract with respect to the contextual equivalence =,,,. The model is de-
signed via a type system, where types represent properties of processes. This
paper is devoted to Safe Ambients and provides processes with types having
a normal form, an intersection of “sequential” types. In this way a process is
described as the set of all possible traces of its behaviours. Moreover the type
system, inspired by the labelled transition system of [I3], is used to define a
filter model in which the SA processes are interpreted, as usual, as the set of
their types. The inclusion relation between set of types induces an ordering
Cr on processes. Soundness and completeness of the type assignment system
with respect to the given semantics is proved; moreover the model is proved
to be adequate in the sense that : P Cr ) implies P C s Q.

2 The Calculus

The syntax of the calculus is given in Fig. For simplicity in this paper,
we omit communication. N denotes the set of ambient names, ranged over
by n, m, ...; C the set of capabilities, ranged over by ¢, d, ... and P the set
of processes, ranged over by P, @).... The operator of restriction (vn) is a
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e Names: n € N;
o Capabilities: ¢ € C

c u= inm|out m |open m |in m | out m | open m;
* Processes: P € P

P = 0|cP| Pi|Py | n[P]| (vn)P | P.

Fig. 1. Process syntax

binder for ambient names and leads to the usual notions of free occurrences of
names for a process P (fn(P)) and of a-conversion. In the sequel the prefixing
operator . takes precedence over the parallel composition |; hence ¢.P | @ is
read as (c.P) | Q. The nil process 0 is often omitted, so ¢ can be a shorthand
for c.0.

Structural congruence and reduction rules defined in Fig. [2, give the op-
erational semantics of the calculus. For the out-reduction rule we follow the
variant proposed in [I3], requiring that the co-capability out m for the emigra-
tion outside of the ambient m is exercised by the target computation rather
then by the ambient m. This choice is due to the aim of giving to the receiving
ambient the control of the movement.

In process calculus, a standard way to define behavior equivalence for pro-
cesses is the may-testing equivalence: two processes are contextually equiva-
lent if they satisfy the same observation predicates, when they are placed in
the same contexts. For MA the observation predicate proposed [5] is the oc-
currence, at top level of a process, of an ambient whose name is not restricted.
Actually the presence of an ambient n at top level of a process, represents the
possibility for P of interacting with the environment via n. In [12], for SA,
where to cross a boundary requires an authorization, the ”exhibition of an
ambient” requires that the ambient brought at top level can exercise the in or
the open capability. We use in that follows a simplification of the definition
in [12], as introduced in [13], requiring only the presence of the co-capability
Open.

Definition 2.1 (i) A process P ezhibits an ambient n: P | n if P —*
—* (vmi)(n[open n.Q| R]|S) for some processes Q, R, S (n ¢ {m}).

(i) P Cops @ if for all context C[] and ambients n: C[P] | n = C[Q] | n.

(111> P gobs Q it P gobs Q and Q gobs P.

Remark 2.2 Note that P —* @ implies Q) C,s P, but in general it does

not imply that P = @ ; for example, let P = open n.0 | n[open n.0 | m[0]]
and @ = m[0], P —* @, but for the context [-], P || n whereas @) does not

3
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= is the least equivalence relation that:
(i) includes a-conversion

i) is preserved by all operators
ii) satisfies the following rules:

(i
(i

- P|Q = Q|P (Struct Par Comm)
—(P|Q)|R = P|(Q]|R) (Struct Par Ass)
—-P|0 = P (Struct Zero Par)
—(vn)0 = 0 (Struct Zero Res)
—P = IP|P (Struct Repl Par)
-0 = 0 (Struct Zero Repl)
— (vn)(vm)P = (vm)(vn)P (Struct Res Res)
—n & fn(P) implies (vn)(P|Q) = P | (vn)Q (Struct Res Par)
—n#m implies (vn)(m[P]) = m[(vn)P] (Struct Res Amb)

— is the least preorder relation that:
(i) is preserved by all operators, except prefixing
(ii) satisfies the rules below:

—mlinn.P|Q] | nfinnR|S] —nm[P|Q]|R|S]
— m[nloutm.P| Q]| R] | outm.S — n[P | Q]| m[R] | S
—open n.P | nfopen n.Q|R] — P|Q|R

- P=Q,Q— R, R =S = P—>S

(Red-In)
(Red-Out)
(Red-Open)
(Red-Struct)

Fig. 2. Structural Congruence and Reduction Relation

converge to any ambient n.

