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Introduction

Early visual cortex provides low-level feature extraction
in terms of local frequency and orientation analysis. It is
evident that cell responses with Gabor-like profile in the
visual cortex do exist (Jones & Palmer, 1987). They
provide an estimation of the position and local orientation
of the image gradient and a subsequent process link this
information to form integral contours.
From the psychophysical point of view, the integration

problem has been faced for example by Yen and Finkel
(1998), who proposed a facilitation field for contour
integration, and by Field, Hayes, and Hess (1993), who
proposed an association field to model the link between
position-orientation information.
From a different point of view, many experiments have

been conducted to establish the relationship between
position and orientation of gradients in natural images.
Experiments aimed to estimate the statistical distribution of
co-occurrence of position-orientation couples from large
data base of natural images. In Elder and Goldberg (2002),
it has been shown that statistics of co-occurrence is
invariant with respects to scale and that a co-circularity
constraint underlies the distribution. Many subsequent
works have been done in this direction (August & Zucker,
2000; Elder & Goldberg, 2002; Geisler, Perry, Super, &

Gallogly, 2001; Gilbert, Sigman, Cecchi, & Magnasco,
2001; Orabona, Metta, & Sandini, 2006). Two good review
papers are by Simoncelli and Olshausen (2001) and by
Geisler (2008).
Mathematical representations of edge distributions and

link have been provided by many authors (August &
Zucker, 2000; Mumford, 1994; Petitot & Tondut, 1999;
Williams & Jacobs, 1997, among others). In Citti and Sarti
(2006), a couple of position orientation is naturally described
as a point in the rototranslation group (SE(2)), and the
links between this points are the integral curves in the
group, providing a simple model for association fields.
Stochastic models for boundary completion have been
proposed in Franken, Duits, and ter Haar Romeny (2007),
Mumford (1994), Williams and Jacobs (1997), and August
and Zucker (2000), substituting random walks to the
deterministic integral curves.
In this paper, we first define an experimental setup for the

estimation of edge statistics in natural images and compute
histograms of co-occurrence of edges from a database of
natural images. Then, we propose to model the experimental
data as points in the rototranslation group. This allows us to
describe the link between edges in a very precise way with
sophisticated mathematical instruments. From a determin-
istic point of view, different edges are connected by the
integral curves that are solutions of the natural advection
(transport) equation in the group. In a stochastic setting,
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connectivity of points in the group becomes a probability of
co-occurrence, regulated by the stochastic advection equa-
tion in the group, i.e., a Fokker–Planck equation. The model
equations, while discretized and simulated, are able to predict
qualitative and quantitative behavior of the probability
density of edges co-occurrence in natural images.
Parametric identification allows to estimate the variance

of the co-occurrence random process in natural images.
In the Natural image edge co-occurrence statistics

section, we introduce a novel methodology to compute
the edge co-occurrences probability in natural images. In
The mathematical model section, we describe the deter-
ministic and stochastic mathematical models for the edge
co-occurrences. The results and comparisons between
experimental data and numerical simulation are presented
in the Results section. Parameter identification of the
variance of the stochastic process is also provided.

Natural image edge
co-occurrence statistics

In this section, we describe a new technique for compu-
ting the co-occurrence probability of edge orientations in a
database of natural scenes. We have improved a standard
approach used by other research groups over the last few
years (August & Zucker, 2000; Elder & Goldberg, 2002;
Geisler et al., 2001; Gilbert et al., 2001; Krüger, 1998;
Orabona et al., 2006). In all these works, authors use pairs
of quadrature filters (Morrone & Burr, 1988) to obtain an
energy function for each image. The image energy is the
sum of the square of the response of an odd and an even
filter, resulting in a value independent of the polarity.
In the sequel, we will first describe the mechanism for

estimating the probability of co-occurrences, and then we
will provide the implementation details.

