Electronic Notes in Theoretical Computer Science 4 (1996)

Input/Output for ELAN

Patrick Viry

Dipartimento di Informatica, Universita di Pisa
Corso Italia 40, 56100 Pisa, Italy
Email: viry@di.unipi.it

Abstract

We show how to add Input/Output capabilities to the ELAN rewriting interpreter
using a rewrite specification of 7-calculus. This I/O system has the advantage
of being totally explicit and fit in the same semantic framework than any other
“application program”. An actual implementation shows the effectiveness of this
approach.

1 Introduction

Currently available rewrite interpreters (e.g. OBJ3 [GKK™87], Redux [Biin93],
ELAN [KKM095]) offer a nice programming model and are quite efficient, but
lack input/output (I/O) capabilities.

For other models of computation like functional or logic programming,
the typical approach has been to add extra features implementing I/O. But
these features do not fit in the nice and simple underlying model: in order
to be able to understand or reason about programs involving I/O, the basic
computational model has to be extended in non trivial ways, making it not so
nice and simple anymore (see for instance [Gor94] about the monadic approach
to functional I/O). The problem is that functional computation and I/O have
two different and a priori incompatible interpretations, one in terms of equality
and the other in terms of transitions between states.

In the case of rewriting, the underlying semantic model, called rewriting
logic [Mes92,MOM93], allows to combine in a simple way equational compu-
tations such as function evaluation or abstract data types and non equational
computations such as transitions between states.

This is fine on a theoretical point of view, but a straightforward imple-
mentation is not realistic, since it would imply matching modulo an arbitrary
big equational theory. We have shown in [Vir95] that an effective imple-
mentation is possible in many common cases, by orienting equations of the
equational theory into rewrite rules, thus ending up with two sets of rules:

! Supported by an HCM fellowship, EuroFOCS Network

(© 1996 Elsevier Science B. V. Open accessunder CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

VIRY

the reduction rules (denoted with —) describe transitions between states
and the equational rules (denoted with —) implement the equational theory.
We introduced three notions of coherence and proved that they are sufficient
conditions for three notions of equivalence to hold between the intended se-
mantics of rewriting logic and the actual implementation. Strong coherence
is the strongest property, it implies an exact correspondence between steps by
reduction rules, but is difficult to assess in the presence of non linear equa-
tional rules (rules where more than one occurrence of a variable appears in the
left-hand or right-hand side). Equational coherence is the weakest property,
and only implies preservation of normal forms. In the middle, weak coherence
implies preservation of derivations.

The coherence properties can be verified by checking critical pairs between
rewrite rules, and in the weak and strong cases ensuring that a non linear
equational rule can never be applied above a reduction rule. The reader is
referred to [Vir95] for more details.

In this paper, We take advantage of this result to design and implement
an I/O model for rewrite interpreters that will be totally explicit in the same
framework as any other programs.

The model we propose is based on m-calculus [Mil91], a well studied cal-
culus exhibiting processes exchanging messages.

Process calculi are traditionally described by their transition relation P —
() (the process P is able to “perform the action” a and then behave as Q).
Implementing this relation by rewriting is not trivial, since arrows of the tran-
sition relation are labelled and rewrite steps are not, and attempts to do so
require unnatural tricks in order to take labels into account [MOM93].

However, the transition relation is not what we need. It is useful for
understanding process equivalence, based on external observation, but we are
interested here in the internal steps of process behaviour, described by the so-
called reduction relation. In fact, it is enough to implement internal transitions
steps in order to realize an 1/0 system,: an external communication is nothing
else than an internal communication in a wider context, and the two relations
can be defined in terms of each other (see section 2.4).

In a previous paper [Vir96], we gave a rewriting definition of the re-
duction relation of m-calculus and formally proved its correctness. We first
start with recalling this definition, referring to [Vir96] for formal proofs. We
then show how it can be used as a basis for adding input/output capabili-
ties to ELAN [Vit94, KKM95], present our implementation and explain design
choices. We finally give some examples of programs using this approach.

