
Model Based Control for Multi-cloud Applications
Marco Miglierina, Giovanni P. Gibilisco, Danilo Ardagna, Elisabetta Di Nitto

Politecnico di Milano, Italy
(miglierina|gibilisco|ardagna|dinitto)@elet.polimi.it

Abstract—The advent of cloud computing has offered to
developers a new appealing paradigm to deploy their applications
without capital investments. Resources can now be acquired
on-demand in a flexible, scalable and rapid way. However,
cloud providers lack of native mechanisms to guarantee the
Quality of Service required by specific application domains. High
availability can be achieved by replication of critical components.
Since outages could affect the entire cloud provider, replication
can be effective only by using multiple providers.

In this paper we tackle the above problem and present an
approach to guarantee availability requirements of cloud-based
applications by exploiting replication on multiple clouds to reduce
unavailability, still limiting costs. More precisely, we propose:
i) an approach to model, at design time, the application, its
availability requirements and the characteristics of the used
clouds, and ii) a self-adaptive technique responsible, at runtime,
of both in-cloud scaling policies and traffic routing among
different cloud providers, by means of a control-theoretical
approach.

We integrated the modeling approach in the Palladio Bench
IDE and developed a runtime self-adaptation controller in Mat-
lab. The controller has been evaluated against different workload
conditions, costs variations and service failures in simulated
scenarios. The controller has been able to provide the desired
availability minimizing costs.

Index Terms—Cloud computing, multi-cloud applications,
availability, control theory, non-functional requirements, self-
adaptive software.

I. INTRODUCTION

The advent of cloud computing is promoting a new way
of building applications and services and offering them to the
public. The possibility of acquiring computational, storage and
communication resources only when they are needed results
in a business model that emphasizes flexibility, scalability, and
performance. The fact that cloud providers let users pay only
for the resources they use makes the cloud a very interesting
option also from the economic point of view.

However, cloud solutions lack native mechanisms to guaran-
tee the Quality of Service (QoS) required by specific applica-
tion domains. In such domains, high availability requirements
are usually satisfied by replication of critical components.
While the acquisition of a large number of resources to support
replication is certainly not a technical problem in the cloud,
this may affect costs significantly since replicated components
are usually left unused and exploited only in case of failure
of the primary resource. The fact that cloud resources can
be acquired in a matter of minutes could help to solve the
over provisioning problem due to replication, but it is not
sufficient to fully solve the availability problem. Many cloud
providers offer in their Service Level Agreements (SLAs) an

availability value of 99.95% for users applications. This value
is not enough for business critical applications. Indeed, [1]
shows that availability values experienced by users of cloud
based services are much lower than those declared by cloud
providers. The study reports that, in the analyzed period,
the European region of Amazon EC2 showed an average
availability of 96.32% and the Windows Azure service showed
an even lower availability equal to 95.39%.

A possible solution to this problem could be to exploit
different cloud providers and migrate the application from one
cloud to another when the availability requirements are not ful-
filled by the first one. An application that uses multiple cloud
providers in such a way is called multi-cloud application.

In this paper we present a technique to achieve high
availability by exploiting multiple clouds, while minimizing
infrastructural costs. More precisely, we propose: i) a design
time approach to model the application, its availability require-
ments, and the characteristics of the target cloud infrastruc-
tures; and ii) a runtime self-adaptive technique responsible
for both in-cloud scaling policies and traffic routing among
different cloud providers, by means of a control-theoretical
approach.

We have developed the modeling approach as an extension
to the integrated modeling environment Palladio Bench, and
the runtime self-adaptation controller as a Matlab system. We
have then evaluated our proposal by analyzing the runtime be-
havior of the controller against different workload conditions,
costs variations, and service failures. Results show that our
controller is capable of guaranteeing the desired availability,
minimizing the total cost of cloud resources provisioning. Our
work fits in the view depicted in [2].

