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ABSTRACT Video scene understanding is leading to increased research investment in developing
Artificial Intelligence technologies, Pattern Recognition, and Computer Vision, especially with the advance
in sensor technologies. Developing Autonomous Unmanned Vehicles, able to recognize not just targets
appearing in a scene, but a complete scene the targets are involved in (describing events, actions, situations,
etc.) is becoming crucial in the recent advanced intelligent surveillance systems. At the same time, besides
these consolidated technologies, the Semantic Web technologies are also emerging, yielding seamless
support to the high-level understanding of the scenes. To this purpose, the paper proposes a systematic
ontology modeling to support and improve video content analysis, by generating a comprehensive high-
level scene description, achieved by semantic reasoning and querying.
The ontology schema comes from as an integration of new and existing ontologies and provides some
design pattern guideline to get a high-level description of a whole scenario. It starts from the description
of basic targets in the video scenario, thanks to the support of video tracking algorithms and target
classification; then provides a higher level interpretation, compounding event-driven target interactions
(for local activity comprehension), to reach gradually an abstraction high level that enables a concise and
complete scenario description.

INDEX TERMS Ontologies, Situation Awareness, scene understanding, Semantic Web Technologies,
UAV.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are extensively used
for research, monitoring and assistance in several fields of
application ranging from defense, emergency and disaster
management to agriculture, delivery of items, filming and so
on. Their performance is often estimated about how accurate
and precise is the provided scenario description, ranging
from the basic identification of fixed and mobile targets,
to recognize target actions that constitute events occurring
in the real-time scenario. Especially when a high-level
description of the scenario is strongly desired, UAVs should
be able to process the initial tracking data and, by adding
environmental information, interpret the scene captured by
the on-board camera. Although the human remote control
of these vehicles is often decisive to clearly understand
the scene and make an action, UAV equipped with such
abilities could support human operators in many situations,
especially if they are dangerous for humans.

The scenario comprehension requires to analyze low
level data and then build knowledge on different aspects
of the scene, collecting distinct feature data and merge them,
increasingly, to get a complete picture of what it is happening
[8]. A straightforward interpretation of the road scenario
requires to firstly detect the principal actors of the scene,
such as people, vehicles moving in the scene. Then, there is
the need to understand their movements and interactions to
recognize events or actions. Combinations of events involving
one or more objects depict higher-level activities or situations.
This process gradually transforms primitive data (e.g., from
sensors or tracking) into high-level information to reach a
high-level view of the scenario.

Figure 1 shows an incremental multi-layer knowledge
extraction schema that depicts this process. Each layer
produces a knowledge "granule" that is used and integrated
in the upper layer with additional features to increase the
knowledge granularity on the initial entities. In the figure, the
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FIGURE 1: Multi-layer knowledge schema: an incremental
design process to video scene description

original video frames are processed by tracking methods (in
the figure, the focus is on a zoomed frame portion), obtaining
target bounding boxes. The Raw sensor data layer constitutes
the level of primitive data from tracking, such as object
dimensions, positions, width and height of bounding boxes,
etc., and also possible sensing data if sensors are involved to
collect data in this phase. Tracked targets are the output of
the initial data transformation step. The next level is defined
on the scene object detailed features, obtained through the
tracking process. The Object layer is composed of all the
recognized targets, including the target identification and
classification activities. In Figure 1, for example, the targets
identified in the video frames are classified and labeled as
Person. In other words, Person is the (class) label associated
with the bounding boxes identified as id1, id2. The Activity
layer describes the relations between the objects appearing
on the scene: moving objects can interact with other (moving
or fixed) objects, involving actions, movements, or any
change of the scene. For example, people’s movements
and interactions state that the objects labeled as Person
are walking. The upper layer represents, at high level, the
interpretation of the scene, through the activities carried
out by the named objects in the scene. The layer Situation
abstracts the object movements in the environment, to achieve
a final human-like interpretation of the scene. In this case,
the revealed situation People Crossing is a higher level
description of the activity Person Walking of the previous

layer, carried out by the recognized Person objects. The
situation People Crossing explains what is happening on
the scene, straightforwardly and concisely. The multi-layer
knowledge extraction schema, depicted in Figure 1, shows
a methodological infrastructure to incrementally recognize
objects and activities they are involved in and systematically
describe a video frame scenario. The logic behind this schema
needs solid formal modeling that finds its solution in the use
of a thorough ontological design. Ontologies provide indeed
formal models to describe axiom-based knowledge and infer
new knowledge through semantic reasoning. Bearing in mind
one of the focal principles of the Semantic Web, viz., the data
re-usability, the multi-layer knowledge schema is achievable
by integrating existing upper and domain ontologies, aligning
similar concepts and extending them, in order to bridge
different domain knowledge.

Ontology integration is not an easy task to fulfill, due to the
difficulties to relate distinct domains (ontology alignment).
Poor ontology integration can result in excessive redundancy
of information, with a consequent reduction in performance
[14], that inevitably affects semantic reasoning and query
processing [22].