Our approach

The probability of co-occurrences is obtained computing
a 3D histogram where the two first dimensions correspond
to the relative position of two edges and the final one to
their relative orientation. Then, the histogram lies in the
space R2 � S1, the same space we will later use to model
contours in The mathematical model section. In contrast
with previous papers on co-occurrence statistics, we focus
only on the image contours and their orientations and use
oriented derivative filter so that the polarity of the contrast
of contours is considered.
Our method can be summarized in four steps:

1. Filter each image of the database with a set of
oriented edge detection kernels.

2. For each image, perform non-maximal suppression
with a threshold in order to obtain a list of points

(x, y, E) corresponding to edges with their respective
orientations.

3. Count how many times two detected edges with
relative position ($x, $y) have orientations (Ec, Ep)
and store the data in a 4D histogram in R2 � S2.

4. Project the data of the 4D histogram to a 3D
histogram where the third coordinate is the relative
orientation.

Step 1: We focus our study only on the image contours
and their orientations; therefore, the edge detection filter
will be an odd kernel acting as an oriented derivative filter.
This choice allows us to consider the polarity of the contrast
of contours, distinguishing if the image gradient goes from
a darker zone to a lighter one or in the opposite sense.
Therefore, the considered set of filters is indexed by their
orientation E Z [0, 2:). Among the options present in
literature, one of the most common is the imaginary
component of Gabor filters. Instead, we used directional
derivatives of a Gaussian filter (DoG) with orientation E
since using the steerable filter architecture we achieve
very efficient computational implementation (Freeman &
Adelson, 1991).
Step 2: For every image the filtering process produces a

stack of filtered images, each one obtained by convolution
with the kernel of orientation E. We perform non-maximal
suppression consisting in selecting for each pixel the max-
imum output of the filters as E varies. Then we construct
a list of triplets containing the pixels (x, y) where the
maximum exceeded a fixed threshold, and the correspond-
ing orientation E where the maximum is achieved. A
careful analysis ensures that the results are almost
independent from the threshold. The same happens with
the size and variance of the kernel used.
This edge detection mechanism is inspired from the

architecture of the primary visual cortex since we try to
reproduce the hyper-columnar architecture using the bank

Figure 1. Geometric configuration of two edges in an image. The
black bars represent the first edge at position (xi, yi) with
orientation Ei and the second one at position (xj, yj) with
orientation Ej. The co-occurrence final histogram is defined
respect to the (), J, $E).
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of DoG filters. Each filter imitates the impulse response of
the simple cells of V1. Also the non-maximal suppression is
present in the hyper-columns (Hubel, 1995) (Figure 1).
Step 3: For each image, we have computed a list of points

(xi, yi, Ei) that represents the set of positions of contours
and their orientations, and we can now estimate statistics
of co-occurrences. Given any pair of points (xi, yi, Ei) and
(xj, yj, Ej) in the list, we say that we have a co-occurrence
of two points with relative positions $x = xj j xi, $y =
yj j yi and with orientations Ei and Ej. Hence, every co-
occurrence is represented by a quadruplet ($x, $y, Ei, Ej),
which we store in a 4D histogram. In other words, we
count how many times the quadruplets occur. In this pro-
cedure, we only take into account couples of oriented points
satisfying |$x |, |$y | G d.
The same procedure is repeated for all considered

images, accumulating in a 4D histogram.
Step 4:We consider relative orientations and not absolute

ones, projecting the points ($x, $y, Ei, Ej) of the 4D
histogram on the rotated point:

); J;$Eð Þ ¼ R$E $x;$yð Þ; EjjEj
� �

; ð1Þ

where is the matrix of rotation of the vector ($x, $y) of an
angle $E.
The assumption that the position differences and the

orientation differences suffice for compressing what is a
6D distribution (two (x, y) positions and two orienta-
tions) to a 3D histogram amounts to a spatial-orientation
homogeneity assumption formulated and tested in August
and Zucker (2000).
This step has advantages for the computational complex-

ity of the algorithm since it reduces the dimension of the
data to be stored. As we will see in the next section, it also
simplifies the geometrical tools to be used in the model.
Finally, we normalize the full histogram over the total

number of occurrences to get the probability of observing
an edge element at every possible relative position and
orientation difference from a given (reference) edge
element. This normalized histogram estimating the proba-
bility density function of co-occurrences of a particular
geometrical configuration of contours will be called from
now on H(), J, $E).

