
Electronic Notes in Theoretical Computer Science � ������

Input�Output for ELAN

Patrick Viry

Dipartimento di Informatica� Universit�a di Pisa

Corso Italia ��� ����� Pisa� Italy

Email� viry�di	unipi	it

Abstract

We show how to add Input�Output capabilities to the ELAN rewriting interpreter

using a rewrite speci�cation of ��calculus� This I�O system has the advantage

of being totally explicit and �t in the same semantic framework than any other

�application program�� An actual implementation shows the e�ectiveness of this

approach�

� Introduction

Currently available rewrite interpreters �e�g� OBJ� �GKK����� Redux �B�un	���

ELAN �KKM	
�� o�er a nice programming model and are quite e
cient� but

lack input�output �I�O� capabilities�

For other models of computation like functional or logic programming�

the typical approach has been to add extra features implementing I�O� But

these features do not �t in the nice and simple underlying model � in order

to be able to understand or reason about programs involving I�O� the basic

computational model has to be extended in non trivial ways� making it not so

nice and simple anymore �see for instance �Gor	�� about the monadic approach

to functional I�O�� The problem is that functional computation and I�O have

two di�erent and a priori incompatible interpretations� one in terms of equality

and the other in terms of transitions between states�

In the case of rewriting� the underlying semantic model� called rewriting

logic �Mes	��MOM	��� allows to combine in a simple way equational compu�

tations such as function evaluation or abstract data types and non equational

computations such as transitions between states�

This is �ne on a theoretical point of view� but a straightforward imple�

mentation is not realistic� since it would imply matching modulo an arbitrary

big equational theory� We have shown in �Vir	
� that an e�ective imple�

mentation is possible in many common cases� by orienting equations of the

equational theory into rewrite rules� thus ending up with two sets of rules �

� Supported by an HCM fellowship� EuroFOCS Network

c� ���� Elsevier Science B� V�Open access under CC BY-NC-ND license. 

http://creativecommons.org/licenses/by-nc-nd/3.0/


Viry

the reduction rules �denoted with ��� describe transitions between states

and the equational rules �denoted with
�

��� implement the equational theory�

We introduced three notions of coherence and proved that they are su
cient

conditions for three notions of equivalence to hold between the intended se�

mantics of rewriting logic and the actual implementation� Strong coherence

is the strongest property� it implies an exact correspondence between steps by

reduction rules� but is di
cult to assess in the presence of non linear equa�

tional rules �rules where more than one occurrence of a variable appears in the

left�hand or right�hand side�� Equational coherence is the weakest property�

and only implies preservation of normal forms� In the middle� weak coherence

implies preservation of derivations�

The coherence properties can be veri�ed by checking critical pairs between

rewrite rules� and in the weak and strong cases ensuring that a non linear

equational rule can never be applied above a reduction rule� The reader is

referred to �Vir	
� for more details�

In this paper� We take advantage of this result to design and implement

an I�O model for rewrite interpreters that will be totally explicit in the same

framework as any other programs�

The model we propose is based on ��calculus �Mil	��� a well studied cal�

culus exhibiting processes exchanging messages�

Process calculi are traditionally described by their transition relation P
�

��

Q �the process P is able to �perform the action� � and then behave as Q��

Implementing this relation by rewriting is not trivial� since arrows of the tran�

sition relation are labelled and rewrite steps are not� and attempts to do so

require unnatural tricks in order to take labels into account �MOM	���

However� the transition relation is not what we need� It is useful for

understanding process equivalence� based on external observation� but we are

interested here in the internal steps of process behaviour� described by the so�

called reduction relation� In fact� it is enough to implement internal transitions