To address this issue, this work proposes a novel and
systematic ontology design to support Computer Vision
methods in the video scene comprehension. The idea is to
add an ontology-based semantic support to the well-known
approaches and methods for Video Analysis, in order to
increase the effectiveness in video content analysis. Basically,
the output of video tracking and target classification (and
labeling) is encoded in ontological assertions to infer new
enhanced knowledge that describe target interactions, events,
activities and finally situations appearing on the scene.
The multi-layer knowledge schema shown in Figure 1
provides a systematic design process to increasingly yield a
scenario description of the video content, formally supported
by ontology modeling. The knowledge, produced by each
layer, is modeled as ontology concepts corresponding to
the main scene actors, and their relationships constituting
movements, event, activities, and finally, situations on the
scene. At each layer, higher-level knowledge is built from the
information of the previous layer, thanks to the corresponding
ontology model, that describes the conceptualization at that
layer. By semantic reasoning, new assertions, inferred on
the previously generated knowledge, enable high level view
of the video content.
The remaining of the paper is structured as follows. Section
II presents an overview of the main literature in video
content analysis with a focus on semantic knowledge-based
approaches; Section III describes the individual ontology
models used in this approach as well as the final ontology
model resulting as an integrated design model of the previous
ones. Finally, Section IV shows an illustrative example,
that highlights step-by-step the whole process, in an actual
scenario. Conclusions close the paper.
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II. RELATED WORK
This section provides literature review about situation recog-
nition by analyzing the proposed Machine Learning and
knowledge-based methods. The section also discusses the
main ontologies designed for situation modeling.

A. COMPUTER VISION AND DEEP LEARNING
Situation interpretation has been a highly debated topic in
literature to support devices, such as smart cameras, robots
and unmanned vehicles, to accomplish complex surveillance
and monitoring tasks. As first step, scenario interpretation
from mobile cameras requires the detection and tracking
of the main actors of the video scene, such as people,
vehicles and animals. To this purpose, tracking algorithms
[20], [31] have been proposed in literature. Object tracking
from mobile cameras is a challenging topic because there
is no fixed scene [5], [11], [12], [21], then, traditional
techniques, such as the background subtraction [29], can
not be applied to accomplish the task. After scene object
detection has been performed, scenario interpretation requires
the identification of object identity, as well as the recognition
of the environment and specific features of the scene that
can support activity and event detection. To this purpose,
Machine learning and, especially, Deep Learning methods
[30], [34] have been widely investigated to recognize object
identity, scene elements or event, and even activities from
egocentric videos [34]. These methods exhibit very good
performances, but the training phase is quite expensive, due
to the huge number of training samples; they are often
ad-hoc designed for a specific domain (e.g., pedestrian
event) [33]. Furthermore, a camera-equipped UAV flying
over outside areas can take different types of environments
and objects, doing various activities, with different light
conditions and angles. These conditions can significantly
increase the number of training samples required for a good-
performing object and event detection. The implementation
of Deep Learning methods is driven by the availability of
high-performance computing GPU and software frameworks.
Additionally, the training, classification and validation of
Deep Learning have been demonstrated to be not always a
trivial case. [28]

B. KNOWLEDGE-BASED SYSTEMS APPLIED TO
SURVEILLANCE
Recent literature [7], [9] focuses on enhancing UAVs as
knowledge-based systems to become aware of situations
occurring in a real-world scenario. Knowledge-based meth-
ods have been used to perform sensor fusion to integrate
heterogeneous data and support various applications [2],
[32], such as UAV-driven object detection in video scenes
[6], [18]. Cognitive models have been proposed to improve
object detection and tracking by fusing information on the
scene to catch tracking faults such as occlusion, ID lost
and motion blur. Other researchers [10], [17], [26] proposed
new models to cope with UAV-based event detection both in
inside and outside environments. They proposed ontology-

based approaches to model knowledge on the scene and
objects. Some approaches focus on a robust interpretations
of events over time to abstract higher-level knowledge
on a scene and provide refined descriptions of the whole
scenario [6], [26], [27]. In [27], the authors propose a novel
reasoning mechanism to deal with uncertainty in activity
detection. In [6], the ontology-based model introduced in [7]
is extended by considering a query-based temporal window to
analyze spatio/temporal relations among tracked people and
detect events over time. In [26] an ontology-based system,
namely iKnow, detects activities of daily-living by merging
dependencies among low-level and high-level concepts, such
as locations and objects involved in activities. This model
introduces the telicity criteria, which is applied to group
already detected activities for situation interpretation. Our
previous approach [10] employs an ontology-based modeling
of UAV-recorded video scene to detect activities carried out
by people and vehicles in various environmental contexts.
The approach detects simple activities carried out by tracked
scene objects, then, compositions of these activities over
time enable the definition of higher-level complex activities.
The knowledge modeling is achieved by ontology axioms
and applying reasoning on them.

The knowledge-based system proposed in [17] introduces
a context layer over tracking, that employs an ontology
composed of several sub-ontologies, each one devoted to
a specific aspect/layer of the scene, from the lowest to the
highest level (i.e., tracking data, scene objects, situations).