Numerical implementation

The image database was obtained from the Web site:
http://hlab.phys.rug.nl/imlib/index.html (van Hateren,
1997; van Hateren & Snippe, 2001) and it has been many
times used in literature to compute natural image statistics
(Gilbert et al., 2001; Kalkan, Wörgötter, & Krüger, 2007).
It consists on 4000 high-quality gray scale digital images,
1536 � 1024 pixel and 12 bits in depth. Every convolution
kernel GE is an oriented derivative of Gaussian (DoG)
filter with direction E. They can be written as a linear

combination of two derivative of Gaussian filters (Freeman
& Adelson, 1991):

GE ¼ cos Eð ÞG0 þ sin Eð ÞG:=2; ð2Þ
where G0 and G:/2 are the first x-derivative and y-
derivative of a Gaussian function, respectively:

G0 ¼ j2xej x2þy2ð Þ; G:=2 ¼ j2yej x2þy2ð Þ: ð3Þ

This means we can obtain a filtered image corresponding
to any oriented kernel by taking linear combinations of the
images filtered with G0 and G:/2. Therefore, only two 2D
convolutions are needed to generate the whole set of fil-
tered images. Finally, we observe thatG0 and G:/2 are both
separable kernels:

G0 ¼ j2 xejx2
� �

ejy2 ; G:=2 ¼ j2ejx2 yejy2
� �

; ð4Þ

reducing the 2D convolutions to the concatenation of two
1D filters. Making a quick analysis, it turns out that the
resulting histogram is practically independent from the
size and variance of the kernel used. We have set A = 1
and choose a support of 7 pixels.
The orientations were discretized at 32 different values

(j15:/16, j14:/16, I, j:/16, 0, :/16, I 15:/16, :)
and considered contours far up to 32 pixels so the final
dimension of the histogram is 65 � 65 � 32.
The total computation time for each image depends

on the quantity of contours found on it. The mean value
registered for the 4000 images in the database was
10 seconds so the total computational time was around
10 hours. This computation was performed on a Core 2 Duo
2.1-GHz laptop computer and the programs were imple-
mented in C language.
Visualization of the histogram is provided in the Results

section.

The mathematical model

The goal of this section is to present a new model for the
probability of co-occurrence of edges in natural images. We
first represent edges as curves in 3D space of positions and
orientations (x, y, E) Z R2 � S1, and recall that it can be
identified with the rototranslation group with a suitable
geometrical structure. Then we refer to classical proba-
bilistic models of edge description in this space and finally
we present our model.

Representing edges in R2 ������������ S1

We will introduce a natural scenes edge representation
using instruments of differential geometry. A contour is
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represented in the 2D plane as a regular curve +2D(t) = (x(t),
y(t)), and almost everywhere we can assume that its
tangent vector is non vanishing, so that it is identified by
an orientation E(t): D Î R Y S1. S1 represents [0, 2:),
isomorphic to the unit circle. The function E takes values
in the whole circle in order to represent polarity of the
contours: two contours with the same orientation but with
opposite contrast are represented through opposite angles
on the unit circle. In this way, the points of the curve will
be described in the space (x, y, E) Z R2 � S1, and the 2D
curve +2D(t) is lifted to a new curve +(t) in the 3D space:

x tð Þ; y tð Þð ÞY x tð Þ; y tð Þ; E tð Þð Þ: ð5Þ

We will call admissible curve a curve in R2 � S1 if it is
the lifting of an edge (identified with a planar curve).
In Figure 2, we illustrate the lifting process. By

definition, the tangent vector to the curve +2D (the blue
curve in Figure 2) can be expressed as (cos(E), sin(E)), so
that