steps in order to realize an I�O system�� an external communication is nothing

else than an internal communication in a wider context� and the two relations

can be de�ned in terms of each other �see section �����

In a previous paper �Vir	��� we gave a rewriting de�nition of the re�

duction relation of ��calculus and formally proved its correctness� We �rst

start with recalling this de�nition� referring to �Vir	�� for formal proofs� We

then show how it can be used as a basis for adding input�output capabili�

ties to ELAN �Vit	��KKM	
�� present our implementation and explain design

choices� We �nally give some examples of programs using this approach�

The source code of the implementation is available from the author�

�



Viry

� ��calculus and its reduction relation

��� Why ��calculus

When choosing a calculus in which to specify explicitly input�output� we �rst

have to decide on a conceptual model� The typical choice is to consider pro�

cesses� able to evolve independently and to synchronize or exchange data by

message passing through designated channels� This models �ts quite well the

intuition of sets of boxes connected between themselves and to the outside by

some wires�

But then one may argue that ��calculus is conceptually too complex for

such a �simple� task� and that either an ad�hoc calculus or a conceptually

simpler calculus such as CCS with value passing or LOTOS �BB�	� may do

the job�

The �rst idea is that a special�purpose calculus expressive enough will

anyway exhibit all the complexity of ��calculus� hence it is better to rely

on a known calculus whose semantic foundation has been well studied� Now

why ��calculus � Is mobility of processes �the ability to dynamically change a

con�guration� really needed �

The second idea is that� although introducing mobility makes a calculus

more complex on a semantic point of view� mobility comes for free on an

operational point of view� In order to explicitly model exchange of data�

a notion of name �corresponding e�g� to the bound variables of ��calculus�

together with a notion of explicit substitution are needed� But then there

is no di�erence between� say� substituting an integer value for a name� and

substituting a channel name for another name� Or the other way round� we

may say that value�passing comes for free when having mobility�

By acknowledging the fundamental role of names and explicit substitu�

tions� we end up with a simpler calculus� in which mobility and exchange of

data are modeled by the same set of rules�

��� ��calculus with explicit substitutions

In this section and the following� we brie�y introduce a rewriting implemen�

tation of the reduction relation of ��calculus� More details and proofs of the

correspondence results can be found in �Vir	���

In the original de�nition of ��calculus� substitution is a meta�operation�

not part of the calculus� But for an actual implementation the substitution

operation has to be made explicit� by introducing a substitution operator and

the rules de�ning it �often referred to as the �substitution calculus���

The terms of ��calculus are usually terms with higher�order variables� con�

sidered up to ��conversion� that may be bound by binder operators �note that

these higher�order variables are di�erent from term variables� and are repre�

sented by constant names��

It is possible to design a substitution calculus for terms with higher�order

variables �see e�g� �MOM	���� but the resulting calculus is very ine
cient�

�



Viry

mainly because one often needs to check if a variable is free or not� E
cient

substitution calculi are based on terms with so�called De Bruijn indices� where

an higher�order variable is replaced by an integer indicating how many binders

to jump over until �nding the binder associated with that variable� The

change of representation is transparent as there is a one�to�one relationship

between well�formed terms with indices and terms with higher�order variables

not containing free names� For instance� in the case of ��calculus� the term

�x��y��xy� would be represented as �x��y���x�y� �the subscripts x and y are

not actually part of the term� we add them here and in the following for better

readability��

Substitution calculi based on terms with indices are more e
cient and very

close to actual machine implementations� In fact� the di�erent machines de�

signed for implementing functional reduction can be seen as di�erent strategies

of applying the substitution rules �HMP	
�� In our implementation� we use