3 Types

Type systems have been proposed for Mobile Calculi essentially with the goal
to provide a tool of control: to control the mobility of ambients [4], the values
exchanged [7], the absence of grave interferences [12]. Different is the aim of
the type system proposed in [9] for MA: to characterize the process behavior
in order to provide a tool for giving its semantics. This is also our goal for
SA; the process semantics we look for, is a kind of trace semantics, in which a
process is characterized by means of all sequences of actions it may exercise.
Therefore in the definition of types we want to capture the idea of action.

4
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In [13] the labels of the transition system are actions, defined as an exten-
sion of the original definition of capability. As a matter of fact each capability
gives rise to an action, but, when inserted in ambients, it can induce further
higher order actions. In fact, as the process in n.P, when inserted in an ap-
propriate ambient, can exercise the action in n and then its behavior is that
one of the process P, in the same way the process mlin n.P|, placed in a
suitable ambient, has the capability to move the ambient m into the ambient
n, and then it continues with some behavior. To describe this continuation
Merro and Hennessy use the concretion (vmi)(< P >, Q) (see also [0], [12]);
a concretion (vm)(< P >, @) models the behavior of a process that, after
exercising an action, leaves inside the ambient n the process P, and outside
the ambient n the process Q); T represents the set of private names shared by
P and Q.

We follow this suggestion, so our set of types T contains besides the six
actions induced by the capabilities and co-capabilities (elementary actions),
five higher order actions, precisely the action enter,,n induced by mlin n], the
action exit,,n induced by the m[out n], the action enter n induced by nlin n,
the action pop,,n induced by n[m[out n]] and the action free n induced by
n[open n).

The pairs (enter,,n, enter n), (pop,,n, out n), (free n, open n) are said
matching pairs. Notice that the definition of out semantics here considered
allows to have the actions of the matching pair (pop,,n, out n) at the same
level of ambient nesting.

The formal definition of the set of types T is given in Fig. [3] Prefizes!
define the actions requiring as continuation a standard type, whereas Prefizes2
define the actions that must be followed by a concretion (vmi)(< o >, 7),
where o is the type of the process that is into the ambient n, 7 is the type of
the process that is outside n and 7 are the private names shared by o and
7. In the sequel (v77)(< o >, 7) | o indicates the concretion (v7i)(< o >,
(1| 0)), whereas (vmi)(< o >, 7) | o indicates the concretion (v77)(< (o |
0) >, 7). Besides actions, as type constructors we consider the ambient, the
restriction, the parallel composition, and the intersection A. Type w represents
a property true for all processes, whereas the intersection A models ”may”
nondeterminism: a process having type o A7 can possibly exhibit, in different
reduction paths, both property o and 7.

An action v is said compatible with the ambient nif v € {in m, out m, inn,
open n, ezit,n}, not compatible otherwise. If v is not compatible with n,
the type n[y.o] is said deadlocked.

The notion of free name of a type is usual; remember that the occurrence
of a subscript name of a prefix must not be considered a free occurrence.