E ¼ arctan yV=xVð Þ: ð6Þ

Let us now consider its lifting + (the red curve in
Figure 2). By definition, the projection on the x, y plane of
its tangent vector is tangent to the curve +2D and it has
direction (cos(E), sin(E)). +V(t) has a non vanishing com-
ponent in the direction

X1 ¼ cos Eð Þ; sin Eð Þ; 0ð Þ ð7Þ

and a second component in the direction of the lifting:

X2 ¼ 0; 0; 1ð Þ: ð8Þ

Then +V(t) can be written as a linear combination of these
two vectors: X1 + kX2. We have chosen to set the
coefficient of X1 to one since it cannot vanish. In
particular, admissible curves are integral curves of two
vector fields in a 3D space and cannot have components in
the orthogonal direction (Figure 3).

X3 ¼ jsin Eð Þ; cos Eð Þ; 0ð Þ: ð9Þ

We will call horizontal tangent space the space generated
by the vectors X1, X2. In differential geometry (Do-Carmo,
1976), these vectors can be identified by the generators of
the Lie algebra of rotations and translations. Hence, the
space R2 � S1 will be identified with the rototranslation
group, the group of rotations and translations.
An admissible curve in this group is an integral curve of

the vector field X1, X2 and is defined as the solution of the
following ordinary differential equation:

+ V tð Þ ¼ X1 tð Þ þ k tð ÞX2 tð Þ: ð10Þ

Writing the same equation in coordinates we get:

xV¼ cos Eð Þ
yV¼ sin Eð Þ
EV¼ k tð Þ:

ð11Þ

It is well known that k(t) is the curvature of +2D(t).
Writing the curve in this way, it becomes obvious that the

Figure 2. A contour represented by the blue curve +2D(t) is lifted
into the rototranslation group obtaining the red curve +(t). The
tangent space to the rototranslation group is spanned by the
vectors X1 and X2.

Figure 3. The horizontal tangent planes in each point of the
rototranslation group determine the differential structure of the
space.

Journal of Vision (2010) 10(14):37, 1–16 Sanguinetti, Citti, & Sarti 4

Downloaded From: https://jov.arvojournals.org/ on 07/20/2018



shape of the curve is completely defined by the function k:
its curvature or angular velocity.
If we equip the tangent planes with an Euclidean metric,

then the length of an admissible curve can be computed as
usual:

1 +ð Þ tð Þ ¼
Zt

0

jj+V sð Þjjds¼
Zt

0

jjX1 þ kX2jjds¼
Zt

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
ds:

ð12Þ

In order to define a distance in term of the length, we need
to answer the following question: Is it possible to connect
every pairs of points of R2 � S1 using an admissible
curve? This is not a simple question since admissible
curves are integral curves of a linear combination of two
vectors fields in a 3D space. However, the answer is yes.
See Citti and Sarti (2006) for a detailed justification.
Consequently, it is possible to define a notion of distance
between two points p0 = (x0, y0, E0) and p1 = (x1, y1, E1):

d p0; p1ð Þ ¼ inf 1 +ð Þ: + is an admissible curve connecting p0 and p1f g:
ð13Þ

In the Euclidean case, this infimum is realized by a geo-
desic that is a segment. Also here the infimum is realized
on a curve called geodesics, which however can be locally
curvilinear.
The metric induced by Equation 13 is clearly non-

Euclidean. Moreover, it is not even Riemannian and it is
called Sub-Riemannian. We refer to Citti and Sarti (2006)
for a detailed technical explanation.
Metrics of this type often appear when one of the

dimensions is a state variable depending on the others,
and in this case the state variable E depends on (x, y), as
shown in Equation 6.
The functional Equation 12 has the same asymptotic

behavior as the modified elastica functional introduced by
Nitzberg, Mumford, and Shiota (1993). It is quadratic when
the curvature tends to zero and linear when it tends to
infinity. The same functional is used in perceptual com-
pletion problems to complete occluded parts, to perform
image inpainting, or to retrieve subjective contours
(Ballester, Bertalı́mo, Caselles, Sapiro, & Verdera, 2001;
Citti & Sarti, 2006; Masnou & Morel, 1998; Nitzberg &
Mumford, 1990; Sarti, Citti, & Petitot, 2008).