a substitution calculus inspired by ���calculus �LRD	��� which is one of the

simplest given in the literature� Refer to �Les	�� for a survey on the various

substitution calculi�

The terms of ��calculus with indices are de�ned as follows �using a syntax

more digestible to rewrite interpreters than the usual one� �

� indices are integers� written always underlined� like � or n� �� For better

readability� we usually add a subscript with a variable name to both indices

and binders� as in ���xin��x��nil�

� processes P �� nil the inactive process

j ���P restriction �binder�

j g�P guard �see below�

j P� � P� choice

j P� j P� parallel composition

j �P replication

j P� substitution �see below�

� guards g �� in�c� input on channel c �binder�

j out�c� x� output x on channel c

j bout�x� bound output �binder�

j � internal choice

Bound output can be de�ned in terms of other basic operators �bout�x��P �

���cout��c� x��P �� but we choose to introduce it explicitly for technical rea�

sons�

� substitutions

�



Viry

� �� �a	�

j ����

j ���

The intuitive meaning of the substitution operators is to map indices as

follows �

�a	�

� �� a

� �� �

� � �

n� � �� n

��s�

� �� �

� �� s������

� � �

n� � �� s�n����

���

� �� �

� �� �

� � �

n �� n � �

Processes are considered modulo the equations AC��� and AC�j� �associa�
tivity and commutativity of the � and j operators� and the following equa�

tional rules �

P � nil
�

�� P

P j nil
�

�� P

�P
�

�� P j �P

P j ���Q
�

�� ��� �P ��� j Q�

Another set of equational rules deals with the application of explicit sub�

stitutions� They are inspired by the rules of ���calculus �LRD	��� extended to

take into account the three di�erent binding operators present in ��calculus

�refer to �Vir	�� for details�� There are basically two kind of rules� the con�

gruence rules �pushing down� the substitution operators� and the variable

substitution rules�

The last two equational rules allow to replace j or � operators at the top of

a process with disjunctions �

The expansion rule� Let P � ���P�������n�Pn andQ � 
��Q������
m�Qm�

then

P j Q
�

��
X

i�����n

�i��Pi j Q� �
X

i�����m


i��P j Qi� �
X

i�����n
j�����m

Sync��i�Pi� 
j�Qj�

where

Sync��i�Pi� 
j�Qj� �

�
���������
���������

���Pi�z	� j Qj� if �i � in�x� and 
j � out�x� z�

����� �Pi j Qj� if �i � in�x� and 
j � bout�x�

�and similarly by swapping the arguments�

nil in all other cases

The replication rule� Let P � g��P� � � � �� gn�Pn� then

�P
�

�� g���P� j �P � � � � �� gn��Pn j �P �






Viry

A process is in weak disjunctive normal form if is of the form

��� � � � ����g��P� � � � �� gn�Pn�

with n � �� Using the above equational rules� any process can be put in weak

disjunctive normal form�

Expansion and replication are not properly rewriting rules because of the
variable n� but can be easily simulated using extra hidden operators�

The rewrite relation de�ned by the above equational rules �modulo AC�

does not terminate because of the replication rule that can be applied repeat�
edly into its own right�hand side� In order to ensure termination� this latter
rule has to be applied only when needed in order to compute a weak disjunc�

tive normal form �see �Vir	�� for a precise de�nition�� Let us denote �� the
derivations using all the above equational rules �modulo AC� according to that

strategy� then we have the following correspondence result �

Proposition ��� ��Vir��	
 There is a one�to�one correspondence between

processes of the original ��calculus �modulo the usual structural axioms� and

normal forms with respect to ���

In the following� � will denote equivalence of processes modulo ���

��� The reduction relation

The reduction relation of ��calculus� written ��� corresponds to internal
transitions of processes �the so�called � �transitions�� It is de�ned as

��P �Q �� P �Choice�

P �� P
�

P j Q �� P
�
j Q

P �� P
�

���P �� ���P �

The Choice rule is not a rewrite rule� since it cannot by applied under any
context� but it can be considered a rewrite rule if used together with a strategy

that permits its application only under the allowable contexts� Choice is the

only non equational rewrite rule �denoted with �� rather than
�

��� � it is

interpreted as an irreversible transition between states� whereas all the above

equational rules only compute an equivalent form of a given process�

In the following we denote �� the rewrite steps applying Choice considered

as a rewrite rule with the appropriate strategy� The correspondence result is
as follows �

Proposition ��� ��Vir��	
 There is a reduction step P �� Q in the original

��calculus if and only if there is a rewrite derivation P ���� Q
�� where Q

�

is structurally equivalent to Q�

This result is proved by showing strong coherence between equational and

reduction rules and applying the results of �Vir	
��

The relations �� and �� are based on rewriting modulo AC and can be

implemented quite e
ciently in ELAN�

�



Viry

��	 Internal vs� External Communications

The reduction relation of ��calculus describes internal moves of processes but

is not able to take into account external communications� However� an ex�

ternal communication between a process P and an environment E �another

��calculus process� is nothing else than an internal communication within the

combined process P j E �at the top level� ruling out communications within

P or within E��

Observation of the external communications of P can be de�ned as predi�

cates as follows �

De�nition ��� The observation predicates are de
ned as �

P
in�c�

���� P
� i�� P � ����������in�c��P � j Q�

P
out�c�x�
���� P

� i�� P � ����������out�c� x��P � j Q�

The relevance of this de�nition is stated by the following property �

Proposition ��� There is a step of the reduction relation P �� Q if and

only if P is of the form P � ����������P� j P��� Q is of the form Q �

����������Q��x	� j Q��� with P�

in�c�
���� Q� and P�

out�c�x�
���� Q��

A process P can communicate with an environment E if P
in�c�

���� P
� and

E
out�c�x�
���� E

�� or the opposite� Property ��� basically says that there P can

communicate with E if and only if there is an internal reduction P j E ��
P

� j E � � any transition can be considered equivalently as an internal transition

or an external communication� depending what we consider as the external

environment�

The whole implementation of I�O is based on this idea � even for imple�

menting external communication� it is enough to implement internal transi�

tions�

Proof of proposition ���

� Only if part �

Consider P � ����������P� j P��� If P�

in�c�
���� Q�� then P� is of the

form P� � in�c��Q� � U�� Similarly P� � out�c� x��Q� � U�� Then using

the expansion rule� we have P � �������������Q��x	� j Q�� � in�c���Q� j
out�c� x��Q� � U�� � out�c� x���in�c��Q� � U� j Q���� and the Choice rule

