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Abstract. We apply shape analysis by means of heat diffusion and we
show that dissimilarity space constructed using the features extracted
from heat diffusion present a promising way of discriminating between
schizophrenic patients and healthy controls. We use 30 patients and 30
healthy subjects and we show the effect of several dissimilarity measures
on the classification accuracy of schizophrenia using features extracted
by heat diffusion. As a novel approach, we propose an adaptation of ran-
dom subspace method to select random subsets of bins from the original
histograms; and by combining the dissimilarity matrices computed by
this operation, we enrich the dissimilarity space and show that we can
achieve higher accuracies.

Keywords: heat diffusion, schizophrenia, dissimilarity space, support
vector machines, random subspace.

1 Introduction

Recently, it has been popular to use magnetic resonance imaging (MRI) based
image analysis to quantify morphological characteristics of different brains [11,1].
The goal of these studies is to distinguish normal subjects with patients affected
by a certain disease.

Towards this aim of classification of healthy controls and patients, advanced
computer vision and pattern recognition techniques have become popular in the
recent years. This process can be summarized in two steps: i) feature (descrip-
tor, distance, etc.) extraction, and ii) application of classification algorithms. The
second part of this process is a well-established part of pattern recognition com-
munity and there are various techniques for classification ranging from simple
classifiers such as decision trees to more advanced ones such as support vector
machines [29]; from single classifier to ensembles of classification algorithms [14];
from feature based pattern recognition to dissimilarity based pattern recognition
[17]. The list goes on and the research continues in this domain.
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Even though there are various classification techniques, there is no single clas-
sification algorithm which is the best for all problems and most of the time the
algorithm’s success depends on the discriminative capability of the features used.
Base features change from application to application and one has to find the best
representation and the complementary classification algorithm to succeed in the
aim towards accurate classification. In this paper, we aim towards the question
“Can schizophrenia be detected used MRI images?”. Structural and morphologi-
cal abnormalities have been demonstrated in patients [25,23] and there has been
several studies which use different features and pattern recognition techniques
[10,27,21,7,30]. Some approaches use the deformation information in the regis-
tration of pairwise brains which requires extensive computation time and the
solution of complex mathematical problems due to the nonlinearity of the pro-
cess. The usually preferred approach is to detect volume variations in specific
parts of the brain called regions of interest (ROIs) [25,3]. The following works are
examples of this methodology which we also used in this study. Gerig et al. [10]
introduced a ROI-based morphometric analysis by defining spherical harmonics
and 3D skeleton as shape descriptors. Timoner et al. [27] introduced a new de-
scriptor by encoding the displacement fields and the distance maps for amygdala
and hippocampus at the same time. Shape-DNA signature has been proposed
in [21]. Liu et al. [16] analyzed image features encoding general statistical prop-
erties and Law’s texture features from the whole brain. In a recently accepted
work [7], we used Heat Kernel Signature (HKS) [26] using different scales and
applied it to classification of schizophrenia. In [30], Yushkevich et al. used the
Jacobian fields of deformation.

In this work, as the classification technique, we pursue dissimilarity based
classification [17] which differs from usual pattern recognition in the sense that
objects are represented as pairwise dissimilarities instead of feature vectors per
object. This technique has been show to be promising in brain disease research
[28]. The dissimilarities are then transferred into a new vector space [17] (the
dissimilarity space) where traditional classification algorithms can be applied.
This paper is a continuation of our two previous works [7,28] where we use the
heat kernel signatures to extract the features and analyse the effect of several
dissimilarity measures on the features extracted using HKS and demonstrate the
improvement in classification accuracy when we utilize the dissimilarity space.

The novel methodology proposed in this work is the adaptation of Ho’s ran-
dom subspace [12] method to the creation of dissimilarities by the use of four
dissimilarity measures on histograms. The method differs from prototype selec-
tion [18] because instead of selection prototypes from already available dissimi-
larities, we attempt at the transpose of this problem where we select (randomly)
different bins from the original histograms and then compute the dissimilarities
and combine them. As a result we do not reduce the dimension but we use more
information and enrich the dissimilarity space. In a similar recent work, Carli et
al. [6] used the dissimilarities between local parts for scene categorization.

The paper is organized as follows: in Section 2, we introduce the heat kernel
based shape analysis; in Section 3 we introduce the methods and the application
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of the methodology. We show our experiments in Section 4 and we conclude in
Section 5.

2 Shape Analysis by Heat Diffusion

When we considering a shape M as a compact Riemannian manifold [5], the
heat diffusion on shape1 is defined by the heat equation:

(ΔM +
∂

∂t
)u(t, m) = 0; (1)

where u is the distribution of heat on the surface, m ∈ M , ΔM is the Laplace-
Beltrami operator which, has discrete eigendecomposition of the form ΔM =
λiφi in compact spaces. The heat kernel can then be decomposed as:

ht(m, m′) =
∞∑

i=0

e−λitφi(m)φi(m′), (2)

where λi and φi represent the ith eigenvalue and the ith eigenfunction of the
Laplace-Beltrami operator, respectively. The heat kernel ht(m, m′) is the solu-
tion of the heat equation with initial point heat source in m at time t = 0, and
heat value in ending point m′ ∈ M after time t. The heat kernel has been shown
to be isometric invariant, informative, and stable [26].

For volumetric representations, the volume is sampled by a regular Cartesian
grid composed of voxels, which then allows us to use the standard Laplacian in
R3 as the Laplace-Beltrami operator. Finite differences are used to evaluate the
second derivative in each direction of the volume. The heat kernel on volumes
is invariant to volume isometries, in which shortest paths between points inside
the shape do not change. Note that in real applications exact volume isometries
are limited to the set of rigid transformations [20], however, also non-rigid de-
formations can be modelled as approximations to volume isometries in practice.
It is also worth noting that, for small t the autodiffusion heat kernel ht(m, m)
of a point m with itself is directly related to the scalar curvature s(m) [26,20]:

ht(m, m) = (4πt)−3/2(1 +
1
6
s(m)). (3)

In practice, Equation 3 states that the heat tends to diffuse slower at points with
positive curvature, and viceversa. This gives an intuitive explanation about the
geometric properties of ht(m, m), and suggests the idea of using it to build a
shape descriptor [26].

3 Dissimilarities

3.1 Dissimilarity Measures

The computed histograms of the data have been used to calculate dissimilarities
between subjects using dissimilarity measures for histograms. There are various
1 The notation is taken from [26,5].
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dissimilarity measures that can be applied to measure the dissimilarities between
histograms [8,24]. Moreover, histograms can be converted to pdfs and dissimi-
larity measures between two discrete distributions can be used as well. All in all,
we decided to study measures below and the L1 norm (L1).

Given two histograms S and M with n bins, and two discrete probability
density functions p and q, we define the number of elements in S and M as |S|
and |M | respectively.

Earth Mover’s Distance (EMD). Proposed by Rubner et al. [22], the basic idea
is to use the cost to transform one distribution into another as dissimilarity. It is
calculated using linear optimization by defining the problem as a transportation
problem. For 1D histograms, it reduces to a simple calculation [8] which was
implemented in this study.

Ci =

∣∣∣∣∣∣

i∑

j=1

(Sj − Mj)

∣∣∣∣∣∣
, D =

n∑

i=1

Ci .

KullbackŰLeibler (KL) Divergence (KL) . KullbackŰLeibler divergence is
defined as

D(p, q) =
n∑

i=1

qi log
qi

pi
.

This measure is not a distance metric but a relative entropy since D(p, q) �=
D(q, p), i.e., the dissimilarity matrix is not symmetric. There are various ways to
symmetrize this dissimilarity. We used the so-called Jensen-Shannon divergence
(JS): D = 1

2D(p, r) + 1
2D(q, r), where r is the average of p and q.

In addition to these dissimilarity measures, we propose to combine different
“sub-dissimilarities” computed by random subspace method by using averaging
and concatenating. We also test the accuracy of these combinations against the
support vector machines on the original feature space. Further details of dissim-
ilarity combination are provided in Section 3.4.

3.2 Dissimilarity Space

Suppose that we have n objects and we have a dissimilarity matrix D of size
n × n. And suppose that the dissimilarity between two objects o and ô are
denoted by D(o, ô). There are several ways to transform an n × n dissimilarity
matrix D with elements D(o, ô) into a vector space with objects represented by
vectors X = {x′

1, . . . , x
′
o, . . . , x

′
ô, . . . , x

′
n} [17]. If the dissimilarities are already

proper Euclidean, classical scaling can be used. One can utilize pseudo-Euclidean
embedding for arbitrary symmetric dissimilarities. These yield vector spaces in
which vector dissimilarities can be defined that produce the given dissimilarities
D. When the dissimilarities are non-Euclidean, classification on these pseudo-
Euclidean spaces are ill-defined since the corresponding kernels are indefinite.
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A more general solution is to work directly in the dissimilarity space. It creates
an Euclidean vector space by using the given dissimilarities as a set of features. In
this case, the dissimilarities in this space do not correspond to the dissimilarities
on the original space; which is sometimes an advantage if it is not known that
they really are dissimilarities. As this holds in our case we constructed such a
dissimilarity space using all available objects by taking X equal to D. In the
dissimilarity space basically any traditional classifier can be used. The number
of dimensions, however, equals the number of objects, which is 60 in our case.
Many classifiers will need dimension reduction techniques or regularization to
work properly in this space. Here, we used the linear support vector machine to
avoid this.

3.3 Random Subspace Method and Adaptation to Dissimilarity
Computation

In classical pattern recognition, there are several classifier combination tech-
niques to get the best of a data set in hand. For the combination to be effective,
one has to create diverse classifiers and combine them in a proper way. Most
combination methods aim at generating uncorrelated classifiers, and it has been
proposed [14] to use different (i) learning algorithms, (ii) hyperparameters, (iii)
input features, and (iv) training sets. For example Bagging [4] uses bootstrapping
to generate different training sets and takes an average, the random subspace
method [12] trains different classifiers with different subsets of a given feature
set. In dissimilarity based classification, since most of the time the k-nearest
classifier is used, the research has focused on prototype selection [18]. In pro-
totype selection, the aim is to select a subset of the data which explains the
whole set of data in a proper way. In this paper, we aim for the transpose of
this problem, instead of selecting a set of instances, we aim to select a set of
features and combine them as in [12]. This can be done after we have the dis-
similarities which was also targeted in [18,19] or before the dissimilarities are
actually computed. In this paper, we propose the latter approach and adopt
Ho’s random subspace method to dissimilarity computation. What we do is we
select a random subset of the original set of bins and compute the dissimilari-
ties according to these subsets. Then we combine these subsets to get the final
classification. In this way we enrich the dissimilarity space by using more in-
formation. This is possible to achieve because we calculate the dissimilarities
using histogram bins and is logical because some bins may be more descriptive
of the data and computing the dissimilarities using only these bins may increase
the classification accuracy. Dividing the feature sets into two and combining Eu-
clidean distances has been investigated recently in [15]. Once these dissimilarities
are computed, they are combined using averaging and concatenation. We show
the results using both techniques: see below for the combination of dissimilarity
matrices.
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3.4 Dissimilarity Combination

Combined dissimilarity spaces can be constructed by combining dissimilarity
representations. As in normal classifier combination [13], a simple and often
effective way is using an (weighted) average of the given dissimilarity measures:

Dcombined =
∑

αiDi∑
αi

. (4)

It is related to the sum-rule in the area of combining classifiers. The weights
can be optimized for some overall performance criterion, or determined from
the properties of the dissimilarity matrix Di itself, e.g. its maximum or aver-
age dissimilarity. In this work, we used equal weights while combining multiple
dissimilarity matrices and all the dissimilarity matrices are scaled such that the
average dissimilarity is one, i.e.:

D(i, j)
1

m(m−1)

∑
i,j D(i, j)

= 1 (5)

This is done to assure that the results are comparable over the dissimilarities as
we deal with dissimilarity data in various ranges and scales. Such scaled dissim-
ilarities are denoted as D̃. In addition, we assume here that the dissimilarities
are symmetric. So, every dissimilarity D̃(i, j) has been transformed by

D̃(i, j) :=
D̃(i, j) + D̃(j, i)

2
(6)

After this scaling, we use averaging or concatenation to get the final space for
classification.