On the set of types T is defined a partial order relation <; ¢ < 7 means
that the property o entails property 7; 0 ~ 7 iff 0 < 7 and 7 < 0. Type
Entailment Rules are shown in Fig. [4] and Fig. 5] The Action rules define

>



MARGARIA AND ZACCHI

o Prefizesl: p ::= in n|out n|open nlin n|out n|open n|pop, n|free n;

Prefizes2: o = enter,n|exit,,n|enter n;

Actions: v == pla;
o Types: 0 = w | p.o | a.(vm)(< oy >, o3) | nlo]| (vn)o |
|0'1|O'2’O'1/\0'2

Fig. 3. Type Definition

the higher order actions, whereas Reduction rules formalize the fact that the
execution of an action corresponds to a loss of capabilities. As usual, the
right hand side of a reduction rule is called the contractum. Of particular
relevance for our goal are the Sequentialization rules, that can be interpreted
as a first step toward the translation of parallel composition of actions into
nondeterministic choice between sequences of interleaved actions. The first
four sequentialization rules say that the type 7.(c | 7) has fewer capabilities
than the type 7.0 | 7 because it can offer to its environment, as first move,
only the action ~y, whereas 7.0 | 7 besides the action =y, can possibly offer
other moves risen by the type 7. The last two rules say that the parallel com-
position of two prefix types 71.0 | 72.7 is equivalent to the nondeterministic
choice between different paths; if the actions v; and v, do not match the paths
are two: one starting with the move v, the other one starting with the move
vo. If the two actions y; and 2 match, there is a third choice: to execute the
reduction. To sake of simplicity in Fig. [5{the notation of a prefix type has been
stretched so that .0 denotes both Prefizes1 types (hence o represents a type)
and Prefizes? types (hence o represents a concretion). So in the expressions
of the shape v1.(c | 72.7), (¢ | 72.7) indicates the usual parallel composition
between types if v, is a elementary action, it denotes (o | (72.7)) if 7 is the
action enter n, (o | (72.7)) otherwise. Types are considered modulo ~. =~
is preserved by both intersection and parallel composition with w. Parallel
composition of types is considered modulo permutations, and intersection of
types is considered modulo permutations and repetitions. /\ie[lmn] o; denotes

the intersection oy Aoy Aoy 7o A\ | O denotes that 7 = o; for some o;.

i€[l-n

A crucial notion is that of sequential type. A sequential type models the
behavior of a process performing a sequence of actions.

Definition 3.1 (i) The set S C T of sequential types is defined inductively
in the following way: ¢ == w | pe | a.(vm)(< 1 >, ¢2)

6
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(ii) The weight of a sequential type is defined as follows:
|w| =0

1] = 1+|g| if p#freen or p# pop,n
= 2 +|p| otherwise

lo. (V) (< o1 >0 @2)] = 2 + 1] + |2

To prove that every type can be expressed by a nondeterministic choice
of sequential types, we use the functions res, unfold and ser. Their formal
definition is rather complex and can be found in Appendix. Here we give only
an informal description.

The function res, defined by structural induction on sequential type definition,
takes as arguments a sequence of names 7 and a sequential type £ and returns
a sequential type such that:

res (W,€) ~ (vm)E.
The functions ser and unfold are defined by simultaneous induction on the
weight. ser takes as arguments two sequential types &, y and returns a set of
sequential types such that :

/\ge Ser(¢,x) ¢ ~&lx

The function unfold takes as arguments a name n and a sequential type &,
and returns a set of sequential types such that :

Nee unfoldng ¢ = nlé]

We can now prove that every type has a unique normal form modulo
permutations and parallel composition with w.

Lemma 3.2 For all o € T there is a um’que type /\ie[lmn] &, where & are
sequential types, such that o ~ |\,
denoted by nf (o).

i€[1m] & . We call it the normal form of o,

Proof. The proof is by structural induction on types, using the functions res,
ser and unfold.

(i) nf(w) =
(i) nf(p.o) = /\gomf
nfla(<o>, 1)) = /\gomf(g), me(T)(04~(< ¢ >n X))

flw

) nf(

) nfla
(iv) nf(nlo]) = /\geunfold n,8), Exnf(o) &

) nf(

) nf(

) nf(

S

f |7') /\geserxg) xocnf(o), §omf(T)C'
flont)=nf(o) Anf(r)

nf(vi)o) =

o
o

S

Ne—res(T &), exnt(o) &
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e Axioms for w
—o<w —o~0|w
— (vn)w ~w — njw] ~w
¢ Commutativity and Associativity of parallel composition |
—olr=T1lo —(o|7)[oe=a|(r]o)

e Intersection A

—oANT<0 oANT<T —oc<oANo
—o<dandT <7 =0ANT<dNT —ploAT) =~ (p|lo)A(p]|T)
—nlo AT] ~ nlo] An|T] —p(oAT) =~ poApt