The rest of the paper is structured as follows: Section
II presents some related work that deals with control of
component based applications. Section III gives an high level
overview of our approach. Section IV describes the model
developed for the description of multi-cloud applications and
used by the controller of Section V. Section VI presents the
preliminary evaluation of our approach. Section VII summa-
rizes the results and points to some directions for future work.

II. RELATED WORK

Several approaches to the general problem of modeling, an-
alyzing and enforcing QoS requirements of software systems
have been presented in the literature. [3] provides an overview
of these approaches. Most of them target the design phase.
Some, like the one presented in [4], focus on the modeling
of QoS requirements and in supporting developers in the

978-1-4673-6447-8/13/$31.00 c© 2013 IEEE MiSE 2013, San Francisco, CA, USA37

creation of documentation. Others (see [5]) help developers
by optimizing in an automatic or semi automatic way the
architecture of an application.

A control-based approach similar to the one presented in this
paper can be found in [6]. This is one of the first works where
a control theoretical approach was used to solve problems
of self-adaptation in software system models. Authors derive
from a Discrete Time Markov Chain (DTMC) that describes
an application, a closed formula that defines the explicit
dependency of reliability on control variables and measured
reliabilities. The controller uses this formula to compute the
actual availability of the system with regard to changes in
the measured reliabilities. The controller then minimizes a
cost function defined over the control variables using as a
constraint the fact that the closed formula, updated with
estimated parameters, must be equal to the desired availability.

An approach to cloud service provisioning is presented
in [7] where authors build an integer programming problem
from deadline and budget constraints and solve it to get
scaling decisions. In [8] authors propose a cost-aware cloud
provisioning engine that exploits replication and migration
to reconfigure applications in order to minimize costs and
guarantee throughput. Authors of [9] address the challenges
of minimizing the total amount of resources while meeting
performance requirements for applications.

Differently from the other approaches, our work starts
from the assumption that the target application is capable of
migrating between different cloud providers. This can be seen
as a restrictive assumption at present but, as stated in [10], the
research in the area of cloud migration is very active. There
are many works in this direction, especially within European
projects, like Reservoir, mOSAIC, cloud4SOA, REMICS, and
ALERT projects [11], [12]. Another interesting work dealing
with cloud interoperability is presented in [13]. All this work
in the field shows that our assumption is likely to be fulfilled
in the near future.

III. OVERVIEW OF THE APPROACH

Our approach is based on control theory, a branch of
engineering that deals with dynamic systems with inputs. In
particular, we adopt a closed-loop controller approach that
uses the model of the system and feedback from the measured
output. As shown in Figure 1, we use an extended Discrete
Time Markov Chain (DTMC), defined during design time,
as our system model and data from a monitoring system as
feedback. Using such information, our controller is able to
make decisions on the actions to execute in order to fulfill
the availability requirements defined at design time. Such
decisions are made at runtime and have an impact on the
actual configuration of the system. The controller keeps alive
the model by updating its parameters with estimates based on
the monitoring data.

DTMCs [14] are a common formalism to describe sys-
tems from the availability viewpoint. They are graphs where
nodes represent states and edges model transitions, i.e., state
changes, with a probability attached to them. A state describes

1:Load Balancer

2:Cloud 1 5:Cloud 2

4:Autoscaling
Group 1

6:Autoscaling
Group 2

8:Success3:C1 Failure 7:C2 Failure

Fig. 1. Overview of the approach

some information about a system at a certain moment of its
behavior. Transitions specify how the system can evolve from
one state to another. The successor of state, say, s is chosen
according to a probability distribution that only depends on
the current state s, and not on, e.g., the path fragment that led
to state s from some initial state. States (or transitions) can
be augmented with rewards, numbers that can be interpreted
as bonuses, or, dually, as costs. The idea is that whenever a
state s (or transition) is chosen, the reward associated to s is
earned.