The approaches [7], [9], [10], [17], [26] employ
knowledge-based methods to detect activities and situations,
but they do not provide a methodological approach to achieve
a scene description; this work presents an ontology design
pattern that provides the incremental steps (in form of
ontological models) to describe a scene, at different levels
of detail. Coding design patterns into ontologies has been
proven to be useful for supporting and improving Semantic
Web ontology engineering [15]. In [15], content-oriented
patterns are shown to be useful to abstract knowledge and
support composition. This paper introduces a multi-ontology
process design pattern to support knowledge acquisition
and reuse about a UAV-taken scenario. The employment
of a knowledge-based approach does not prevent the use
of a statistical-based or probabilistic approach. In fact, in
[16], ontologies and Markov Logic Networks are used
synergistically to accomplish activity recognition.

C. ONTOLOGIES FOR SITUATION MODELING
Recent studies evidence the role of ontology for modeling
the features arisen from the UAV-observed scene [1], [7],
[23]. In [7], the ontology, namely TrackPOI, is proposed to
represent scene mobile objects (i.e., people, vehicles, etc.)
and environments (roads, buildings, etc.) by starting from
tracked scene data. Activity Ontology Design Pattern (ODP)
[1] introduces a core ontology for activity modeling that
can be used in different contexts. The activity is modeled
along with its features (time duration, people involved, etc.).
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This ontology also allows the modeling of an activity as
composed by simpler activities. An ontology similar to ODP
is proposed in [25], the authors present a core ontology
to model the activity and its features. Then, the model is
extended with a specialization pattern and a composition
pattern to, respectively, specialize the core ontology to model
a specific domain and build complex activities from simpler
ones. Situation Theory Ontology (STO) [23] concerns the
modeling of concepts in Situation Theory (additional details
will be provided in the next sections).

In the Situation Awareness domain, ontologies often com-
bine classes modeling sensor-related information with classes
modeling high-level features, such as relations among scene
objects, events, and situations. The ontologies proposed in the
literature are upper ontologies, representing general relations
among the data, that can be specialized to accomplish a
specific application. In [24], a novel method to knowledge
representation for Situation Awareness is discussed. It uses
RuleML-based domain theories and proposes the Situation
Awareness (SAW) ontology. The ontology models a situation
as a collection of goals, entities or objects and relations
among these objects. The ontology also models events as
acquired by sensors and allows the definition of dynamic
representation over time by updating specific properties. The
ontology is a core ontology, but its classes can be extended
to represent situations occurring in specific domains. In [17],
several connected upper ontologies are proposed to describe
different aspects of the scene, such as tracked entities, scene
objects, activities, etc.

III. THE ONTOLOGY MODEL
This section presents the whole ontology design: firstly,
individual ontologies involved in the integrated formal model
are introduced, according to the multi-layer knowledge
schema introduced in Figure 1; then the whole model, with
the relative conceptual alignments is presented along with
the generated semantic knowledge.

A. RAW SENSOR DATA LAYER
This layer represents the basic level, namely, 0-layer, to
highlight the fact that it is an initial processing step, on
which the ontological model is based. It indeed collects the
input data from the UAV-recorded video, sensing the main
actors of the scene and the environmental context. Video
Analysis techniques are widely employed to accomplish this
task: video tracking is performed to track the movements
of the mobile scene objects, such as people, vehicles, etc.;
also target classification information are returned about each
detected scene object.

The output is an XML-based file including the information
on the scene objects detected frame by frame. To detect the
environment type, area classification is also provided for the
types of ground areas present in the video. The classification
results annotate each tracked object along with the area
where they appear and the areas in its surroundings. In
general, the XML file collects information types such as

bounding boxes dimensions and positions, speed, direction
as well as object identity and area classification, etc. The
ontology modeling approach supposes that the generated
XML file is the result of accurate video tracking as well as
object recognition and classification activities, to guarantee
an effective nested knowledge generation layering. Deep
learning, as reinforcement learning are established techniques
used in Video Analysis and represent a solid basis on which
to build our ontological modeling.

The output results of Raw sensor data Layer are roughly
the main mobile and fixed objects present in the scene, anno-
tated with the class label. These data are the raw knowledge
on the scene, on which our approach incrementally builds
higher-level knowledge on the UAV-monitored scene.

B. OBJECT LAYER: TRACKPOI ONTOLOGY
The output of tracking, along with target classification tasks,
needs to be coded in semantic assertions. The TrackPOI
ontology [7] is designed to describe road scenarios, where
mobile and fixed objects move and interact with each
other. Figure 2 shows the main classes and relations of the
TrackPOI ontology. Our videos usually show road scenarios,
but the layered knowledge process could be easily customized
for different scenario types, replacing on this layer, the
appropriate domain ontology.

The mobile objects in the TrackPOI ontology are tracks
annotated as people, vehicles, animals or things moved by
the people. The Track class indeed, represents the bounding
box marking the detected object (viz., the track) in each
frame of the video. Therefore, each detected object in a
frame sequence is modeled as a collection of instances of
Track class, identified by the same ID value. Track is a
general class of the TrackPOI ontology and includes all
the recognized moving objects. It is specialized to identify
instances of its subclasses, such as the classes Person and
Vehicle. Thus, according to classification results, a Track
instance can also be a Person, Vehicle or Unknown instance.

The fixed objects include environmental features, such as
rivers, buildings, stores, etc. The fixed objects are coded as
Points of Interest (POIs) retrieved by Google Maps service.
In Figure 2, some fixed objects, namely Highway, Route,
Park and Parking_lot, are represented as the sub-classes of
the class POI.

TrackPOI imports GeoRSS ontology1 to model POI GPS
data and also employs Time ontology2 to represent the instant
of a track instance.

TrackPOI defines also the spatio/temporal relations be-
tween tracks and POIs in a video scene. Relation modeling
allows to describe the interactions among tracks, and the track
movements in the environment. According to the layered
knowledge schema of Figure 1, TrackPOI models a first-
layer knowledge, dedicated to describe the mobile objects of
the scene. It is in charge of generating assertions on tracking

1http://www.georss.org/georss/geo_2007.owl
2https://www.w3.org/TR/owl-time/
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FIGURE 2: TrackPOI ontology schema: the main classes
and subsumption relations

and classification data to describe targets and the elementary
movements involving them.

TrackPOI provides the formal model to describe what
appears in each frame, frame-by-frame. As stated, track ob-
jects, identified by an ID and appearing in a frame sequence,
represent the same physical object. Moreover, in terms of
ontology coding, the axioms related to the object presence
in a time interval are replicated as many times as the frame
number is. To this purpose, TrackPOI provides a further class
namely TrackPOI:ThingObject, that supports the conceptual
abstraction of the object presence over time, by a digest, time-
based axiom. Figure 3 shows the class TrackPOI:ThingObject
that is related to the class TrackPOI:Track by the relation
TrackPOI:hasTrack, or conversely, each TrackPOI:Track is
part of (TrackPOI:trackOf) a TrackPOI:ThingObject.

FIGURE 3: TrackPOI ThingObject class: the high-level
dynamic object model

In other words, an instance of TrackPOI:ThingObject is
the actual object appearing in the scene, described by a
sequence of TrackPOI:Track instances (identified by the
same ID) over time.

C. ACTIVITY/EVENT LAYER: ODP ONTOLOGY
The activities carried out by the main actors in the scenes
are modeled by using an ontology design pattern [1] (briefly,
ODP) to model the common core of activities in different
domains.

FIGURE 4: Activity OPD ontology for high-level activities
modeling

Figure 4 shows the Activity ODP schema with classes
and properties. According the schema in the figure, a
generic activity has a starting and finishing time (respectively,
described by the properties hasStart and hasEnd), represented
by xsd:time; it lasts over time, the range of property
hasDuration is xsd:duration which represents the activity
time duration. Moreover, a generic activity can be composed
of other activities. In fact, an activity individual, represented
as an instance of the Activity:Activity class, can be related
to its component activities through the hasPart property.
The Activity:Activity class is connected by relations Activ-
ity:hasRequirement and Activity:produces to the two main
classes that characterize the activity, the Activity:Requirement
and Activity:Outcome classes, that represent the input and
the output of the activity, respectively. These classes enable
modeling logical order among the activities.

Classes from external ontologies are also used to contex-
tualize the activity. Accordingly, in the figure, the POI:place
class models the place where the activity occurred. The
foaf:Agent class represents the participants in the activity.

The ODP ontology has been employed to model knowl-
edge on detected activities (that specialize this generic class)
and support the definition of higher-level complex activities.

D. SITUATION LAYER: STO ONTOLOGY
In common sense, a situation is often represented by a com-
bination of circumstances in which someone or something
finds itself or a specific status with regard to conditions
and circumstances. A situation can be a simple people’s
activity, or the effect caused by some complex events.
In Situation Awareness [13], situation is defined as the
perception of some situational elements, the comprehension
of their meaning and the projection of their state in the
future. The Situation Theory Ontology (STO) models the
fundamental concepts involved in the situation theory [23].
Situation theory concerns the situation semantics developed
by Barwise and Perry [3], [4], [19] to reason over common-
sense and real world situations. In this theory, a situation
is composed of infons, elementary units of information that
characterize a situation. More formally, it is defined on an
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n-ary relation R among n objects or individuals a1, . . . , an,
therefore, it is written as follows: 〈〈R, a1, . . . , an, 0/1〉〉. The
infon represents a fact that can be true or false and it is
represented by the last argument in the infon definition (0/1)
that expresses its own polarity. The relation (R) in the infon
represents the type of event or action involving one or more
individuals. The individuals (a1, . . . , an) are entities (i.e.,
people, animals, etc.) that participate in the situation.

FIGURE 5: Situation Theory Ontology (STO): it models
Situation Theory

Figure 5 shows the core ontology schema of STO.
The root class is STO:Situation which represents the sit-
uation. The classes STO:ElementaryInfon, STO:Relation
and STO:Individual are involved in the situation definition.
More specifically, the STO:Situation class is related to the
STO:ElementaryInfon class by the supportedInfon relation.
An STO:ElementaryInfon is an STO:Relation existing among
one or more STO:Individual instances. The STO:Attribute
class describes attributes that can be associated with both
individuals and situations. The class is devoted to represent
locations and time instants related to the situation or
individuals.