A classical stochastic model for edge
description

David Mumford in Field et al. (1993) proposed to model
natural scene edges as random walks in the plane where the

curvature is taken as a random variable. This process is
modeled by the following stochastic differential equation
(SDE) (also used in August and Zucker, 2003, and Williams
and Jacobs, 1995):

xV¼ cos Eð Þ
yV¼ sin Eð Þ
EV¼ N 0;A2ð Þ:

ð14Þ

where N(0, A2) is a normally distributed variable with zero
mean and variance equal to A2. Note that this is the
probabilistic counter part of the deterministic Equation 11,
naturally defined in the group structure. Indeed, both
systems are represented in terms of left invariant operators
of the Lie group (Citti & Sarti, 2006), the first one with
deterministic curvature and the second with normal random
variable curvature.
These equations describe the motion of a particle moving

with constant speed in a direction randomly changing
accordingly with the stochastic processN. The effect is that
particles tend to travel in straight lines, but over time, they
drift to the left or right by an amount proportional to A2.
When A2 = 0, the motion is completely deterministic and
particles never deviate from straight paths. When A2 Y V,
the motion is completely random, and the stochastic
process becomes a 2D isotropic random walk. For this
reason, the stochastic process defined above is called
diffusion and the deterministic process advection. We
denote p the probability density to find a particle at the
point (x, y) moving with direction E at the instant of time t
conditioned by the fact that it started from a given loca-
tion with some known velocity. This probability density
satisfies a deterministic equation known in literature as the
Kolmogorov forward equation or Fokker–Planck equation
(FP) (Oksendal, 2005):

¯tp ¼ jcos Eð Þ ¯xpjsin Eð Þ¯ypþ A2=2
� �

¯2Ep: ð15Þ

On this formulation, the FP equation consists on an
advection term in the direction X1 = (cos(E), sin(E), 0), the
direction tangent to the path and a diffusion term on the
orientation variable X2 = (0, 0, 1).
This equation has been largely used in computer vision

and applied to perceptual completion related problems. It
was first used by Williams and Jacobs (1997) to compute
stochastic completion field, by August (2001) and August
and Zucker (2003), to define the curve indicator random
field, and more recently by Duits and Franken (2007) and
Franken et al. (2007), applying it to perform contour com-
pletion, denoising, and contour enhancement.
The only unknown parameter of the model is the variance

A, the standard deviation in curvature.
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A time independent Fokker–Planck equation
for the co-occurrence of oriented edges

We propose here to use the FP equation for modeling
co-occurrence probability of edge orientation. The main
novelty of our model is that the proposed FP equation
independent of the time variable, together with the fact that
we consider both forward and backward propagations.
The fundamental solution of the proposed FP equation in

R2 � S1 express the probability to find in natural images
an oriented contour at a certain position conditioned by
the fact that there was an oriented contour in a reference
point. On the other hand, each point of a contour can be
described by a particle that can go either backward or
forward with identical probability in the direction of the
contour. The model for the probability density propagation
is then the sum of two FP Green functions, one corre-
sponding to a particle moving forward,

jX1p x; y; Eð Þ þ A2=2
� �

X22 p x; y; Eð Þ ¼ 1=2ð Þ% x; y; Eð Þ;
ð16Þ

and the other corresponding to a particle moving backward:

X1 p x; y; Eð Þ þ A2=2
� �

X22 p x; y; Eð Þ ¼ 1=2ð Þ% x; y; Eð Þ:
ð17Þ

In the two equation above, we have written the Fokker–
Planck operator using the notation of Citti and Sarti (2006),
calling the differential operators X1 = cos(E) ¯x + sin(E) ¯y
and X2 = ¯E since are the partial derivatives in the direc-
tion of the vectors X1 and X2, respectively.
One of the main goals of the present study is to estimate

the value of the standard deviation in curvature A in edges
belonging to natural images.

Numerical computation of the fundamental solution
of the FP equation

We have numerically computed the fundamental solution
of the FP Equations 16 and 17, using COMSOL Multi-
phisics v3.5, a Finite Element Method solver. Then we
have compared the sum of the 2 fundamental solutions
Equations 16 and 17 with the histogram H(x, y, E).
Let’s notice that the sum of fundamental solutions are

symmetrical respects to the origin by construction. This
property is also verified by the histogram H, i.e., given a
pair of contour points it is sufficient to switch the refer-
ence between them to verify the central symmetry.
In the following, we list some details of the numerical

simulation:

1. The boundary conditions are Neumann in the spatial
coordinates and periodic in the directional coordinate.

2. The distribution %(x, y, E) is numerically approxi-
mated by a Gaussian normalized function:

%& xi; yi; Eið Þ ¼ 1

&
ffiffiffi
:

p
� �3

e
j 1

&2
x2
i
þy2

i
þE2

ið Þ ð18Þ

where (xi, yi, Ei) are mesh points.
3. The solution is computed on an adaptive mesh. Later

we interpolate the mesh in a rectangular grid (65� 65
� 32 large) in order to compare it with the histogram.

4. The corresponding linear system solver uses a direct
method based on the library UMFPACK.

Results

The histogram constructed in the Natural image edge
co-occurrence statistics section and the theoretical model
presented in The mathematical model section have been
introduced in a completely independent way. The main
scope of this section is to compare the two approaches from
both a qualitative and a quantitative point of view. We will
show that the geometry formally introduced in The
mathematical model section is naturally encoded in the
histogram, first deducing from the histogram the integral
curves of the vector fields Xi. After that, as proposed in
The mathematical model section, we show that the
fundamental solution of the FP operator models the histo-
gram in the rototranslation group, isomorphic to R2 � S1.
The best fitting between the model and the estimated
probability allows to measure the parameter A of the model.

The co-circularity pattern

One of the most important and studied pattern in natural
image statistics of the possible geometrical contour config-
uration is the co-circular pattern, introduced in this field for
the first time by Parent and Zucker (1989). This property
has an interesting psychophysic counterpart, i.e., the
association fields, introduced by Field et al. (1993) as a
model explaining the good continuation law of Gestalt
psychology. They used oriented Gabor-like patches dis-
tributed over a grid to prove that alignment of the elements
along a path plays a large role in the ability to detect the
path. Small variations in the alignment with respect to the
path significantly reduced the ability of the observer to
detect it. From these experiments, they construct the field
shown in Figure 4.
On the other hand, from the neurophysiological point of

view, it is largely accepted that the neural correlate of these
association fields are the long range intra-columnar
connections (Ben-Shahar & Zucker, 2004; Bosking, Zhang,
Schofield, & Fitzpatrick, 1997; Petitot & Tondut, 1999).
These connections exist between simple cells of V1 who
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share almost the same orientation and are responsible for
contour integration and completion of subjective contours.
Many perceptual completion models inspired by this
cortical architecture explain the association fields as co-
circular connections. These associations fields have been
modeled as integral curves of the rototranslation group in
Citti and Sarti (2006).

Integral curves in the rototranslation group

The expression of the integral curves of the structure
is provided by Equation 11. Choosing the curvature k
constant over time, one can integrate the system of
equations to obtain an explicit formula for the curve +(t)
starting from the origin (x0, y0, E0) = (x, y, E):

x ¼ 1=kð Þsin ktð Þ
y ¼ 1=kð Þ 1jcos ktð Þð Þ
E ¼ kt:

ð19Þ

For each value of the parameter k, it is obtained a
different curve with helicoidal path since the projection
over the plane is a circle with curvature k and it moves
with constant speed in direction E. On Figure 5, some
integral curves in the 3D space of positions and orientations
R2 � S1 for different values of k are shown. The projection
on the space R2 is visualized in Figure 6.

Figure 4. The field lines of the association field (Field et al., 1993).

Figure 5. The fan of integral curves given by Equation 19 by
varying the curvature k, visualized in the R2 � S1 space. The set of
curves defines a surface with a singular point in the origin.

Figure 6. The fan of integral curves projected on the xy plane. On
the left are visualized the projections of the curves defined by
Equation 19 showing clearly the co-circularity constraint. On the
right is visualized the vector field of unitary vectors oriented with the
maximal probability (red) with superimposed its integral curves
(blue). Again the co-circularity constraint is evident.
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Circular curves deduced by the histogram

The co-circular property of the edge statistics was
observed by several groups (August & Zucker, 2000; Elder
& Goldberg, 2002; Geisler et al., 2001; Gilbert et al., 2001;
Orabona et al., 2006). In our work, we strongly focus on
curves, and the co-circularity pattern is shown by means
of a family of curves reproducing the association fields.
Indeed, we will deduce a 2D vector field from the histo-
gram, compute its integral curves, and compare them with
the previously detected family of curves, again through
integral curves.
The histogram is a discrete approximation of the

probability density function for the co-occurrence of edges.
In each point (x, y, E), it expresses the probability to have
a contour conditioned to the fact that there exists a hori-
zontal contour at the reference point. As in Gilbert et al.
(2001), we select for each point (x, y) the most probable
orientation Em, such that

H x; y; Em x; yð Þð Þ ¼ max H x; y; Eð Þ; EZS
1

n o
: ð20Þ

This orientation set the direction of the unitary vector
field:

V
�
x; y ¼ cos Em x; yð Þð Þ; sin Em x; yð Þð Þð Þ; ð21Þ

depicted in Figure 6. Its integral curves can be computed
solving the differential equation:

+ Vtð Þ ¼ V x; yð Þ
+ 0ð Þ ¼ x0; y0ð Þ; ð22Þ

and they are visualized in Figure 6.
As it is clear from the result, the integral curves of the

vector field V(x, y) (Figure 6 right) optimally approximate
the 2D projection of the integral curves of the vector fields
X1, X2 (Figure 6 left), and both show a co-circular pattern
modeling the association fields of Figure 4.

The probabilistic interpretation
Qualitative comparison between the histogram and the
fundamental solution of the FP equation

Figure 8 shows a visualization of the resulting histogram
(blue) and the computed fundamental solution of the FP
(red). The isosurface, i.e., the surface defined by a constant
intensity level of the 3D function, corresponding to the 2%
of the maximum has been selected and a surface rendering
visualization has been adopted. The qualitative resembling
of the two data sets is evident. Both the distributions are
thick versions of the surface generated by the set of the
integral curves shown in Figure 5. In Figure 9 and in
supplementary material, the torsion of the isosurfaces is
visible in both data sets.

Figure 7. Comparison between the number of co-occurrences in every E constant slice in H by varying the angle (blue) and the
corresponding value in the FP distribution.
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Figure 8. Isosurface visualization of the histogram H (blue) and the FP fundamental solution (red) on orthogonal projection on the xE plane
(left) and yE plane (right).
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The comparison between the two distributions is visual-
ized with a different technique in Figures 10 and 11, where
isocontour plots at constant E section are shown. Every E
constant slice corresponds to a configuration of two
contours differing by E in their orientations. The drop-off
in correlation strength with distance present in Figures 10
and 11 is strictly related to both the spread of the integral
curves of the deterministic model, and the diffusion term
in defined by the variance A. In Figure 12, it is shown a
diagram similar to the one used in Gilbert et al. (2001) to
interpret the distribution of edges for each possible
configuration. Each black bar corresponds to an edge
supposing there was a horizontal edge in the center. If
the hypothesis of co-circularity is verified, edges with the
same orientation are distributed around a straight line
whose angle direction is half the edge orientation angle. In
contrast with the earlier work, there are only two branches
in the cut planes of the histogram instead of four since we
are considering polarity of the contours.
In Figure 7, it is plotted in blue the amount of co-