—a.(vm) (<o AT >, p) =~ a.(vm)(<o>,p) N a.(vm)(<T>,p)

—a.(vm)(<o>, pAT) = a.(vm)(<o>,p) N a.(vim)(<o>,T)
* Action
— mlin n.o| ~ enter,n.(< mlo] >, w)

— mlout n.o] ~ exit,,n.(< w >, mlo])

— n[in n.o] ~ enter n.(< o >, w)

— nl[open n.o] ~ free n.o

— nlexity,n.(< o >, 1) ~ pop,,n.(nlo] | T)
—n[y.o] ~ w if v not compatible with n

¢ Reduction

_>)<< T1 >n 7—2> S

— enter,n.(vp)(< o1 >, 0q) | enter n.(vq
V)

< (P)wq)(nloy | ]| o2 | 72)
— pop,,n.o|out nt < o|T

— open n.o | free n.t < o|T

Fig. 4. Type Entailment Rules (part I)

Examples:
o = m[out n.in m.w | open m.w]

nf(o) = exityn. (<w >, (enter m.(< open m.w >, w))) A
A ezityn. (< w >, (free m.in m.w)) A free m.out n.in m.w

8
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¢ Restriction

(
(
—(wm)(o|7) = of(m)r m & fn(o)
— (vm)(o AT) ~ (vm)o A (vm)T
— (vm)y.o ~ w if m e fn(y)
— (vm)y.c ~ v.(vm)o it m ¢ fn(y)

* Sequentialization
—polr < plo]7)
— —
— enterpn.(vh)(<o>,7)|p < enterpn.(vh)(<o>,(1|p))
— ezit,n. (Vﬁ)(< o>, 7)|p < e:z:itmn.(yﬁ))(< olp>,T)*
)

(<o>.7)|p < entern(vh)(< o >n(r]p))

— enter n.(v
— 7.0 | YT =~ y.(0]|Y.7) Aye.(y1.0 | 7) if 41 and 5 do not match
~ oAY.(0]| Y1) AY.(11.0]|T)
if 1 and v, match and p is the contractum
» Congruence
—o<71 = nlo] < nl7] —0<7 = po < WUt
—o<717 = (vm)o < (vm)T —0o<717 = o|lp<Tlp

* Transitivity

—o<7T & 7T<p=>0<p

()1 fr(p) N {R} =
Fig. 5. Type Entailment Rules (part II)

nf(nlo]) = pop,,n.(enter m.(< open m.w >,, w)) A pop,,n.free m.in m.w

The following Lemma, proved by induction on the definition of < relates
entailment relations between types and normal forms.

Lemma 3.3 (i) Aic;& < A\jesxy implies that for every j € J there is a
i € I such that § < x;.

(ii) Let o < 7. Then for every x o nf(7), there is a §& < nf(o) such that
9
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FP: ce C
(W) FP:w (prefix) ’
FeP:co
FP:0 ne N FP:o FPy:T
(amb) ()
F n[P] : n[o] P | Pyio|T
FP:o FP:o F IP:7T
(res) ("
F (vn)P : (vn)o FIP:o|T
FP:o FP:T FP:o o<r
(A) (<)
FP:oAT FP:T

Fig. 6. Type Inference Rules

§<x.

4 Type Inference

Types are associated with processes by means of a type assignment system I,
defined by the rules of Fig. [6]

We can prove by simple induction on deduction the following Lemma:
Lemma 4.1 (Generation Lemma) (i) F0:0 iff 0 ~w;
(iil) FeP:o iff FP:7andctm <o for some T;
(i) Fn[P]:0 iff FP:7 andnl[r] <o for some T;
(iv) F(vn)P o iff = P:7 and (vn)Tr <o for some T;
V) FP|Q:0 iff FP:17,FQ:pandT|p<oc forsomer,p;
(Vi) FIP:oiff FP:(1<i<n)andm|...|mm<o0o

for some Tz(l <i<n).

Lemma with the definitions of = and of — allows us to state Subject
Congruence Property (congruent processes have the same types) and Sub-
ject Expansion Property (types are preserved under subject expansion). The
proofs are by induction on deduction.

Lemma 4.2 (Subject Congruence) FP:0 and P=Q = FQ:o.
Lemma 4.3 (Subject Expansion) -Q:0 and P—-*Q = FP:o.

5 The Filter Model

The construction of the filter model via type system is an approach widely
used for A-calculus and its extensions [I], [2], [3]. A filter model has been also

10
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used for higher order concurrent processes [10], [II], and in [9] for Mobile
Ambients. Let us recall the filter definition. Let < D, <> be a preorder.
A non-empty subset L of D is a filter if it is an upper set, i.e. d € L and
d < d' imply d' € L, and every finite subset of L has a greatest lower bound
in L. Domain of our model is < F(T),C> where F(T') is the set of filters
over < T, <> and C is the set inclusion relation. Note that the intersection
operator plays an important role on < T, <>, because the greatest lower
bound of a finite set of types is the intersection of the types in the set. It is
standard to prove that < F(T),C> is a complete algebraic lattice, so every
continuous function f has the least fixed point fiz(f).

Lemma 5.1 < F(T),C> is a complete algebraic lattice.

If AC T then T A denotes the filter generated by A, obtained by closing
A under finite intersection and by (upper closing A under) <.

Let par: F(T) x F(T) — F(T) be the function defined by
par(F,G) =1{o |7 | o € Fand 7 € G}.
It is standard to prove that the function par is continuous.

The interpretation of a type in the model is done by means of the function
| — ||, defined by structural induction on types.

Definition 5.2 The function | — ||: P — F(T) is defined as follows:
clof = T{w}

*fePl = T{coloel P}

* [In[PI = T{nlo] [ o€l P}

I P[QI = par(| Pl Q1)

* [ )Pl = T{wn)o|oc| P}

* [P = fiz(AX € F(T). par(|| P |, X))

By Lemma {4.2| we can prove that the interpretation of a process is the
filter of all types that can be derived for it.

Theorem 5.3 | P|| ={o| FP:o}

The inclusion on filters gives rise to an order relation Cp on processes, in
the sense that P Cp Q ifand only if || P || C | @ ||. Obviously, by Theorem
5.3 follows that P Cp @ if and only if F P: o implies @ : o, for all o.

A crucial question is the relationship between the order relation Cp and
the observational relation C,,,. We prove that P Cp @) implies P Cus @
whereas a counter-example shows that the converse is not true; so the model
is adequate, but it fails to be fully abstract.

The proof of adequacy is done via a type interpretation, defined in a quite
standard way. This interpretation allows to prove easily that the type assign-
ment system is sound and complete with respect to the obtained semantics.

We associate with every type a set of filters of F(T') (type interpretation)

11
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and we show that the interpretation of a process P belongs to the interpreta-
tion of a type o if and only if ¢ can be derived for P. For the definition of
type interpretation, we need a stronger notion of reduction over processes ~,
that does not modify the notion of ambient convergency.

Definition 5.4 The reduction relation ~~ over P is defined by adding to the
reduction rules of Fig. 2] the following rule:

cP|Q ~c(P|Q) (Red-Seq)

Lemma 5.5 (i) P~*Q and FQ:0 = FP:o
(i) Pdn iff P~* (vii)(n[open n.Q [ R} [S) (n ¢ {mi})

for some processes Q, R, S.

The interpretation of the types is done in two steps: first we define the
interpretation of sequential types, then we use the definition of normal form
to construct the interpretation of generic types.

Definition 5.6 The interpretation of sequential types is defined by structural
induction as follows:

cflwl =7

s flell = {P|P~"cQ and Q€| ]}

o || freend | = {P|P~*nlopen n.Q | R] and Q| R €| |}

* [l pop,,n& | = {P|P~*nlmlout n.Q]] | R and m[Q]| R €[l £}

o || enterpn.(VE)(< & >0 &) || = {P| P~* (vE)(m[inn.Q] | R) and
and m[Q] €[l & || and R e[ & |}

o || exityn. (v E)(< & >0 &) || = {P|P ~* (WE)(m|out n.Q]|R) and
and m[Q] €] & || and Re[l & [}

o ||enter nWR)(< & >0 &) || = {P|P~*(vE)n[innQ]|R) and

and Q€[ & || and Rell & ||}

Definition 5.7 The interpretation of generic types is defined by:
ol = Nesnso 1€

In order to prove the soundness of type assignment we need some lem-
mas, in particular we must prove that the type interpretation agrees with the
entailment relation.

Lemma 5.8 (i) P €| & || implies (vn)P €| C || for all ¢ < nf((vn)f).

(i) Let & and x be two sequential types. Then P €| £ || and Q €| x || imply
PlQE|C] forall  x nf(§| x) and m[P] €| 9 || forall 9
nf(m[g]).

(i) o <7 dmplies ||o|| < | 7]

12
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Proof.

(i) By structural induction on sequential types.
(ii) By simultaneous induction on the weight.

(i) o <7 = nf(o) <nf(r)
= for every x o< nf(7) there is a £ x nf(c) such that & < x
= P¢€| o implies Pe| 7] .
O

Theorem 5.9 (Soundness and completeness of -) - P:o iff P €| o |.

Proof. Soundness is proved by induction on deduction using Lemma (iv)
for rule (<). As for completeness, it is sufficient to prove for sequential types:
EPe€|&] = F P:& This can be proved by induction on weight, using
Definition [5.7, Lemma [5.5 and Lemma [4.1] O

We can now prove that there is a type characterizing the convergency to
an ambient.

Lemma 5.10 - P : free n.w iff P | n
Proof.
(=) F P:free nw = P €| free n.w ||
= P ~* (n[open n.Q] | R) and Q | R €] w ||
by Definition [5.6
= P | n by Lemma [5.5[ii)
(<) Pln = P ~* (vmit)(n[open n.Q | R] | S) by Lemma [5.5[(i)
= P :n[open nw] |w by subject expansion

= F P free nw by (<) rule.

O
Theorem 5.11 (Adequacy) If P Cp Q then P Cus Q.
Proof.
ClPldn= C[P]: free nw by Lemma [5.10)
= C[Q]: free n.w since @ has all the types of P
= ClQ]In by Lemma [5.10]
O

To show that the model is not fully abstract, let consider the processes P

and Q:
P = n[in n.0]
Q = n[m[out n.open m.0 | n[in n.0]]] | open m.out n.0

13
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They are not comparable in the order relation Cr because for P is deriv-
able the type enter n.(< w >, w), whereas the same type is not derivable
for @ and vice versa the type open m.out n.(< w >, w) is derivable for Q,
but not for P. In the order relation C,, however P C,, @, in fact for a

non-trivial context C[—], if C[P] |} h for some ambient h, C'[—] must allow the
emigration from n by exhibiting the co-capability out n, hence it must have
the form C[— | out n], but C[Q | out n] —* C[P | out n] and so there is no

way to find a distinguishing context between P and (). This fact is not sur-
prising: Merro and Hennessy [13] already noticed the difficulties in conceiving
a distinguishing context for action enter n.

6 Conclusion

We have constructed a filter model via a type system for Safe Ambients, fol-
lowing the line of the filter model defined in [9] for Mobile Ambients. Basic
elements of our types are the actions that can be considered as the atomic
moves of an ambient. We proved that every type has a normal form that is an
intersection of sequential types; this fact allows to express a parallel compo-
sition of actions as a nondeterministic choice of the sequences of interleaved
actions.

The model turns out to be adequate, but not fully abstract. In [9] it is a
new capability, the self-open n, that makes the filter model fully abstract. We
conjecture that also in SA the addition of the self-open n capability should
permit to obtain a fully abstract filter model, but it should distort the spirit
of the calculus. On the other hand the self-open n with its corresponding
co-action in the ambient outside does not modify the calculus. In the future
we wish to study a way to obtain a fully abstract model or by means of a
stronger notion of type inclusion or by adding new features to capabilities
(cfr. the password in [I3]). Other interesting arguments of study are the
application of this type system to the problem of graves interferences [12] and
the connections between this system and the logics for ambient calculi, [§],

4.
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7 Appendix

Definition 7.1 (i) The function res: (N* x S) — S is defined by structural
induction on sequential types definition, as follows:

— res (ﬁ,w ) =w

— res (I, pap) = pres (B, 0) if fo(p)N{R} = @
— res (ﬁ),/mp) =w otherwise
= res (B, 0. (v)(< 1 >0 92)) =

= a. ()W )(< @1 >0 2)  if fr(@)N{E} = @

— res (7, a.(vm)(< o1 >n 92)) =w otherwise
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(ii) The functions ser: (S x S) — 25 and unfold: (N x S) — 25 are defined
by simultaneous induction on the weight.
a) For |p| 4+ |¥| = w, we define ser (¢,1)) in such a way that for every

¢ € ser(o,¢): [¢] < w;
b) For |¢| = w, we define unfold (n,¢) in such a way that for every

¢ € unfold (n,¢) : (] <1+ w.

Base step:
a) ser (w,w) =w
b) unfold (n,w) = w

Inductive step:
a) We distinguish the following cases:

—p=pop=w: ser(p,y) ={s}
— @ = p.¢1,¢ = v.ah, p,r not matching:
ser(p,¥) = {p-C | ¢ € ser(pr,v.p)} U{r.g | € € ser(u.¢r,¢1)}
— @ = W01, =va), p,r matching :
ser(e,¥) = {x | x € ser(pr, 1)} U{n.C | ¢ € ser(¢y,vapr)} U
U{r.g | € € ser(pgr,)}
— o= pon, = a. (Vi) (< >n ) :
ser(p, ¥) = {p.C | € € ser(pr,9)} U
U{a.(vm)(< ¢ > x) | X € ser(p.g1,12)}
—@o=a.(m)(< g1 >, v2), Y = LB.(vT)(< 1 >m a), a, not matching:
ser(p, ¥) = {a.(vmi)(< @1 >n §) | € € ser(p, ) }U
U{B.(v @) (< x1 >m X) | X € ser(pa, )}
— ¢ = enter,n. (V) (< @1 >, o) and ¢ = enter n.(VE ) (< Y1 >p P2)
ser(p,1p) = {enter,n.(vm)(< @1 >, ) | £ € ser(da,¥)}U
U {enter n.(vq)(< ¥1 >, X) | X € ser(, 1)U
U{¢ | ¢=res(m q,¢),¢" € ser((i, ¢2) |
| C1 € unfold(n, x), x € ser(¢1, 1) and G € ser(¢z, 1)}
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b) We distinguish the following cases:
—p=p:
unfold(n, p) = {w} if u is not compatible with n
= {enter,m.(< ¢ >, w) | ¢ € unfold(n,)} if p=1inn
= {ezxit,m.(< w >, ¢) | ¢ € unfold(n,vp)} if p= out m
= {enter n.(< ¢ >, w) | ¢ € unfold(n,)} if pu=1inn
= {free n.} if 4 = open n
—p=a.(<p1 >, pa):
unfold(n, ) = {w} if o is not compatible with n
= {pop,,n.C | ¢ € ser(x, p2) with x € unfold(n, 1)}

if o= exit,n

Lemma 7.2 (i) If ¢ is a sequential type, (v )& ~ res (T, &)
(i) If € is a sequential type, n[€] ~ /\Ceunfold(n,g)g
(i) If & and x are sequential types, £ | x ~ /\geser(wg

Proof. Obvious by definitions of ~, res, ser, and unfold.
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