E. ONTOLOGY INTEGRATION AND LAYERED
KNOWLEDGE GENERATION
The ontologies are the building blocks of our layered
knowledge schema, shown in Figure 1. They contribute
to provide a high-level abstraction of the scene in a dynamic
environment. Conceptual alignments or, more in general,
portions of ontology merging and integration need to be
harmonized in a comprehensive ontology model that reflects
our schema.

Figure 6 shows the final ontology schema, with the
integration model design (additional relations connecting
the individual ontologies) in evidence. The figure strictly
reflects the layered knowledge schema, namely from the
bottom layer Raw sensor data (layer 0), Scene object (layer
1), activity/event (layer 2), Situation (layer 3).

The layer 0 provides the xml-based data describing
bounding boxes and their positions, as well as their class
label (e.g., if the bounding box represents a person, a car,
etc.), as described in Section III-A.

At the layer 1, the data, generated at the previous
layer, are translated into semantic assertions that describe
the recognized mobile and fixed objects as instances of
the TrackPOI:Track and TrackPOI:POI , respectively,
from the ontology TrackPOI. The track identifiers and class
names are coded into semantic assertions: for example, the
triple <t_1_2 a TrackPOI:Person> states that the track
with ID:1 in the second frame (numbered as 2) represents
a Person (in other words, t_1_2 is an individual of the class
Person). POIs collected by Google Maps service, or detected
by area classification at layer 0, are described by ontology
assertions in a similar way.

Interactions between fixed (e.g., POIs) and moving objects
are also identified in this layer. To this purpose, object
positions, with respect to a specific area or just generic
spatio-temporal relations occurring in the scene are detected.
Therefore, triples representing spatio-temporal relations
among tracks are generated. Furthermore, in this layer, the
identification of the scene object, as composed of tracks
appearing in a frame sequence, is accomplished as individuals
of the TrackPOI:ThingObject class. Spin rules help the
consolidation of the object movements and interactions, as
well as the merging of the tracks associated to the same object
(see Section III-B for details). For instance, the generated
triple <s_1 a TrackPOI:ThingObject> represents the
mobile scene object s_1 composed of tracks with ID equals
to 1 from the video frame sequence, such as <t_1_1 a
TrackPOI:Person>, <t_1_2 a TrackPOI:Person>,
<t_1_3 a TrackPOI:Person>, etc.

In the layer 2, SPARQL queries are designed to elicit activ-
ities, that are based on the generated TrackPOI:ThingObject
instances and spatio-temporal relations among tracks. More
specifically, the queries allow the detection of high-level ac-
tivities over time [10]. The detected activities are represented
as instances of the Activity:Activity class, then, new triples
are generated. These triples relate the activity with the thing
objects who carried out or participate to the activity and
the place where it happened. In the figure, for instance, a
generic activity act_1 is characterized by the participant (the
thing object named s_1) in that activity, the place where it
occurs (the POI o_2) and the starting and ending times (at
the second 0.12 and 0.42, respectively).

Let us notice that the layer 1 and layer 2 are joined
by new additional relations (isEquivantTo), that connect
similar concepts from the ontologies TrackPOI and ODP,
respectively. More specifically, the TrackPOI:ThingObject
instance is the high-level object that carries out the activity;
since it represents the main participant of the activity, it is
equivalent to the foaf:Agent class.

In this way, through the Activity:hasParticipant property
(that connects the Activity:Activity class to the foaf:Agent
class), the activity (i.e., Activity:Activity instance) is related
to the object doing it (i.e., TrackPOI:ThingObject instance).

Similarly, the TrackPOI:POI and POI:place classes are
equivalent and related to the Activity:Activity class through
the property Activity:takesPlaceAt.

6 VOLUME 4, 2016
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FIGURE 6: The whole ontology model and an example of knowledge generation. The colored lines are the added relations
connecting the three ontologies.

At layer 3, the high level ontology STO is in charge of
situation description. Figure 6 shows the connection with
the two underlying layers. As stated in Section III-D, the
STO:Individual class, in the STO ontology, models entities
(i.e., people, animals, etc.) that carry out activities or are
involved in events and situations. The TrackPOI:ThingObject
class represents the same concept (i.e., it is assumed to be
equivalent) to STO:Individual. The Activity:Activity class
exclusively represents activities carried out by one or more
scene objects. Activities are also modeled in the STO
ontology by the STO:Relation class. The Activity:Activity
class is designed as a subclass of the STO:Relation class, that
connects directly the ODP ontology to the STO ontology.

When new Activity:Activity instances have been generated

at layer 2, the same instances are also of type STO:Relation.
At layer 3, Infons on each generated STO:Relation instance
are produced. Precisely, an instance of STO:ElementaryInfon
is yield, for each detected activity type in Activity:Activity,
equivalent to STO:Relation. These instances represent the
detected activities along with time, location and the partici-
pants to the activity. Concatenations of infons, defined by
Spin rules, allow defining high-level situations. For instance,
given the infons Infon1, Infon2 and the situation Sit1
defined by the rule R : Infon1 ∧ Infon2 =⇒ Sit_1; if
the two infons Infon1 and Infon2 are generated, the rule
R allows the detection of the situation Sit1.

VOLUME 4, 2016 7
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FIGURE 7: Knowledge augmentation through the ontology-driven layered schema: an illustrative example

IV. A CLOSER LOOK AT THE INCREMENTAL
ONTOLOGY MODELING: A SCENARIO EXAMPLE

This section presents a case study showing the applicability
of the proposed ontology modeling and effectiveness in the
scene description, on a real-world video. Figure 7 shows the
generation of the ontology population, through the layers of
the knowledge schema, starting from the initial raw data to
yield a high level description scenario. The video frames, at
the layer 0, show a typical outside scenario recorded by a
camera-equipped UAV. A vehicle is running while a person
is crossing and another person is walking on the lawn beside
the road. As stated, data retrieved by sensors and tracking
algorithms allows us to recognize targets in the scene. The

tracking algorithm used in this case study estimates camera
movements for background scene extraction and identifies
object position. Moreover, feedforward control [7] has been
used to improve trajectory tracking of objects through
frames. In the example, the tracking algorithm returns the
objects identified by id:0, id:1 and id:2. Then classification
algorithms have been employed to object and background
area annotations. Our object classifier considers three object
categories: people, vehicles and unknown objects. The object
classification is performed frame-by-frame and, then, the
object label is got through a majority voting approach [7].
The classification results are used to annotate each detected
scene object, adding a class-type field, expressing its identity.
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Identity and area annotations on scene objects are added
as attributes to tags, expressing the tracked objects, in the
original tracking output file.

The area classifier detects the main background environ-
ments (e.g., lawn or road) where the objects stay or places
they get close to [10]. Identity and area annotations on scene
objects are added as attributes to tags, expressing the tracked
objects, in the original tracking output file. Tracking and
classification data are then encoded into ontology assertions
[7], generating actual instances of TrackPOI ontology. At
layer 1, for each frame, the instances of Vehicle and
Person are created. In the frame numbered 1, the generated
instances TrackPOI:Track_0_1, TrackPOI:Track_1_1
and TrackPOI:Track_2_1, represent the tracks produced
at the layer 0 and are individuals of TrackPOI ontol-
ogy TrackPOI:V ehicle, TrackPOI:Person. Consider-
ing video frames, it is possible to seek the same track through
frames.

Tracks with the same ID are grouped in a unique dynamic
entity (i.e., thing object) representing the mobile object in the
scene. For instance, the instances TrackPOI:Track_1_1,
TrackPOI:Track_1_2 and TrackPOI:Track_1_3 repre-
sent the tracks with the ID equals to 1 in frames 1, 2 and
3, respectively. These tracks, representing the same instance
of the TrackPOI:Person class through the frames, are
grouped to build the TrackPOI:ThingObject_1 instance
of the class TrackPOI:ThingObject. At the same time,
the generated TrackPOI:Track instances are related to
TrackPOI:POI instances, representing the environments
where they move, through the TrackPOI:inArea property.
Through this property, tracks of the vehicle and the person
with ID:1 are found in the area of the route, while the other
person with ID:2 is found on the lawn besides the route.
These spatial relations are also timed because related to a
specific frame. Therefore, the generated spatio/temporal rela-
tions support the contextualization of the object movements
and interactions with other objects. The outcome of layer 1
is the identification of three objects (belonging to the class
TrackPOI: ThingObject), and their relation with the places
where they appear (i.e., the route and the lawn).

At the layer 2, some rules are designed on the
TrackPOI:ThingObject instances and the spatio/tempo-
ral relations. Collecting data on objects and their spatio-
temporal relation, by SPARQL reasoning, activities are
detected. In the figure, some specialized activities are
shown: they are carried out by the two people and the
vehicle arise at layer 2 of Figure 7. More precisely, the
following activities are elicited: Activity:_0_vehicleStopping,
Activity:_1_ManOnTheRoad, Activity:_2_ManOnTheLawn.
At high level of description, the observed scenario shows a
vehicle which is stopping (Activity:_0_vehicleStopping) when
the person crosses the route (Activity:_1_ManOnTheRoad).
Then, the other person is simply walking in the lawn area
(Activity:_2_manOnTheLawn).

1 SELECT ? ob ? t r a c k ? t ime ? p o i
2 WHERE {

3 ? t r a c k a t r a c k p o i : Pe r so n .
4 ? t r a c k t r a c k p o i : i n Ar e a ? p o i .
5 ? p o i a t r a c k p o i : Route .
6 ? t r a c k t r a c k p o i : hasTime ? t ime .
7 ? t r a c k t r a c k p o i : t r a c k _ I D ? i d .
8 ? t r a c k t r a c k p o i : t r a c k O f ? ob .
9 } ORDER BY ? i d ? t ime

Listing 1: manOnTheRoad activity: SPARQL query for
detecting people on the road

As a SPARQL query example for activity definition, let
us consider the query to detect the activity instance Activ-
ity:_1_ManOnTheRoad shown in Listing 1. The SPARQL
query detects people walking on the road over video time.
This query makes possible to create an instance of a specific
class Activity:ManOnTheRoad, subclass of Activity:Activity,
for each track who carried out this activity. The query returns
a list of tracks ordered by their ID and time when they appear
in the video. The TrackPOI:trackOf property supports the
identification of the person (TrackPOI:ThingObject instance)
walking on the road, while its track time serves the detection
of the times of entrance and exit on the road.

At the layer 3, the scene description becomes concise,
and reaches a very high level of abstraction. Situation
Theory is applied to the detected activities and scene objects
to abstract knowledge from them and provide high-level
situations describing the whole scene. Infons are generated
on the detected activities and scene objects to relate all the
information and build situations. The situations are Spin
rule-defined as concatenations of infons. The outcome of
the layer 3 is the infons Infon_1 and Infon_2 in correspon-
dence with activities Activity:_0_vehicleStopping and Activ-
ity:_1_ManOnTheRoad, respectively. The Spin rules define
a situation, namely STO:_0_vehicleStopToLetPeopleCross,
that comes from the concatenation of these infons, in the
road context. This situation exactly captures the main action
happening in the road scenario, and provides a human-
oriented, high-level view of the scene.

The proposed ontology modeling provides a systematic
way to feed a knowledge base describing a video, ranging
from the identification of the individual objects to the
occurring activities, till to incrementally achieve a general,
high-level scenario description.

In order to assess the applicability of this approach and its
effectiveness in terms of scenario description, some videos
have been processed, as described in the case study. Three
videos3 recorded in our campus have been processed: they
show people and vehicles carrying out some activities in
different environments, such as roads, lawns and heliports.
Table 1 shows the results of the application of the proposed
ontology model, according to the multi-layer knowledge
schema. The table provides the video content description:
specifically, for each video, the situations and the activities,
that compound these situations, are shown in the time interval
when they occur. Then, each activity includes the thing object
who carried out the activity, the thing object type, the POI

3https://tinyurl.com/yygg282c
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TABLE 1: Situations and activities recognized in the videos

Video Situations Activity Thing Object Type POI Start End

Video #1

Sit_0_ObjectNearer 0_ObjectNearer TO_0 Person 00:00:00 00:01:15

Sit_1_Grouping 5_Grouping TO_3 Person Lawn1 00:00:40 00:00:45
6_Grouping TO_1 Person Lawn1 00:00:40 00:00:45

Sit_2_ObjectNearer 4_ObjectNearer TO_3 Person Lawn1 00:00:12 00:01:11

Sit_3_ObjectNearer 3_ObjectNearer TO_2 Vehicle Route1 00:01:09 00:01:12
3_ObjectNearer TO_1 Person Route1 00:01:09 00:01:12

Sit_4_Grouping 0_Grouping TO_1 Person Lawn1 00:00:15 00:00:24
Sit_5_Grouping 4_Grouping TO_3 Person Lawn1 00:00:23 00:00:25

Video #2

Sit_3_ManCrossing 0_ManCrossing TO_1 Person Route1 00:00:50 00:00:55

Sit_1_Grouping 0_Grouping TO_3 Person Lawn1 00:00:58 00:01:00
1_Grouping TO_1 Person Lawn1 00:00:58 00:01:00

Sit_2_Grouping 3_Grouping TO_3 Person Lawn2 00:00:29 00:00:31
2_Grouping TO_1 Person Lawn2 00:00:29 00:00:31

Sit_0_VehicleStops- 4_Stopping TO_2 Vehicle Route1 00:00:50 00:00:55
toLetPeopleCross 1_ManOnTheRoad TO_1 Person Route1 00:00:50 00:00:55

Video #3

Sit_2_ManMoving 0_ManMoving TO_0 Person Heliport 00:00:09 00:01:00InTheHeliport InTheHeliport
Sit_3_ManMoving 1_ManMoving TO_3 Person Heliport 00:00:18 00:00:46InTheHeliport InTheHeliport

Sit_4_Grouping 1_Grouping TO_2 Person Heliport 00:00:05 00:00:16
Sit_5_Grouping 0_Grouping TO_1 Person Heliport 00:00:05 00:00:16

Sit_0_ObjectNearer 4_ObjectNearer TO_2 Person Heliport 00:00:00 00:00:16
5_ObjectNearer TO_3 Person Heliport 00:00:00 00:00:16

FIGURE 8: Situation detection: frames from Video #1:
people grouping; Video #2: people crossing; Video #3: people
moving on a heliport

where the activity happened and the activity beginning and
ending times. Figure 8 shows one of the situations recognized
in each of the three videos (i.e. people grouping from Video
#1, people crossing from Video #2, people moving on a
heliport from Video #3). Situations are described exactly by
the time interval they occur, expressed by the starting and
ending frames. Let us notice that by comparing situations,
objects and times in the figure with the table results, the
detected situations correspond to those found in the videos.
For instance, looking at Video #2, in Table 1, the recog-
nized situations are Sit_3_ManCrossing, Sit_1_Grouping,
Sit_2_Grouping, and Sit_0_VehicleStopstoLetPeopleCross.
The Video #2 shows a road scene with people grouping,
and a crossing happening in presence of an oncoming
vehicle (see Figure 8). In Table 1, for Video #2, the

situation Sit_3_ManCrossing is produced by the individual
activity 0_ManCrossing (in the Activity column); the situa-
tions Sit_1_Grouping, Sit_2_Grouping are described by the
grouping activities (identified as 0_Grouping, 1_Grouping,
2_Grouping, 3_Grouping). Each grouping activity can be
carried out by only one thing object, so there are as many
grouping activities as there are thing objects involved in the
grouping. The thing objects namely TO_3 and TO_1 are
both recognized as persons (Type column) and participate to
the situations Sit_2_Grouping and Sit_1_Grouping. More in-
teresting is the situation Sit_3_VehicleStopstoLetPeopleCross
that represents a vehicle stopping to let people cross the
road, described by the activities 1_ManOnTheRoad and
4_Stopping. The two activities involve two thing objects
recognized as a person (TO_1) and a vehicle (TO_2).
Situations and activities last a certain amount of time, from
a starting to ending time (Start and End columns, in the
table).The starting and ending times allow us to describe
the temporal succession of the situations detected in the
video. The Video #2 indeed shows initially two people
grouping (Sit_2_Grouping), then moving away from each
other, and one of them crosses the street (Sit_3_ManCrossing)
while an oncoming vehicle stops to let the person cross
(Sit_0_VehicleStopstoLetPeopleCross); in the end, the people
meet again (Sit_1_Grouping) (see Figure 8).

V. CONCLUSION

This paper introduces a novel knowledge modeling of a video
scenario, recorded by a UAV. Rather than using only the
tracking and classification methods to detect targets and their
movements, the use of Semantic Web technologies provides
support for enriching the scenario description, reflecting the
way the human observes a scene. The approach presents
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a systematic ontology-based design process based on the
introduced multi-layer knowledge schema, that composes
the scene increasingly at a high level of abstraction.

The layered knowledge model indeed allows feeding
knowledge on the scene incrementally, from tracked data to
the situations describing the scene. The integrated ontology
model exploits the features of several well-known ontologies
to thoroughly model different aspects of the scene and
achieve complete scene comprehension. Data tracking along
with activity and situation (theory) modeling support the
three levels underpinning the Situation Awareness: Perception
(collecting row sensing data), Comprehension (seeking main
actors in the scene: e.g., objects and carried activities),
Projection (assessing possible critical issues on the detected
situations).

The proposed ontology design is a kind of guideline that,
reflecting the multi-layer knowledge schema, produces a
formal knowledge modeling as well as arise the semantic
description on an observed scene.

In the light of the recent literature on situation comprehen-
sion, the main benefits of the proposed approach are briefly
listed below.

• An ontology design pattern for scenario understand-
ing. The whole ontology can be considered as a sort
of ontology design pattern, coming from the modeling
and integration of ontologies intended to portray the
layering of our proposed knowledge schema described
in Figure 1. In particular, the ontologies ODP and
STO are indeed ontology design patterns, in charge of
covering the Activity and Situation layers, respectively.
The Object layer is the only one achieved with a domain
ontology, and, for this reason, it can be easily replaced
with another ontology, if a different video context (for
example, the video scenes take place in a environment
other than a road scenario) appears.

• A modular design process for easy methodological
integration. The ontology design not only offers
seamless extensibility at the ontology design level, but
the modular layering also guarantees high flexibility
and interchangeability of the methodological approaches
for target tracking and classification in the Raw
sensor data layer. The employment of high-performance
Machine and Deep Learning methods for target tracking
and classification tasks, for example, can enhance the
effectiveness of the global system. Depending on the
computer vision methods, used in the Raw sensor data
layer, the ontology model can combine/compound more
or less accurately detected scene objects, in order to
produce higher-level scene descriptions.

• A knowledge base to support video content analysis.
The ontology model allows populating a knowledge base
describing the video content, collecting, depending on
the layering of the knowledge schema, the information
granule associated with the corresponding knowledge
layer. The knowledge base is accessible by SPARQL
queries: objects, activities, and situations appearing in

a video (or in a portion of it) can be recovered by
a query easily. The collected knowledge becomes a
flexible repository to facilitate video content analysis
targeted, for instance, at surveillance and monitoring
applications.

• A human-oriented scenario description. The role
of semantics is crucial in the scenario description:
modeling a situation as a composition of activities and,
in turn, an activity as spatio-temporal relations among
objects and between the object and the environment,
enables the logical “thinking” process, for understanding
what really is happening in a scene and explaining why
particular conclusion is achieved. The logics behind a
situation can yield human-like video content description
along with the reasoning steps that build a situation.

The proposed approach provides a semantic support for ob-
ject detection and scenario description, if used in combination
with Machine and Deep Learning methods, whose synergy
providea solid performance.

Future directions will focus on knowledge synthesis
methods to analyze the collected information over time to
reduce the knowledge base dimensions and, consequently,
speed up system performances.
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