Our extended DTMC is derived from more abstract de-
sign artifacts in which all characteristics of a multi-cloud
application are described. Such artifacts are built using our
extension of Palladio Bench [15]. This is an IDE based on
Eclipse that provides different tools for allowing developers to
build separate diagrams describing some characteristics of the
system to be. The tool then automatically integrates all these
diagrams and generates models of the entire system to analyze
some QoS properties at design time. Our Palladio extension
allows the automatic generation of a DTMC of the application
from the diagrams built in Palladio at design time.

Due to space limitations, in this paper we do not focus on
the way the extended Palladio generates the DTMC nor on
the monitoring and actuation aspects, while we describe our
model and controller.

IV. DESIGN-TIME MODELING

This section introduces the DTMC model that has been
developed to model the availability of an application deployed
on multiple clouds. Compared to existing approaches in the
literature, our DTMC allows to model explicitly some cloud-
specific concepts that are relevant to our analysis.

More precisely, in the model nodes represent Physical and
Logical Nodes (see Figure 2). Physical Nodes correspond to
some concrete resource, e.g, a physical server or a pool of
virtual machines offered by a cloud provider. Logical Nodes
represent entites that are relevant for the DTMC analysis but
do not have a specific correspondence to concrete elements
in the cloud. Examples of Logical Nodes can be the ones

38

Physical Node DTMC Node Logical Node

Unlimited Throughput
Node

Fixed Throughput
Node

Limited Throughput Node
Maximum Service Rate (SR)
Cost

Autoscaling Group

Min number of VMs
Max number of VMs
Active VMs

Fig. 2. Types of nodes in the DTMC

representing the success or the failure state of the application.
In turn, Physical Nodes can either represent elements in the
concrete system to which we want to associate a limit in the
throughput and a cost, or elements that, from the perspective of
the model, have unlimited throughput and no cost associated.
In the figure these are presented by Limited Throughput
Nodes (LTN) and Unlimited Throughput Nodes (UTN). In our
examples we have modeled load balancers as UTNs because
usually they are managed by cloud providers in an automatic
fashion and no control is possible on them.

Of course, LTNs represent the most important part of the
model. They can be further classified in Autoscaling Groups
or Fixed Throughput Nodes. The first ones represent entities
capable to perform autoscaling, i.e., to change dynamically
their processing capacity. In this case the Maximum Service
Rate (SR) is given by Number of running machines × single
machine maximum service rate (sr). Fixed Throughput Nodes
are very useful if the designer wants to model an hybrid cloud
architecture where some nodes have a fixed capacity.

As in [6], in our DTMC we add control variables and
measured availabilities as labels to transitions. Measured
availabilities represent factors originating from the infrastruc-
ture and are external to the application. In control theory
terminology these factors are called disturbances and can be
measured by monitors. Examples of these factors are blackouts
or outages of application components due to a failure of the
middleware managing data centers (which may lead to world
wide outages), or failures of a local computing resource. Con-
trol variables represent alternative choices, made according
to certain probabilities. These probabilities define the rate at
which requests are routed through connected nodes.

In a DTMC model, rewards or costs can be introduced.
In our model rewards are attached to states and model the
cost generated by a request traversing that node. Recalling
the distinction of nodes just presented, one can note that only
computing resources represent nodes with a positive cost while
logical nodes have zero cost. This is due to the fact that
they are not mapped, as a first approximation, to any physical
resource consumption that leads to an increase in the cost of
the system.

1:Load Balancer

2:Cloud 1 5:Cloud 2

4:Autoscaling
Group 1

6:Autoscaling
Group 2

8:Success3:C1 Failure 7:C2 Failure

Max Throughput 10.000 reqs/s

Cost 0.3 $/h

Min # of VMs 1

Max # of VMs 100

Active VMs 10

Max Throughput 10.000 reqs/s

Cost 0.5 $/h

Min # of VMs 1

Max # of VMs 80

Active VMs 5

Fig. 3. Case study extended model

We require that the developer annotates the nominal cost
of using the resource modeled by the node. Instance pricing
is usually constant and available on the provider web site.
Though, we took into consideration the fact that prices could
change, like Amazon spot instances1.

The next two parameters that will be presented are used
only in autoscaling nodes since they model specific features
of the cloud environment. Each autoscaling node is labeled
with a minimum and a maximum number of running instances;
these two parameters represent, respectively, the minimum and
maximum number of machines that can run simultaneously
on the resource modeled by the node. These parameters can
be used, for example, to model the fact that the designer
may decide to fix the number of machines running on each
region of a cloud provider (e.g., at least two machines always
running). The last parameter that the designer has to specify
in order to build a complete instance of the model represents
the availability constraint of the application which can be a
fixed value or a function of time.

The model of the case study described in Section III has
been automatically derived from Palladio Bench by our tool
and is reported in Figure 3.

Red circles represent logical nodes. The green circle rep-
resents a load balancer as a physical node that has zero cost
and an infinite processing capacity. Yellow circles represent
Autoscaling groups. The application presented in this model
is composed of two replicas of a service deployed on top of
two cloud providers represented by states 4 and 6. Requests
entering the system are directed to one of the two services by
the load balancer according to probabilities C0 and 1 − C0.
When reaching one of the two cloud providers, represented in
states 2 and 5, requests can be lost because of a failure in the
cloud infrastructure and go directly to failure states 3 and 7.
If a request reaches one of the services, it is processed. The
processing of a request could lead to a successful execution
of the service, state 8, or to a failure due to the overloading

1http://aws.amazon.com/ec2/spot-instances/

39

of the processing resource, represented by transitions to states
3 and 7. The table attached to node 4 represents the values
of the parameters that characterize that specific node. For the
sake of simplicity only labels of the relevant nodes have been
represented in the image.

V. RUN-TIME CONTROL

The proposed DTMC model is meant to be kept alive at run-
time, so that whenever some controller modifies it, changes
take effect on the actual implementation.

The controller we define in this paper is a dual layer con-
troller. The first layer controller is responsible for managing
one autoscaling group, controlling the number of running ma-
chines. Therefore, there are as many first layer controllers as
the number of nodes modeling autoscaling groups. The second
layer controller is a load balancer in charge of distributing
the incoming traffic among nodes. The cooperation between
these two layers of controllers aims at guaranteeing system
availability, while minimizing costs.

Both controllers work at discrete time, that is, monitoring
data is aggregated and delivered from monitors at constant
time intervals (steps).

A. The Autoscaling Controller

The objective of this controller is to manage the number of
running machines in an autoscaling group so that the average
percentage of CPU utilization is equal to a setpoint.

What we need for a controller is a feedback loop. So
we need data from “sensors”, i.e., we assume that we can
check how the system is behaving in response to controller’s
decisions. First of all, we define a sliding observation window,
which is the time span (or number of steps) used to calculate
statistics from data collected by sensors (i.e., the IaaS moni-
toring system). The statistics we gathered are the following:

• the incoming workload, that is the number of incoming
requests to the node;

• the successful requests, that is the number of requests
successfully processed by the node;

• the average CPU load, that is the average percentage of
CPU utilization computed over all running machines in
the node;

• the number of running machines.
From this data, the success rate is then estimated as
successful requests
incoming workload . The success rate will be our parameter
of availability.

Given estimated data from the monitoring system, we first
need to find a control formula where the error observed
between the desired behavior and the actual one, can be
reduced (and asymptotically eliminated) at each control step
acting on the control variables.

We can identify two main working conditions:
1) the number of machines is sufficient to satisfy the

entire incoming traffic (average CPU usage ≤ 100%,
availability = 100%).