4 Experiments

4.1 MRI Data Collection

Data collection and processing in MRI-based research faces several method-
ological issues to minimize biases and distortions. The standard approach is
to follow well-established guidelines by international organizations, such as the
World Health Organization (WHO), or by respected institutions. The data set
used in this work is composed by MRI brain scans of 30 patients affected by
schizophrenia and 30 healthy control subjects. All patients received a diagnosis
of schizophrenia according to the criteria of the Diagnostic and Statistical Man-
ual of Mental Disorders [2]. After the data collection phase, we employ a ROI-
based approach [11], so only a well defined brain subpart has been considered in
this study. More specifically, we focus our analysis on the left-Thalamus whose
abnormal activity has been already investigated in schizophrenia [9]. ROIs have
been manually traced by experts, according to well defined medical protocols.
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4.2 Histogram Computation Using HKS

In order to employ a learning-by-example approach, we need a collection of sam-
ples for both healthy subjects and patients. Source data are MRI scans where
shape information can be provided in terms of volumetric data. According to
the shape diffusion analysis described in Section 2, for each subject geometric
features are extracted at a certain scale according to a time value t, and the
autodiffusion value is computed for each voxel m, leading to:

Ht(M) = {ht(m, m), ∀m ∈ M}.

Then, such values are accumulated into a histogram r = hist(Ht(M)). In this
manner, we obtain a shape representation r, encoding the global shape at a
certain scale. In our experiments, the number of bins for the histograms have
been chosen as 100.

4.3 Experimental Methodology

In our experiments, using the 60 patients, we apply leave-one-out cross-validation
to assess the performance of the methods. We first train support vector machines
(SVMs) with linear kernels as a base-line for classification accuracies using the
original histogram features. The C parameter is chosen using cross validation.
We then compute the full dissimilarity space in a transductive way using the
dissimilarity measures mentioned in Section 3. We again use the linear kernel
on this space to compare the results with the base-line original space accuracy
and random subspace accuracy. Random bins are chosen using different number
of bins and different number of random subspaces and the dissimilarity space
constructed using the combination of these dissimilarities are applied for the
final classification. Note that, in this paper we do not aim at combining different
modalities or data sets. What we are trying to achieve is to get the best accuracy
using the single data set at hand; and with this in mind, we demonstrate the
effect of different dissimilarity measures.

4.4 Results

Table 1 reports the accuracies of the SVM with the linear kernel on the origi-
nal space (LIN), linear SVM on the dissimilarity spaces (DIS, where -AVG shows
combining using averaging and -CONC shows combination using concatenation)
and random subspace accuracies (RAND-N , where N is the selected number of
bins. For this example, we used 20 random subspaces; the results for other num-
bers are similar. See also Figures 1 and 2). We can see that the dissimilarity
space accuracies are always better than the original space accuracies. This also
corresponds with our previous work [28]. We can also see that with a suitable
number of random bins, one can always achieve a better accuracy than the
full dissimilarity space accuracies. We can see that the average operation usually
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Table 1. Accuracies using the dissimilarity space and the random subspace. 20 random
subspaces are created

LIN 66.67

DIS 76.67 61.67 75.00 68.33

L1-AVG L1-CONC EMD-AVG EMD-CONC KL-AVG KL-CONC JS-AVG JS-CONC

RAND-50 76.67 75.00 70.00 58.33 73.33 68.33 70.00 75.00
RAND-25 78.33 70.00 65.00 58.33 71.67 58.33 71.67 60.00
RAND-20 86.67 83.33 65.00 55.00 71.67 70.00 68.33 71.67
RAND-15 80.00 73.33 73.33 68.33 75.00 88.33 73.33 63.33
RAND-10 71.67 56.67 65.00 60.00 71.67 66.67 70.00 53.33

creates more accurate results (though the best result is using concatenation on
KL). We believe that this is because of the curse of dimensionality. When one uses
the concatenation operator, the number of features increase and the classification
accuracy may decrease accordingly.

We can see that the random subspace method applied to the creation of the
dissimilarity space achieves better accuracies than the full dissimilarity space
and the original space. One disadvantage of this method is to choose the proper
number of bins and proper number of random subspaces. One can use cross vali-
dation to decide these values but we leave the exploration of this topic as a future
work. Nevertheless, we want to present the performance of these methods when
we apply different number of bins and different number of random subspaces.
In Figure 1, we can see the change in accuracy versus the number of subspaces
created. The numbers on the plots show the number of bins chosen and the peak
accuracy using that number of bins. Although there is no clear correlation be-
tween accuracy and the number of subspaces, we can still observe that with a
fairly small number of subspaces, one can achieve relatively high accuracies. We
can also observe that (as expected), with the increasing number of subspaces,
the diversity decreases and the accuracy converges. We can observe that the dis-
similarity space is always superior to the original space and (except for KL where
the choice of the number of subspaces is critical), the random subspace accuracy
is higher than full dissimilarity space accuracy.

In the second set of experiments, we fix the number of random subspaces and
see the change in accuracy when we change the number of selected bins. These
results are presented in Figure 2. Again, the numbers on the figure show the
number of random subspaces and peak accuracy obtained by this selection. We
can see a clearer picture in this setup because when we increase the number of
bins, we get to a peak point and then the accuracy decreases and in the end
levels off as expected. The peak point is usually between 20 and 30 which we
suggest to use for a 100 bin histogram representation. This shows us that the
selection of number of bins is the critical point in this methodological setup and
the proper selection of this parameter yields the best accuracy.
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Fig. 1. # of subspaces vs accuracy. The numbers in the plot show the number of his-
togram bins used. X is the accuracy on the full dissimilarity matrix of the corresponding
dissimilarity measure and * is the base-line original space accuracy.
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Fig. 2. # of bins vs accuracy. The numbers in the plot show the number of random
subspaces used. X is the accuracy on the full dissimilarity matrix of the corresponding
dissimilarity measure and * is the base-line original space accuracy.
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5 Conclusion

In this paper, we use Heat Kernel Signatures to extract histogram based features
(see also [7]) from MRI scans of 30 schizophrenic patients and 30 healthy con-
trols to detect schizophrenia. We first create several dissimilarity matrices using
histogram based dissimilarity measures in the literature and compare our results
with the base-line original space accuracies using the support vector machines
with the linear kernel. As the novel part of this study, we propose to adapt the
random subspace method [12] to the creation of dissimilarity matrices and show
that with the combination of these matrices, we achieve higher detection accu-
racies. Random subspaces have been used also in the dissimilarity based pattern
recognition paradigm [19,18], but the method is applied after the dissimilarity
matrices are constructed. The novelty of our method is that we use the random
subspaces technique before creating the dissimilarity matrices to combine the
useful information of the data.

In our previous work, we used the dissimilarity space and dissimilarity com-
bination [28] using intensity and apparent diffusion coefficient (ADC) based his-
togram representations. The main aim of that study was to show the effect of
dissimilarity space using dissimilarity combination and multiple modalities. In
this work, we use only one modality and one ROI; our aim is not to combine
data from different sources but to get the best from the data as hand as was also
targeted in [18]. For this purpose, we use four different dissimilarity measures
and analyze the effect of using the dissimilarity space and the dissimilarity space
constructed using random subspaces.

We have seen that the dissimilarity space constructed using the dissimilarity
measures mentioned in this work always outperform the base-line original space
accuracies. Our novel contribution is the adaptation of Ho’s random subspace
methodology for selecting a subset of bins used in the computation of the dissimi-
larity matrices. With this method, we see that we can achieve significantly higher
results when proper number of bins and random subspaces are selected. For the
combination purpose, we compare combining using averaging and concatenation
and we see that averaging usually outperforms concatenation (though the best
result is achieved using concatenation) and we believe that this is due to the
curse of dimensionality. As a future work, we plan to combine the dissimilarities
over random subspaces using Multiple Kernel Learning (MKL) paradigm.

Our analysis of number of bins and number of random subspaces show that
the important parameter is the number of bins. With relatively small number of
random subspaces, one can achieve good results. As expected, when the number
of subspaces increase, the individual dissimilarity matrices become less diverse
and the combination accuracy converges. Same occurs with the number of bins,
when we increase the number of bins, the diversity decreases and the accuracy
converges. In this setup, the number of bins become more important because
of the peak points. In this study we used a source histogram of 100 bins and
we have observed that we get the peak accuracies in the 20-30 bin range. As a
future study, we would like to apply this methodology to other data sets and
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artificial data sets with different number of source bins and draw a theoreti-
cal/experimental formula for the selection of the number of bins.
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