applies giving P �� ����������Q��x	� j Q���

� If part �

If P �� Q� then by de�nition of the reduction relation and the equation

U j ���V
�
�� ��� �U ��� j V �� P must be of the form P � ������������Q�V ��

The � symbol can only be introduced by the expansion rule� hence P is of

the form P � �������������Q��x	� j Q�� � in�c���Q� j out�c� x��Q� � U�� �

out�c� x���in�c��Q� � U� j Q��� � in�c��Q� � U� j out�c� x��Q� � U�� thus

P � P� j P� with P�

in�c�
���� Q� and P�

out�c�x�
���� Q�� and Q � Q� j Q��

�



Viry

� Implementation

ELAN �KKM	
� is a rewrite interpreter and compiler developed in Nancy� with

a strong emphasis on e
ciency� Two of its speci�c features are of particular

interest to us �

� It o�ers a powerful means of de�ning strategies� which makes it easy to

de�ne the Choice rule as a rewrite rule that can be applied only under some

contexts� and to encode the lazy application of the replication rule�

� It has a powerful preprocessor that we use for de�ning rule schemata for

the substitution rules� since they must apply to any variable type�

The relations �� and �� are thus easily encoded into ELAN�

��� Communication scenario

A process in weak disjunctive normal form exhibits the possible external and

internal communications �

P � ���P� � � � �� �n�Pn � ��Q� � � � �� ��Qn

The subterms �i�Pi o�er possible external communications� that can be �per�

formed� if the environment accepts them� namely if the corresponding Unix

�le descriptors are ready for input or output�

The subterms ��Qj correspond to possible internal choices and can possibly

be �selected� by applying the Choice rule�

The problem is what to do with a process P containing both �i�Pi and

��Qj subterms� We can imagine three scenarios �

�i� Perform an internal transition by applying the Choice rule to one of the

��Qj

�ii� Perform an external communication� waiting as long as necessary until

one is accepted�

�iii� Check if one of the external communications is accepted� if yes perform

it� if no perform an internal transition

In the �rst case� the problem is that applying the Choice rule may not

terminate� There exist so�called divergent processes that can perform in�nitely

many internal moves�

In the second case� the implementation would not be �fair�� in the sense

that the program may block inde�nitely even if a communication would have

been possible after performing an internal move�

The third case avoids both these problems� but raises an issue of e
ciency

since checking if �le descriptors are ready for input or output is a costly

operation�

We opted for the �rst scenario in our implementation� leaving to the user

the task of ensuring that there are no divergent processes� This choice is

motivated by the feeling that nobody would ever want to design divergent

processes� and that we may safely consider this case as an error�

�



Viry

��� Actual input�output

Reduction to normal form thus computes a term of the form

P � ���P� � � � �� �n�Pn

where all the �i�s are input or output guards referring to an external channel�

The selection of a particular external communication among all possible

ones �selection of one of the �i� is implemented by adding a new built�in

to ELAN� calling the Unix primitive select� Given a set of �le descriptors

�streams� as arguments� select returns the ones that are ready for reading

and�or writing�

E�ective input�output is then performed by implementing the in and out

predicates with the corresponding read and write Unix system calls� This is

done by adding another two new built�in operators in the ELAN source code�

Reduction then proceeds again starting from Pi if out�c� x��Pi had been

selected� or from Pi�x	� if in�c��Pi had been selected and x is the value read�

The whole program stops if the normal form nil is reached� indicating no more

possible communication�

��� Unix interface

Some adaptations of the program have been necessary in order to cope with

�real� input�output �

�i� Since external channels correspond to Unix �le descriptors� rather than

maintaining a table of associations between ��calculus channels and des�

criptors� we choose to introduce a special constructor for external chan�

nels� extchan�i�� where i is the �le descriptor�

This also makes possible the addition of a simpli�cation rule � since an

input or output guard on an internal channel may never interact with the

outside� we may safely remove processes with such guards from the weak

disjunctive normal form computed by ���

�ii� A Unix �le descriptor must be opened before its use� We introduced in the

calculus a new guard for this purpose� open��lename� type�PSucc�PFail��

with the intuitive meaning of opening the �le whose name is given� then

behave as PSucc�extchan�i�	� if the opening succeeded� binding � with the

corresponding channel� or behaving as PFail�i	� in case of failure� binding

� with a system error number� The type argument is used to convert

between ELAN and Unix data representation �for instance ELAN integers

may be encoded in Unix �les as bit �elds of various lengths� or even as

their printable representation��

The rules for the expansion and replication theorem must be extended

in order to take this new guard into account�

We did not address in this stage of prototype the possibility of closing

�les� but this would be needed as well for practical applications�

�iii� The semantics of communication in ��calculus and of input�output in

Unix are quite di�erent� The former is synchronous and atomic� the

latter is asynchronous and may fail in the middle of a transfer�

	



Viry

Asynchronicity is actually not a problem� because it is internal to Unix �
the semantic of a communication between a process P and the Unix en�

vironment is preserved� Atomicity is guaranteed when reading or writing
one byte at a time� It is possible to simulate atomicity for bigger trans�

fers as well� but at the expense of e
ciency� A real I�O system should

certainly provide a choice between these both options�
Possible failure is more problematic because it does not �t in the model

of ��calculus� A possible approach would be to extend input and out�
put guards to allow for failure in a way similar to the open guard� at

the expense of simplicity in designing processes� Another more �practi�

cally� satisfying approach may be to add a notion of exception handling
to the calculus� but this seems a non trivial task� For the moment we

simply suppose that such events will make the whole program fail �gos�
sipers note � this is not much di�erent from most commercially available

software����

��	 Value�passing and typing

So far� we have considered the plain monadic ��calculus� As shown in �Mil	���

this calculus is powerful enough to encode any kind of structured data� so the
game may end here� However� implementing a value passing calculus based
on this encoding loses one of the main advantages of rewriting logic� namely

the fact of being able to combine various calculi� using for each domain the
more adequate calculus without having to do unnatural encodings�

The solution is immediate� Extend the calculus by letting input and out�
put values be not only ��calculus channels� but also any arbitrary data type

�indices now range over arbitrary values� including channels�� One may for in�

stance write a process in���x�out��c� �� �
x
��nil� whose behaviour is intuitively

�receive an integer value x on a channel c� add it � and send the result back

on the same channel�

In order to have a conceptual di�erence between channels and values� some

notion of typing is called for� This notion of typing should also be able to take
into account a possible typing of values�

However� well�typedness cannot be expressed in the many�sorted frame�

work of ELAN� because the type of an index should depend on its value�

In our prototype we rely on the user to provide well�typed terms� Classical

techniques borrowed from functional programming may be used to guarantee

well�typedness�

��



Viry

� Examples

	�� Double�way bu�er

a b

Q

P

A double�way bu�er consists of two processes in parallel� each of them

repeatedly reading a data element from a channel and writing it on the other

channel� These processes are most naturally speci�ed using recursive equa�

tions �

P � in�a�x�out�b� �x��P

Q � in�b�x�out�a� �x��Q

We cannot implement directly recursive equations� and need to restate

this de�nition using the replication operator� Note that this is always possi�
ble �Mil	�� and that the two speci�cations are weak equivalent �i�e� equivalent
up to the internal actions�� P and Q are rede�ned as

P
def

� ���p�out��p� void��nil j � in��p��in�a�x�out�b� �x��out��p� void��nil�

Q
def

� ���q�out��q� void��nil j � in��q��in�b�x�out�a� �x��out��q� void��nil�

where void is the only value of the single�valued type of channels that only

exchange synchronizations� Intuitively� the process below the replication op�

erator of P �resp� Q� can only be �activated� by an input from channel p

�resp� q��

The process P j Q reduces to the weak disjunctive normal form

���p���q�in�a�x�P
� � in�b�x�Q

��

with

P � � out�b� �x��out�p� void��nil ���

j in�b�x��out�a� �x��out�q� void��nil ���

j � in��p��in�a�x�out�b� �x��out��p� void��nil ���

j � in��q��in�a�x�out�b� �x��out��q� void��nil ���

and similarly for Q� by swapping p with q and a with b�

The normal form exhibits the two possible external communications in�a�
and in�b�� As soon as one of them is possible� the communication takes place
and the computation proceeds with either P � or Q�� In P �� term ��� is the

continuation of the bu�er process P � term ��� is the bu�er process Q� and
terms ��� and ��� are the �pools� of processes that are activated by an input