occurrences of the histogram H for each E constant slice
and in red the integral of the FP distribution at a constant
E slice after performing a suitable rescaling explained
below. Both distributions are mainly superimposed for all
the values of the E angle strictly less than |:/2| and dif-
ferent than 0 (collinear configuration).
Over 10% of the co-occurrences of H corresponds to

collinear edges (E = 0). This is explained by the fact that
in the natural image database, there are many sharp straight
edges corresponding mostly to buildings. The same argu-
ment explains the two peaks present at E = T:/2, orthogonal
contours.
As outlined by Figure 6 in the paper of Simoncelli and

Olshausen (2001) where they modeled the same type of
distribution, the distributions had sharp peak at 0 and much
longer tails than a Gaussian density. Field (1987) argued
that the representation corresponding to these densities, in
which most neurons had small amplitude responses, had an
important neural coding property, which he termed sparse-
ness. Our invariant model still underestimates the peak in 0,
while it perfectly fits the tails of low intensities. The
underestimation in 0 can be probably be explained with
a violation of the rotation invariance of the image we
postulated here. Indeed, the probability density is stronger
in the collinear direction. The range of considered values
of E excludes automatically the presence of parallelism
effects, which is statistical significant for larger value of
theta, as shown in Krüger (1998) as well in Geisler et al.
(2001). The modelization of parallelism in terms of Lie
groups theory has been faced at a purely theoretical level in
Sarti et al. (2008) and in terms of image statistics will be
studied in Sanguinetti, Citti, and Sarti (in preparation).

Best fitting and parameter identification

The best fitting between the experimental and sim-
ulated distributions has been accomplished by minimizing

the mean square error by varying the parameter A of
Equations 16 and 17 (the variance of the stochastic pro-
cess). With a discretization step of 0.01 into a range of 0 G
A G 10, the minimum error value results Em G 2% showing
at a quantitative level that the model represent accurately
the experimental distribution. This prove the Mumford
hypothesis on contour reappearance (Mumford, 1994).
Moreover, the minimizer corresponding to Em results A =
1.73 pixelsj1. In the estimate of this parameter A, we
filtered out the artifact in the statistics, which is the value
attained in 0, because it violates the invariance assump-
tion we made, as discussed above. This value can be
considered as the natural constant of the stochastic process
underlying edge distribution in natural images (Figures 8,
Figures 9, Figures 10, Figures 11, and Figures 12).

Figure 9. Isosurface visualization of the histogram H (blue) and
the FP fundamental solution (red) with orthographic projection.
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Figure 10. Isocontour visualization of the histogram H at different angles E.
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Figure 10. (continued)
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Figure 11. Isocontour visualization of the FP fundamental solution at different angles E.
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Conclusions

In this paper, we developed the connection between the
rototranslation model (Citti & Sarti, 2006) for the inter-
action between oriented neurons in visual cortex and edge
co-occurrence statistics. Inspired by Mumford (1994) and
Williams and Jacobs (1995), a Fokker–Planck equation is
introduced and its fundamental solution is used to bridge
between the geometric model and the edge statistics. This
approach can be formally extended to different Lie Groups
corresponding to other low-level visual features like for
example: curvature detection, ladder configuration to
describe parallelism, or scale. Future research will check
the relationship between these geometric structures and
statistical properties of natural images. Some simplifica-
tions introduced in the present model to preserve local
invariance can be relaxed in future studies to take into
account the un-isotropy of different image features. These
studies aim to achieve a deep understanding of the mutual
relationship between statistics of images and geometrical
models of the primary visual cortex in the perspective to
identify underlying process of Gestalt principles.

Figure 11. (continued)

Figure 12. The co-circularity pattern as the most probable
configuration. In contrast with the results presented in Gilbert
et al. (2001), only two branches have been in the cut planes of the
histogram in Figure 10 instead of four since we are considering
polarity of the contours.
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