2) the number of machines is not sufficient to satisfy the
entire incoming traffic (average CPU usage = 100%,
availability < 100%);

In order to control the system we make use of a feedback
loop methodology used in [6]. The only control variable we
have is the number of machines we want to have running at
the next step, i.e., n(k + 1).

As for the first working condition, all incoming traffic is
satisfied, therefore availability is 100%, and we want to reach
the CPU setpoint u. Therefore, the controller should find n(k+
1) so to satisfy the following equation

u(k + 1)− p̂(k + 1|k) = α(u(k)− p(k)) (1)

where p̂(k+ 1|k) is a function of n(k+ 1) and represents the
expected CPU usage at the next step. α is a parameter in the
range (0, 1) and determines how fast is the convergence to the
solution, that is, in the next step we expect the absolute error
to be reduced by a factor α.

The relation between p̂(k+ 1|k) and n(k+ 1) can easily be
found given the equation

p(k) =
AR(k)

SR(k)
(2)

from [16], where SR and AR are the total maximum service
rate and the total arrival rate respectively. We point out
that Equation 2 holds only in the first working condition.
Furthermore, we recall that SR is given by the contribution
of all virtual machines having each a maximum service rate
sr:

SR(k) = sr(k)n(k) (3)

From Equations 2 and 3 we get:

p(k + 1) =
AR(k + 1)

sr(k + 1)n(k + 1)
(4)

We assume that time intervals are small enough to consider
the maximum service rate of a machine and the arrival rate
to remain constant. If this does not hold, prediction can be
taken in consideration, but it is out of the scope of this paper.
Therefore our expected CPU utilization is:

p̂(k + 1|k) =
AR(k)

sr(k)n(k + 1)
(5)

that after some algebra becomes:

p̂(k + 1|k) = p(k)
n(k)

n(k + 1)
(6)

Using this result with Equation 1 we analytically obtain the
control formula to be used in the first working condition:

n(k + 1) =
n(k)p(k)

u(k + 1)− α(u(k)− p(k))
(7)

As for the second working condition, the incoming traffic
is higher than the total service rate, therefore the total CPU
usage is equal to 100% and we are not able to use control
formula 7 anymore. However, in this working condition it is
easy to evaluate the maximum service rate SR since it is equal

40

to the total throughput, i.e., the traffic actually satisfied over
time. Using Equations 3 and 4, setting p(k + 1) equal to our
setpoint u(k + 1) and given assumptions similar to the ones
made before, after some algebra we obtain the exact number
of machines n̄ required to satisfy the incoming traffic:

n̄ =
AR(k)n(k)

SR(k)u(k + 1)
(8)

In order to deal with noise, we use in this case as well a
convergence rate to the desired setpoint:

n(k + 1)− n̄ = α(n(k)− n̄) (9)

which gives the final control formula:

n(k + 1) = αn(k) + (1− α)n̄ (10)

We know from [6] that exponential convergence to the
setpoint is ensured for equations of the kind of 1 and 9 with
rate α.

B. The Load Balancer Controller

The second layer controller is responsible for setting the
controllable variables of the DTMC model, so to distribute the
traffic. The approach used for this layer is a cloud extension
of the work in [6].

This controller aims at distributing traffic among nodes
guaranteeing availability and minimizing costs. The model is
iteratively updated at run-time using monitor data. Model’s
parameters that require to be continuously estimated are the
maximum service rate SRi for each node i, and the cost per
request Ki, which measures the “virtual” cost of a request
traversing node i. In fact, costs are usually associated to the
number of running virtual machines: cost per instance hour.
However, when the autoscaling controller is stable, the number
of machines is directly related to the number of incoming
requests. The number of incoming requests when all machines
of node i are working at the desired CPU usage level ui, is
equal to SRi × ui. It follows Ki = (ci × ni)/(SRi × ui)
where ci is the cost per machine and ni is the number of
running machines. The cost of a request is therefore “virtual”,
because the cost of a virtual machine is indeed spread over
the processed requests.

The set point at this layer is the minimum success rate of the
system. We decided to allow the developer to set a minimum
because even though he would obviously always like to have
100%, for some applications he might want to make a trade-off
between costs and availability.

In this case, the problem cannot be solved analytically
anymore. The load balancer controller is in charge of solving
a non-linear constraint minimization problem.

Since we deal with probabilities, the first constraint is that
controllable variables must be chosen in the range (0, 1). Also,
since we are dealing with a DTMC, the sum of the outgoing
arcs must be 1. This last constrain can be avoided by allowing
only two outgoing arcs on load balancers and setting the value
of one of the arcs equal to one minus the other. If we want

to have a load balancer with three or more outgoing arcs, it is
enough to put two or more binary load balancers in cascade.

Then we need a constraint on the success rate, which has
to be greater or equal to the set point. To do this, we must
obtain a formula that describes the explicit dependency of
system availability on control variables and measured nodes
availabilities. First of all, given the transition matrix A of our
DTMC model with self loops removed (i.e., no ones on the
diagonal), i is the row of the matrix relative to the input node,
j is the row of the matrix relative to the output node (i.e., the
success state), we can write the following dynamic system

xT(k + 1) = xT(k)A + bT

where x is a vector as long as the number of nodes, and b
is the input vector, as long as x, with all 0s except for the
ith element which is 1. If b is constant the system is going
to stabilize and the values of x are going to be the workload
ratio arriving at each node:

xT = xTA + bT ⇒ xT(I −A) = bT ⇒
xT = bT(I −A)−1

The jth element of x is going to be the success rate as a
function of the control variables and nodes availabilities, which
will be used to estimate the availability. Since we are dealing
with models whose structure is constant in time, the success
rate function is always the same and can be computed at design
time.

Now we can write the availability constraint function as

u(k + 1)− ŝ(k + 1|k) ≤ β ·max (0, u(k)− s(k)) (11)

where u is the set point, ŝ is the estimated availability, using
the average availabilities of the nodes and letting ŝ become
a function only of the control variables. γ is a parameter in
the range (0, 1) that will affect the convergence rate to the
solution. Finally, s is the system availability measured at step
k. Using Equation 11 the controller is allowed to let ŝ be
greater than the set point u.

Now we define the cost function that has to be minimized.
The first objective, as we said, is to minimize costs. However,
we also need to discourage the controller from overloading a
node with more requests than the ones it is actually estimated
to be capable of processing. Whenever a migration of requests
for economic reasons is required, the workload has to be gently
distributed on the cheaper node letting it the time to scale
up without overloading it, that is, without loosing requests
and affect availability. The cost function we defined is the
following

J = xT ·K +W ‖max(0, AR(k)x− SR(k))‖ (12)

where x is the previously calculated workload ratio array that,
once availabilities are substituted with the average availabil-
ities measured for each node, depends only on the control
variables. K is the vector containing the cost per request
values. W is a large number used to discourage that a solution
is found where the component ‖max(0, AR(k)x− SR(k))‖
is greater than zero, that happens when one or more nodes are
going to be overloaded.

41

Fig. 4. Number of running machines over time

When the availability constraint is not satisfied, because, for
example, an entire autoscaling group failed, the controller will
not find a minimal solution of J without overloading a node,
but in this case it turns out to be the desired behavior for the
following reasons:

• All requests going to the failed node would be lost
anyway

• The overloaded node will scale much faster in order to
cope with the new workload since the arrival rate AR in
the Equation 8 will be very high.

The autoscaling controller and the load balancer controller
work simultaneously. In order to prevent oscillations due to
controllers coordination, it was sufficient to set a policy that
inhibits the load balancer controller whenever any cloud is
not able to satisfy the incoming traffic, giving time to the
autoscaling controller to make it scale up.

VI. EXPERIMENTAL RESULTS

We evaluated our approach by means of the two clouds
scenario described in Section IV whose model is represented
in Figure 3. Evaluation on a real cloud infrastructure is part of
our future work. As for an initial analysis of the approach we
developed a tool able to simulate generic IaaS (Infrastrucutre
as a Service) cloud infrastructures by means of Matlab. The
tool allows the user to test the behavior of a multi-cloud
application as we described in Section IV, against different
workload conditions, costs variations, and service failures.

We simulated 4 hours of activity with simulation steps of
1 second and sliding windows of 60 seconds. We kept arrival
rate, service rate and costs constant. Cloud 1 was set to be
the cheapest choice, by running all machines with the same
maximum service rate and the same CPU setpoint (80%)
and different cost per hour. The autoscaling controller had
α set to 1/3. The load balancer controller had β set to 1/3.
Machines startup time was set to 100 seconds, an average
value for Linux machines on Amazon cloud according to [17].
The desired system availability is kept constant to 99%. We
induced a single failure event by simulating an outage of Cloud
1 between 00:10 and 00:50 and observed the results illustrated
in Figures 4 and 5.

Fig. 5. System availability over time

The entire traffic was initially delivered only to Cloud 1.
At 00:10 Cloud 1 availability changes abruptly from 100% to
0%. Traffic is instantly migrated to Cloud 2 and the autoscaling
controller manages the scale up activity in 20 minutes. This
time is dependent on the choice of parameters α and β, the
smaller the faster but more sensitive to noise, and on machines
startup times. At time 00:50 Cloud 1 recovers and, since
it remains the cheapest solution, requests are migrated back
from Cloud 2 to Cloud 1. The difference between the speed
of migrations has to be noticed. While in the first part the
migration to Cloud 2 is forced by the outage of Cloud 1,
generating a large number of lost requests (see availability
drop at time 00:10 in Figure 5), and has to be actuated by
the controller very fast, in the second part the migration to
Cloud 1 is graduated by the controller so that no request
is lost in the migration. This behavior is guaranteed by the
component W ‖max(0, AR(k)x− SR(k))‖ in Equation 12.
When Cloud 1 fails, the controller cannot find a solution
without having this component different from zero, therefore
overloading occurs. In the second part of the simulation, all
solutions are found where the component is equal to zero,
so overloading is prevented, and the autoscaling controller is
given the time to make Cloud 1 scale up.

VII. CONCLUSION AND FUTURE WORK

This paper presented a novel approach for modeling avail-
ability in multi-cloud applications and controlling their de-
ployment configuration in order to guarantee availability con-
straints. Results show that our controller is capable of coping
with cloud failures and re-establishing the desired availability
in a short time. Results also show that the controller is
capable of reducing operative costs by scaling the number of
provisioned resources and balancing incoming traffic among
the available cloud providers. In particular even during the
migration of service between cloud providers for economical
reasons the availability value of the entire system is not
affected.

Future research will first go through different improvements
on the resolution of constraint optimization problems so to
cope with more challenging scenarios where the adopted
technique had some issues in finding the optimal solution.

42

Another improvement to be investigated is the estimate of
future parameters. In our approach the average of monitoring
data in the observation window is used to estimate parameters
while more advanced techniques, like the Kalman Filter, could
lead to more precise estimation of the underlying system state.
Finally, we plan to test our approach in a real cloud scenario
and considering industrial use cases.

ACKNOWLEDGEMENTS

This research has been partially supported by the Euro-
pean Commission, Grant no. FP7-ICT-2011-8-318484 MODA-
Clouds project.

The authors would like to thank Prof. Carlo Ghezzi, Prof.
Alberto Leva and Dr. Antonio Filieri for valuable discussions.

REFERENCES

[1] Bitcurrent, “Cloud performance from the end user,”
http://www.bitcurrent.com/, Tech. Rep., 2011.

[2] D. Ardagna, E. Di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny,
F. D’Andria, G. Casale, P. Matthews, C. S. Nechifor, D. Petcu,
A. Gericke, and C. Sheridan, “MODAClouds: A model-driven
approach for the design and execution of applications on multiple
Clouds,” in Modeling in Software Engineering (MISE), 2012 ICSE
Workshop on. IEEE, Jun. 2012, pp. 50–56. [Online]. Available:
http://www.i3s.unice.fr/˜mosser/ media/research/mise icse 2012.pdf

[3] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-based
performance prediction in software development: a survey,” in Software
Engineering, IEEE Transactions on, vol. 30, no. 5, may 2004, pp. 295
– 310.

[4] C. Vicente-Chicote, B. n. Moros, and A. Toval, “REMM-Studio: an
Integrated Model-Driven Environment for Requirements Specification,
Validation and Formatting,” in Journal of Object Technology, Special
Issue TOOLS EUROPE 2007, vol. 6, no. 9, Oct. 2007, pp. 437–454.
[Online]. Available: http://www.jot.fm/issues/issue 2007 10/paper22/

[5] M. L. Drago, “Quality driven model transformations for feedback
provisioning,” Ph.D. dissertation, Politecnico di Milano, 2012.

[6] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio, “Self-adaptive software
meets control theory: A preliminary approach supporting reliability
requirements,” in Automated Software Engineering (ASE), 2011 26th
IEEE/ACM International Conference on, nov. 2011, pp. 283 –292.

[7] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline and
budget constraints,” in Grid Computing (GRID), 2010 11th IEEE/ACM
International Conference on, oct. 2010, pp. 41 –48.

[8] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “Kingfisher: Cost-aware
elasticity in the cloud,” in INFOCOM, 2011 Proceedings IEEE, april
2011, pp. 206 –210.

[9] P. Xiong, Z. Wang, S. Malkowski, Q. Wang, D. Jayasinghe,
and C. Pu, “Economical and robust provisioning of n-tier cloud
workloads: A multi-level control approach,” in Proceedings of the 2011
31st International Conference on Distributed Computing Systems, ser.
ICDCS ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
571–580. [Online]. Available: http://dx.doi.org/10.1109/ICDCS.2011.88

[10] D. Petcu, “Portability and interoperability between clouds: challenges
and case study,” in Proceedings of the 4th European conference
on Towards a service-based internet, ser. ServiceWave’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 62–74. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2050869.2050876

[11] B. Di Martino, D. Petcu, R. Cossu, P. Goncalves, T. Máhr, and
M. Loichate, “Building a mosaic of clouds,” in Proceedings of the
2010 conference on Parallel processing, ser. Euro-Par 2010. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 571–578. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2031978.2032056

[12] N. Loutas, V. Peristeras, T. Bouras, E. Kamateri, D. Zeginis, and K. Tara-
banis, “Towards a reference architecture for semantically interoperable
clouds,” in Cloud Computing Technology and Science (CloudCom), 2010
IEEE Second International Conference on, 30 2010-dec. 3 2010, pp. 143
–150.

[13] R. Teckelmann, C. Reich, and A. Sulistio, “Mapping of cloud standards
to the taxonomy of interoperability in iaas,” in 4th IEEE International
Conference on Cloud Computing Technology and Science Proceedings,
vol. 0. Los Alamitos, CA, USA: IEEE Computer Society, 2011, pp.
522–526.

[14] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[15] S. Becker, H. Koziolek, and R. Reussner, “The palladio
component model for model-driven performance prediction,” in
J. Syst. Softw., vol. 82, no. 1. New York, NY, USA:
Elsevier Science Inc., Jan. 2009, pp. 3–22. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2008.03.066

[16] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quan-
titative system performance: computer system analysis using queueing
network models. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1984.

[17] M. Mao and M. Humphrey, “A performance study on the vm startup
time in the cloud,” in Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, june 2012, pp. 423 –430.

43