on channel p or q�

The two�way bu�er example can be trivially extended by adding compu�

��



Viry

tation of the output values� for instance

P � in�a�x�out�b� f��x���P

Q � in�b�x�out�a� g��x���P

where f and g are functions de�ned by rewrite rules� Since these de�ned

operators appear only strictly below process operators� we are guaranteed

that strong coherence is preserved �Vir	
� and thus that our implementation

remains correct�

	�� Filter

The previous example exhibits the typical programming style of our approach �

processes exchanging data� possibly computing output values with de�ned

functions� But process expressions may also appear below de�ned symbols�

as long as no non�linear rewrite rule may ever be applied above a process

expression� in order to preserve strong coherence �Vir	
��

This is the case for instance with the if���then���else��� operator� de�ned

by the following linear rules

if true then x else y �� x

if false then x else y �� y

Then we can write a FILTER process� that repeatedly inputs values on

a channel i and copies them on an input channel o only when they verify a

given condition �

FILTER � in�i�x�if c�x� then out�o� �
x
��FILTER else FILTER

This recursive de�nition is then restated using the replication operator as in

the previous example�

This possibility allows for a more �natural� programming style� for instance

closer to CSP�Occam �Hoa���� but the constructs that may appear above

processes must be clearly identi�ed in order to ensure the condition about

non linear rules�

These constructs may also be the constructors of data types� and we may

be able for instance to specify in a unique framework a system of windows

each running its own independent process�

� Conclusion

Starting from a rewriting de�nition of the reduction relation of ��calculus� we

have designed an input�output system for the ELAN rewriting interpreter that

is totally explicit in the rewriting framework itself and integrates smoothly

with any other �application program��

This system has been implemented in ELAN to show its e�ectiveness� An

important issue yet to be checked is the strategy used for applying the sub�

stitution rules� Applying them eagerly is hopelessly ine
cient� but particular

��



Viry

strategies correspond to di�erent types of known abstract machines �HMP	
�

and can achieve the same e
ciency once compiled�

We plan to add this system to a future ELAN distribution� and hope that

adding I�O capabilities to rewrite interpreters will make these systems very

attractive�

References

�BB�	
 T� Bolognesi and E� Brinksma� Introduction to the ISO speci�cation
language LOTOS� In P� H� J� van Eijk� C� A� Vissers� and M� Diaz�
editors� The Formal Description Technique LOTOS� pages �
��
�
Elsevier Science Publishers B� V� �North�Holland�� �	�	�

�B�un	

 R� B�undgen� Reduce the redex � ReDuX� In Proceedings

�th Conference on Rewriting Techniques and Applications� Montreal


Canada�� number �	� in LNCS� pages �������� Springer�Verlag� �		
�

�GKK���
 J� A� Goguen� Claude Kirchner� H�el�ene Kirchner� A� M�egrelis�
J� Meseguer� and T� Winkler� An introduction to OBJ�
� In J��
P� Jouannaud and S� Kaplan� editors� Proceedings �st International

Workshop on Conditional Term Rewriting Systems� Orsay 
France��
volume 
�� of LNCS� pages ������
� Springer�Verlag� July �	��� Also
as internal report CRIN� ���R�����

�Gor	�
 A� Gordon� Functional Programming and Input�Output� Distinguished
Dissertations in Computer Science� Cambridge University Press� �		��
ISBN � ��� ����
�

�HMP	�
 T� Hardin� L� Maranget� and B� Pagano� Functional back�ends within
the weak lambda�sigma�calculus� In Procs	 of Workshop on the

Implementation of Functional Languages� Sept� �		��

�Hoa��
 C� A� R� Hoare� Communicating sequential processes� Communications
of the ACM� �������������� August �	���

�KKM	�
 C� Kirchner� H� Kirchner� and M� Vittek� Designing CLP using
computational systems� In P� Van Hentenryck and S� Saraswat� editors�
Principles and Practice of Constraint Programming� The MIT press�
�		��

�Les	�
 P� Lescanne� From �� to ��� a journey through calculi of explicit
substitutions� In Hans Boehm� editor� Proceedings of the 
�st Annual

ACM Symposium on Principles Of Programming Languages� Portland


Or	� USA�� pages ����	� ACM� �		��

�LRD	�
 P� Lescanne and J� Rouyer�Degli� The calculus of explicit substitutions
��� Technical Report RR������ INRIA�Lorraine� January �		��

�Mes	�
 J� Meseguer� Conditional rewriting logic as a uni�ed model of
concurrency� Theoretical Computer Science� 	������
����� �		��

�Mil	�
 R� Milner� The polyadic ��calculus � a tutorial� Technical Report ECS�
LFCS�	������ LFCS� University of Edinburgh� �		��

��



Viry

�MOM	

 N� Mart���Oliet and J� Meseguer� Rewriting logic as a logical and semantic
framework� Technical Report CSL�	
���� SRI International� �		
�

�Vir	�
 P� Viry� Rewriting modulo a rewrite system� Technical Report TR�	��
��� Dipartimento di Informatica� Universit�a di Pisa� �		��

�Vir	�
 P� Viry� A rewriting implementation of ��calculus� Technical Report
TR�	���	� Dipartimento di Informatica� Universit�a di Pisa� �		��

�Vit	�
 Marian Vittek� ELAN� Un cadre logique pour le prototypage de langages

de programmation avec contraintes� Th�ese de Doctorat d�Universit�e�
Universit�e Henri Poincar�e � Nancy �� October �		��

��


