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Abstract. The behaviour of seismogenic faults is generally 1  Introduction

investigated under the assumption that they are subject to a

constant strain rate. We consider the effect of a slowly vari-If we consider the simplest stick-slip model for the earth-
able strain rate on the recurrence times of earthquakes gerfluake mechanism, such as the one proposed one century ago
erated by a single fault. To this aim a spring-block system isby Reid (1911), fault slip events are found to be periodic
employed as a low-order analog of the fault. Two cases ar@nd predictable. However observations reported in seismic
considered: a sinusoidal oscillation in the driver velocity andcatalogues show that seismic fault slips occur aperiodically.
a monotonic change from one velocity value to another. InMany attempts have been made to ascertain the reasons of
the first case, a study of the orbit of the system in the stateaperiodicity and hence to achieve a deeper knowledge of the
space suggests that the seismic activity of the equivalent fauarthquake mechanism.

is organized into cycles that include several earthquakes and In particular, attempts to reproduce the long-term corre-
repeat periodically. Within each cycle the recurrence timedations of earthquakes have been made by adding Brown-
oscillate about an average value equal to the recurrence pdan perturbations to steady tectonic loading (Matthews et al.,
riod for constant strain rate. In the second case, the recur2002; Zller and Hainzl, 2007), by studying the stress evo-
rence time changes gradually from the value before the tranlution in discrete fault models (Ben-Zion et al., 200l[Er
sition to the value following it. Asymptotic solutions are also €t al., 2007) and by using the concept of self-organized criti-
given, approximating the case when the amplitude of the oscality (Abaimov at al., 2007; Baiesi, 2009). Fault interaction
cillation or of the monotonic change is much smaller thanis predicted on theoretical grounds (e.g. Steacy et al., 2005)
the average driver velocity and the period of oscillation or and is found to be relevant to the long-term behaviour of fault
the duration of the transition is much longer than the recur-systems (Marzocchi et al., 2003).

rence times of block motions. If the system is not isolated \When investigating the long-term behaviour of a fault sys-
but is subject to perturbations in stress, the perturbation antem, models with a finite number of degrees of freedom are
ticipates or delays the subsequent earthquake. The effects €ften preferable to descriptions based on continuum mechan-

stress perturbations in the two cases of strain rate oscillationis, since they allow long-term properties to be studied in
and monotonic change are considered. a finite-dimensional state space. Such low-order analogs of

seismic sources are spring-block systems that were first pro-
posed by Burridge and Knopoff (1967). Following authors
have shown that such systems can simulate several features
of seismic activity (Dieterich, 1972; Rundle and Jackson,
1977; Cohen, 1977; Cao and Aki, 1984, 1986; Gu et al.,
1984; Carlson and Langer, 1989a, b; Huang and Turcotte,
1990b; Carlson et al., 1994).
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A single block pulled by a spring on a rough surface re- ¢ — @ (1)
produces the simple Reid’s elastic rebound mechanism. Fol- s

!owii]ng ”I‘Od?l‘; have m.ainlly explorgd thO EO?Sibli”ti_?;' Qne where O< € < 1. The state of the system can be represented
Is the role of the constitutive equation of the fault. The sim- by the extensionr of the spring as a function of timeand

p!est frictlon law that ge_nerates_a st|ck-s_I|p b_eh_awour IS 8iha force exerted by the spring on the block is
piecewise constant function of slip rate, with friction assum-

ing a static or a dynamic value. Many models have assumed = —K x 2
more complicated friction laws which are obtained from lab- ) ] )
oratory experiments (Byerlee, 1978; Ruina, 1983; Rice and Following Turcotte (1997), we introduce the nondimen-
Tse, 1986; Gu and Wong, 1991: de Sousa Vieira, 1995; BeSional quantities

lardinelli and Belardinelli, 1996; Erickson et al., 2008). Kx X JEKm
The other process which has been considered is fault inX = —, T=,—t, V= v. 3)
teraction. This has been done with systems made of two s n fs

coupled blocks, representing two fault asperities or fault segThe dynamical system is defined by the equations

ments. Nussbaum and Ruina (1987) and Turcotte (1997), .

considered a two-block model with spatial symmetry andX =Y, Y =0 (4)

found that the system can exhibit periodic orbits in the stateWhen the block is stationary, and

space, representing the alternate motion of blocks. Huang '

and Turcotte (1990a, 1992), McCloskey and Bean (1992) andy — v, Y=e—X (5)

He (2003) showed that a two-block model without spatial

symmetry may yield chaotic behaviour. Dragoni and San-When the block is moving, where dots indicate differentia-

tini (2010) suggested that aperiodicity may be the effect oftion with respect td". In writing Eq. ©), we have assumed

stress transfers from neighbouring faults preventing the Systhatv is much smaller than the block VeIOCity, since the ratio

tem from settling down in a periodic orbit. between the velocity of tectonic plates and the slip rate of a
In the present paper, a third possibility is investigated. wefault is in the order of 10°. This means that the driver is vir-

assume that the tectonic strain rate which is imposed to dually stationary during the motion of the block. With initial

seismogenic fault is slowly variable in time. There is evi- conditions

dence that the velocities of tectonic plates are not constant i _ _

time, but undergo changes in the very long term (e.g. King&(o) =Xo, ro=v (©)

etal., 2002; laffaldano and Bunge, 2009). These may be dughe solution of Eq.4) is

to changes in the velocity of mantle convection. We consider

two cases: a sinusoidal oscillation in velocity and a mono-X(T) =Xo+ VT, Y(ry=v. (7)

tonic change from one velocity value to another. Typically

the oscillations or the transitions in plate velocity will have

smaller amplitudes and longer periods and durations than reg, _ i ®)

currence times of earthquakes. This is modelled by a spring-  fs

block system where the driver velocity is a slowly varying the block starts moving whefi = —1 or X = 1. With initial

function of time. We consider the simplest friction law, char- conditions

acterized by a static and a dynamic friction. The system is

dissipative and nonlinear. As a premise we briefly review x (0) =1, Y(0)=0 9)

the dynamics of a spring-block system with constant driver

velocity; then we study the evolution of the system with vari- the solution of Eq.§) is

If we define a nondimensional force

able velocity. U U

X(T):e—i-EcosT, Y(T):—EsinT (10)
2 Constant driver velocity where 0<T <x and
We consider a heavy block with maasplaced on a horizon- U =2(1—¢) (11)

tal plane. A horizontal spring with rigidit)k connects the . . : :
block to a driver moving at constant velocityaway from the is the displacement of the block. Since changes in the sign
block and along the spring axis. We assume that the motioﬁ)f shear traction are not observed on faults after an earth-

of the block is resisted by a static frictiofs and a dynamic quake, we only consider the cage=0 or X > 0, implying
friction f4, and define y o y € >1/2. When the block motion stops, the sliding condition

is reached again after a time
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U
——— A
AT = 7 (12)
which is the recurrence period of block motions.

The state space of the system is a subset®f As dis-
cussed abovey is extremely small with respect to the val-
ues thatY assumes when the block is moving. In drawing
the orbits of the system, we may therefore assutae0 in
Eq. (7). Since a fault is stationary for most of its lifetime, it
is natural to assume a poift = (X, 0) as initial point.

According to Egs. 7) and (0), the orbit is a segment of 0
the X axis up toP; = (1,0), then it describes a half circum-
ference in the half-plang < 0, with centre at pointe, 0) and
radiusU /2. The orbit intersects th€ axis atP, = (1— U, 0), —-U/2
then continues along the axis to P1, and so on. The system
is then characterized by limit cycles which are the union of a
segment and a half-circumference (Fig. 1), with a radius de-
pending ore and a period equal ta7 . Variations ofe, fsor
v with time may render aperiodic the motion: we investigate
the effect of varying.

Fig. 1. A limit cycle in the state space of the spring-block system
3 Variable driver velocity: sinusoidal oscillation with constant driver velocity.

We assume that the driver velocity oscillates about the value
v with amplitudea and frequencw and introduce the nondi- Y (T) =Yg+ AV sinQ (T — Tp) (20)
mensional quantities

Z(T) = Zo+ QUT — Tp) (21)
A=t o= /2, (13)
v K which are the parametric equations of the orbit.Alk 1,
Therefore we write II_Eq. (19) describes a curve that slightly oscillates about the
ine
Y(T)=V(1+AsinQT) (14)
X(T)=Xo+ V(T —Tp) (22)

where we have assumed that velocity is equaf tat 7 = 0.
The ratio betwee®2 and the frequency of block motions in  According to Egs.19) and @0), the projection of the orbit in

the case of constant velocity is the planeXY is a curtate cycloid enclosed between the lines
QAT Y=(A—-A)V andY = (1+ A)V. When the block is mov-
o=——, (15) ing, the system of differential equations is given by Eg). (
2r with the addition of the equation fd in (17). The solution
It is appropriate to introduce a coordinate is given by Eq. 10) with the addition of Eq.41). Hence
the orbit is the union of cycloid segments and half circum-
Z=QT (16)  ferences winding in a 3-manifold homeomorphic to a solid

which is regarded as an angle varying from O to 2here- torus. As initial conditions we choose

fore Z will be intended as modulo/2 When the block is

. . . . To=0, Xo=1-U, Yo=1V, Zp=0. 23
stationary, the dynamical system is described by the system0 0 0 0 (23)
of autonomous differential equations Since the driver velocity is much smaller than the block ve-

locity, in drawing the orbits we can approximate the cycloids

X=Y, = TY=AvQcos, Z=%Q. A7) with straight lines lying in the plan& = 0 and neglect the

With initial conditions duration of block motions with respect to the duration of pe-
riods in which the blocks are stationary (Fig. 2). Then the

X(To)=Xo, Y(To)=Yo, Z(To)=Zo (18)  state space is restricted to

the solution is 1-U<X<1, -U/2<Y<0, 0<Z<2r (24)

AV
X(T)=Xo+ V(T—To)—E(COQT—COSQTo) (19)  where0<U <1.

www.nonlin-processes-geophys.net/18/431/2011/ Nonlin. Processes Geophys., 13943011
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7 4 Zy—2mak—A(cosZ;—1)=0 (30)
that can be solved numerically faf,. Thei-th recurrence
time is then

Zi—Zi_
AT, =227 AT (31)
2«

With initial conditions @3), the projection of the orbit in
the planeX Z is a saw-tooth curve enclosed between the lines
X=1-U and X =1. The teeth are different from each
other, having the same height, but different widths. The
k-th tooth is

yAYAY
Zk—Zk-1

SinceX = —F andZ is proportional to time, Eq.3Q) re-
sembles a typical stress-time curve for slip-predictable mod-
els of earthquake occurrence. The interval @ < 2 corre-
sponds to one cycle of the driver velocity PointsZ = Z;,
correspond to block motions and their number depends on

Fig. 2. Sketch of an orbit in the state space of the spring-block the value ofx. From Eg. £6), the associated time is
system with variable driver velocity, under the assumptiaris O

X (Z)=14U Zi-1<Z < Z. (32)

k
andV ~0. Tk=ZATi- (33)
i=1
4 Recurrence times Since the set of rational numbers is dense&Rirwe may
assume that is rational, i.e.
Let us callT; the instant of time when theth block motion m
takes place and define a=— (34)
Z; =QT;, i=1,23,.... (25) wherem andn are positive integers, withh < n. From

Egs. (L5) and 34)
The time intervals between two consecutive block motions

(recurrence times) are then Zan =nAT. (35)
ATi=T;—Ti-1. (26) Hencem cycles ofY correspond ta: average recurrence

times. Them-th cycle ofY terminates with the:-th block

If we setTo=1T;,_1 andXo=1-U, Eq. @9) yields motion, so that

U
X(2) =1-Ust5—(Z—Zi-1) Zy=2mn (36)
T
U and the initial conditions are recovered. According to
T ona (COSZ —C08Z;-1) (27)  Egs. @5), (35) and @6), this occurs at time
where we have used Eqd.5j, (16) a_n_d @5). The valug of 7 _ 2mmw AT (37)
Z; can be calculated from the condition for block motion Q

The system is in a periodic orbit representing a sequence
X(Z)=1 (28) of n block motions, with a period which is a multiple of the
which gives period 2r/ Q2 of the driver velocity.
Zi—Zi_1—2ma— A(CosZ; —cosZ;_1) =0. 29
1= Zi-1 = 2me — A(COSZ, i-1) (29) 5 Variable driver velocity: monotonic change

Summing ovet from 1 tok and considering thafo =0, we . ) ]
obtain We now suppose that the driver velocity has a monotonic

change fromV, to Vj, in a finite time®. Assuming that the
change begins & =0, we write

V,, T <0
T
Y(T)= V+<1+ Bcos%), 0<T=<® (38)
Vy, T>0
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where Summing ovet from 1 tok and considering thato =0,
V4V V.~V V. we obtain
Vi= , vo="42_2 B=—. (39)
2 2 Vi Zx — 2Bk + BsinZ; =0 (50)

The driver velocity increases ¥, > V,; it decreases if

e that can be solved numerically faf,. Thei-th recurrence
Vi, < V,. When the velocity is constant and equalWp or

: ) time is then
V,, the recurrence times are respectively
Zi—Zi 1—

U U AT; = S LIART (51)
AT, = —, ATy =—. (40) 2B

V. Vp

i A saw-tooth curve is obtained again in the plakie.

We also define PointsZ = Z; correspond to block motions and their num-
U AT ber in the interval 6< Z < depends on the value gt The
AT=3-. B=25 (41)  associated time is given by EQJ).

* We assume that earthquakesn(> 1) take place in the
and introduce a coordinate time interval O< T < ®. In the particular case

nT 1

2= N (52)

which is regarded as an angle varying from GrtdNhen the we have® = nAT so thatl, = © andAT, .1 = AT}, Other-

block is statlona_ry, the dynamical system is described by th%vise T, < © and the occurrence ting, 1 is obtained from
system of equations

the condition

. . T i . T
X:Y, Y:—6V_SII’]Z, ZZ@ (43) X(Tn+1)=1 (53)
With initial conditions whence

X(O=1-U, Y©O=V., Z(0)=0 @) 7o _e41ZX©® (54)

Vb
where, from Eq.45) with Ty =T,

the solution is

[ . =aT . Ty
X(T)=1-U+V4(T—-Ty)+V_— | sin— —sin (45) ® T
™ ® e X(©)=1-U+V(®—T,)—V_—sin @". (55)
T
T T
Y(T)=V++v,cos%, Z(T):%. (46)  Then
ATn+1 == Tn+1 - Tn. (56)

Similar considerations to those expressed for the sinu-
soidal velocity oscillation hold, with the difference that the afierwords
orbit is enclosed between the linEs= V, andY =V}, in the
planeXY andZ varies only between 0 antl. ATy = ATy, k>n+1 (57)
We call 7; the instant of time when theth block motion

takes place in the interval 8 T < ® and define
6 Asymptotic solutions

Zi=ZT, i=123... 47) . . _ .
S The motion of tectonic plates is observed to be very stable in
The recurrence times are given by E@e) If we set  the shortterm. In the case of sinusoidal oscillations, we may
To=T;_1, Eq. @5) yields therefore assume

U .
X(Z)=1-U+—(Z—Zi_1) AL, a1l (58)

2
BU p Thanks to these assumptions, an analytical expression for
+——(SinZ —sinZ;_1). (48) ATy can be obtained. Assumirfg = 0, we may state that the
2rp interval ATy is in the proximity ofT =kAT. From Eqgs. 14)
The value ofZ; is calculated from conditior2g), which ~ and (L5), the average driver velocity in the intervalTy is
gives then
Zi—Zi_1— 2B+ B(sinZ; —sinZ;_1) =0. (49) Y= V(1+Asin2rak). (59)

www.nonlin-processes-geophys.net/18/431/2011/ Nonlin. Processes Geophys., 13942011
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Fig. 3. Histograms showing the recurrence timé&}, /AT as a function ok: ()« =1/10, (b)a =2/21 (¢ =0.7, A=0.1).

Then Y = Vi (1+ Bcos2rBk) (66)
U
ATy~ — (60) so that
Yi
or, thanks to Eq.X2) and with the same approximation, ATy = AT (1— BcosZ k) (67)
ATy~ AT(1— Asin2rak) (61)  describing a monotonic change af7} from AT, to AT,
Then

showing that the values af 7} as a function ok belong to
a sinusoid with wavelength/& oscillating about the value _

. . . . A Zy=2nB|k—B
AT with amplitudeA. Hence the nondimensional oscillation
amplitude of recurrence times coincides with that of velocity _ _
oscillations, whenx < 1. From AT, we can calculatez;,  Or, calculating the sum and settikg- (1/2) ~ k,
from Eqgs. £5) and @3). Using Eq. (5), we obtain

k
cosrBi ) (68)

i=1

) Zi =278 (k _ g Sinnpkcostpk k) (69)
) sinz B
Zi= Znoz(k—AZstzmi) (62)
i=1 and finally
or, calculating the sum and settikg-1~k, — i k k
g g Te =AT (k _ g SNk costpk ) . (70)
sirfrak sinzf
Ziy=2nalk—A— (63)
sinTo

showing thatZ; is an increasing, nonlinear function 6f 7 Discussion
From Egs. 25) and (15),

Sin27To{k>

sinro

We considered a spring-block system with variable driver ve-
(64) locity as a model for the long-term behaviour of a fault sub-
ject to variable strain rate. In the case of sinusoidal oscil-

With « given by Eq. 84), after a cycle including block lation, we may conclude that, while single earthquakes pro-

motions Eq. 63) gives Eq. 86) and Eq. 64) gives Eq. 87). duced by the fault are aperiodic, the fault activity is charac-
In the case of a monotonic velocity change, we may analolerized by seismic cycles made of a finite number of events.

Tk:AT<k—A

gously assume The number of events in a cycle depends on the ratie-
tween the frequency of strain rate oscillations and the fre-
|B| <1, skl (65) quency of earthquake occurrence at constant strain rate.

In order to illustrate the results, we choase 0.7, a typ-
ical value for friction of rocks (e.g. Scholz, 1990). From
Eq. 12) it follows U = 0.6. We take initial conditions in

which yieldsT =kAT and
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Fig. 4. Projections of the orbits in the plateZ: (a)« =1/10, (b)a =2/21 (¢ =0.7, A=0.1).
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Fig. 5. Histograms showing the recurrence timé&@}, /AT (or ATy /AT,) as a function ok: (a) V,/ V, =2, (b) V},/ V, =1/2 (8 =1/20).

Eq. 23), whereXo=0.4. We choosed = 0.1 for the ampli- In the casex =2/21, 2 cycles ofY are necessary in or-

tude of strain rate oscillations. der thatZ; is a multiple of Zr and the initial conditions
The histograms in Fig. 3 show the recurrence times are recovered. There are 21 valuesZf in the interval

calculated from Eqg.31), in the casesx =1/10 anda = 0< Z <2n. Then 21 earthquakes take place in the time

2/21. A complete seismic cycle is shown in both cases,interval 47/, with the twentieth earthquake occurring at

with AT} oscillating aboutAT. The cycles include 10 and 7 =T>1=21AT. The system in a periodic orbit with period

21 earthquakes respectively and correspond to 1 and 2 cyclebr/ Q2. The seismic cycle is a sequence of 21 earthquakes,

of strain rate oscillations, respectively. which are distributed over a time twice longer than in the
Figure 4 shows the projections of the orbits in the planeformer case. Therefore a small changerjrabout 5%, pro-

X Z, calculated from Eq.32) in the same two cases. In duces a very different seismicity pattern.

the casex =1/10, there are 10 values & in the interval

0< Z <27, with Z19= 2. Then exactly 10 earthquakes In the case of a monotonic change in strain rate taking

take place in the time intervak . The tenth earthquake Place in a finite time®, the recurrence times change grad-

occurs atl = Tip= 10AT. The system is in a periodic or- ually from the valueAT, preceding the change to the value

bit with period 2r/ 2, representing a sequence of 10 earth- A7» following it. In order to illustrate this case, we choose

quakes with a certain pattern of recurrence times. B =1/20, so that exactly 10 earthquakes occur in the time in-
terval®. The histograms in Fig. 5 show the recurrence times

www.nonlin-processes-geophys.net/18/431/2011/ Nonlin. Processes Geophys., 13943011



438 M. Dragoni and A. Piombo: Fault subject to variable strain rate

ATy calculated from Eq.X1), in the cased/,/V, =2 and  with an equivalent low-order system. The aim is to under-
Vy/ V., =1/2. They are also expressed in termdpfthanks  stand the effect of a slowly variable strain rate on the recur-

to the equation rence times of earthquakes.
1 Vo In the case of constant strain rate, the fault produces earth-
AT, = > (1+ 7) AT (71)  quakes with a recurrence periad’'. Variable strain rate is a
a

cause of aperiodicity, if we look at single earthquakes. In the

In general, the seismic cycles associated with sinusoidatase of a sinusoidally varying strain rate, the seismic activity
oscillations and the transition intervals between two strainof the fault organizes into cycles that include several earth-
rate values may include a large number of events and hencguakes and repeat periodically. The period of such seismic
may be very long and difficult to observe even if the fault cycles is a multiple of the oscillation period of strain rate.
were subject only to tectonic strain rate. However most faultswithin each cycle the recurrence times oscillate about the
are part of a fault system and are subject to stress transfergverage value\7 and the amplitude of oscillations is pro-
from neighbouring faults in connection with earthquakes. portional to that of strain rate oscillations. In the case of a
If we suppose that an amount of tangential stress is transmonotonic change in strain rate, the recurrence times change
ferred to the fault during the time intervalTy, this results in - gradually from the value preceding the change to the one fol-
an abrupt changa X superimposed to the saw-tooth curve |owing it.

Eqg. 32). The orbit is then shifted to If the fault is subject to perturbations in stress, the per-
) Z— 7k turbation anticipates or delays the subsequent earthquake.
Xp(2)=1+ Um +AX (72) " In the case of sinusoidal oscillations, each perturbation will

break off the current seismic cycle and will start a new one.

which reaches the valué =1 whenZ is equal to Therefore the pattern of seismic cycles controlled by strain

, AX 73 rate oscillations may be spoiled in the presence of frequent
Le=2Zk— 7<Zk ~Zk-1)- (73 stress transfers, as may occur in systems made of several in-
If we subtractZ;_1 from both sides and multiply by terac'ukr)lg _faults._llln_ thle clzas? of t? monoltonlc chang]:a, stress
AT/(2ra) of AT /(2xf), we obtain perturbations will similarly alter the regular pattern of recur-
rence times and several perturbations with the same sign can
AX i i -
AT] = (1_ _) NG (74) ;rtlie:)rr\]ge the number of earthquakes occurring during the tran

Hence thek-th earthquake is anticipated or delayed by an [N summary, even if slow variations in strain rate may be
amountA X/ U, independent of or 8. If AX > 0, the earth-  difficult to observe in seismicity records due to the presence
quake is anticipated; ih X <0, it is delayed. According to ©f €xternal perturbations, it is undoubted that such variations
Eq. 8), AX expresses the stress change as a fraction of statigiVe @ significant contribution to the duration of recurrence
friction. For example, ifAX = 3% the relative change in fimes and to the observed aperiodicity of earthquakes.
ATy is equal to 5%, with the choice made for
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