The source code of the implementation is available from the author.

VIRY

2 m-calculus and its reduction relation

2.1 Why m-calculus

When choosing a calculus in which to specify explicitly input-output, we first
have to decide on a conceptual model. The typical choice is to consider pro-
cesses, able to evolve independently and to synchronize or exchange data by
message passing through designated channels. This models fits quite well the
intuition of sets of boxes connected between themselves and to the outside by
some wires.

But then one may argue that m-calculus is conceptually too complex for
such a “simple” task, and that either an ad-hoc calculus or a conceptually
simpler calculus such as CCS with value passing or LOTOS [BB89] may do
the job.

The first idea is that a special-purpose calculus expressive enough will
anyway exhibit all the complexity of w-calculus, hence it is better to rely
on a known calculus whose semantic foundation has been well studied. Now
why 7-calculus? Is mobility of processes (the ability to dynamically change a
configuration) really needed ?

The second idea is that, although introducing mobility makes a calculus
more complex on a semantic point of view, mobility comes for free on an
operational point of view. In order to explicitly model exchange of data,
a notion of name (corresponding e.g. to the bound variables of A-calculus)
together with a notion of explicit substitution are needed. But then there
is no difference between, say, substituting an integer value for a name, and
substituting a channel name for another name. Or the other way round, we
may say that value-passing comes for free when having mobility.

By acknowledging the fundamental role of names and explicit substitu-
tions, we end up with a simpler calculus, in which mobility and exchange of
data are modeled by the same set of rules.

2.2 m-calculus with explicit substitutions

In this section and the following, we briefly introduce a rewriting implemen-
tation of the reduction relation of m-calculus. More details and proofs of the
correspondence results can be found in [Vir96].

In the original definition of m-calculus, substitution is a meta-operation,
not part of the calculus. But for an actual implementation the substitution
operation has to be made explicit, by introducing a substitution operator and
the rules defining it (often referred to as the “substitution calculus”).

The terms of m-calculus are usually terms with higher-order variables, con-
sidered up to a-conversion, that may be bound by binder operators (note that
these higher-order variables are different from term variables, and are repre-
sented by constant names).

It is possible to design a substitution calculus for terms with higher-order
variables (see e.g. [MOM93]), but the resulting calculus is very inefficient,

3

VIRY

mainly because one often needs to check if a variable is free or not. Efficient
substitution calculi are based on terms with so-called De Bruijn indices, where
an higher-order variable is replaced by an integer indicating how many binders
to jump over until finding the binder associated with that variable. The
change of representation is transparent as there is a one-to-one relationship
between well-formed terms with indices and terms with higher-order variables
not containing free names. For instance, in the case of A-calculus, the term
Az.Ay.(xy) would be represented as A;.\,.(1,0,) (the subscripts z and y are
not actually part of the term, we add them here and in the following for better
readability).

Substitution calculi based on terms with indices are more efficient and very
close to actual machine implementations. In fact, the different machines de-
signed for implementing functional reduction can be seen as different strategies
of applying the substitution rules [HMP95]. In our implementation, we use
a substitution calculus inspired by Av-calculus [LRD94|, which is one of the
simplest given in the literature. Refer to [Les94] for a survey on the various
substitution calculi.

The terms of m-calculus with indices are defined as follows (using a syntax
more digestible to rewrite interpreters than the usual one):

* indices are integers, written always underlined, like 3 or n 4+ 1. For better
readability, we usually add a subscript with a variable name to both indices
and binders, as in (v),in(0,).nil.

* PrOCEsses P := il the inactive process
| (v)P restriction (binder)
| ¢.P guard (see below)
| P+ P, choice
| P, | P, parallel composition
| P replication
| Po substitution (see below)
* guards g := in(c) input on channel ¢ (binder)

| out(c,z) output z on channel ¢
| bout(x) bound output (binder)

| 7 internal choice

Bound output can be defined in terms of other basic operators (bout(z).P =
(v).out(0,,x).P), but we choose to introduce it explicitly for technical rea-
sons.

¢ substitutions

VIRY

o= [af)
| 1)
o

The intuitive meaning of the substitution operators is to map indices as
follows :

[a/] 1 (s) [1]
0—a 0+~ 0 01
1-0 1= s(2)[1] 102

n+l—n 0t s n—n+l

Processes are considered modulo the equations AC(+) and AC(]) (associa-
tivity and commutativity of the + and | operators) and the following equa-
tional rules:

P +nil — P
Pnil = P
P = P|IP
Pl(v)Q — () (P[] Q)

Another set of equational rules deals with the application of explicit sub-
stitutions. They are inspired by the rules of Av-calculus [LRD94], extended to
take into account the three different binding operators present in m-calculus
(refer to [Vir96] for details), There are basically two kind of rules, the con-
gruence rules “pushing down” the substitution operators, and the variable
substitution rules.

The last two equational rules allow to replace | or ! operators at the top of
a process with disjunctions:

The expansion rule. Let P = a1.Pi+...4«,.P, and QQ = 51.Q1+...4+5m.Qm,
then
PlQ — > au(P|Q+ Y B(P|Q)+ Y. Sync(oi.Pyf;.Q;)

i=1...n i=1...m i=l...n
j=1l..m

where
T.(Pi[2/] | Q) if a; =in(z) and 3; = out(z, 2)
7.(v) (P | Q) if a; =in(x) and §; = bout(z)

Sync(a;. Py, 3;.Qj) = o ‘
(and similarly by swapping the arguments)

\ nil in all other cases

The replication rule. Let P = ¢;.P, + - - - + ¢g,,.P,, then
5

VIRY

A process is in weak disjunctive normal form if is of the form
v)...w)(g1.Pr + -+ gn.Pp)

with n > 0. Using the above equational rules, any process can be put in weak
disjunctive normal form.

Expansion and replication are not properly rewriting rules because of the
variable n, but can be easily simulated using extra hidden operators.

The rewrite relation defined by the above equational rules (modulo AC)
does not terminate because of the replication rule that can be applied repeat-
edly into its own right-hand side. In order to ensure termination, this latter
rule has to be applied only when needed in order to compute a weak disjunc-
tive normal form (see [Vir96] for a precise definition). Let us denote = the
derivations using all the above equational rules (modulo AC) according to that
strategy, then we have the following correspondence result :

Proposition 2.1 ([Vir96]) There is a one-to-one correspondence between
processes of the original w-calculus (modulo the usual structural axioms) and
normal forms with respect to —>.

In the following, = will denote equivalence of processes modulo =>.

2.8 The reduction relation

The reduction relation of w-calculus, written —, corresponds to internal
transitions of processes (the so-called 7-transitions). It is defined as

TP+Q — P (Choice)

P— P P— P
PlQ—P|Q (V)P — (v) P

The Choice rule is not a rewrite rule, since it cannot by applied under any
context, but it can be considered a rewrite rule if used together with a strategy
that permits its application only under the allowable contexts. Choice is the
only non equational rewrite rule (denoted with — rather than —): it is
interpreted as an irreversible transition between states, whereas all the above
equational rules only compute an equivalent form of a given process.

In the following we denote — the rewrite steps applying Choice considered
as a rewrite rule with the appropriate strategy. The correspondence result is
as follows:

Proposition 2.2 ([Vir96]) There is a reduction step P — @ in the original
mw-calculus if and only if there is a rewrite derivation P ——— Q', where Q'
18 structurally equivalent to Q).

This result is proved by showing strong coherence between equational and
reduction rules and applying the results of [Vir95].

The relations = and — are based on rewriting modulo AC and can be
implemented quite efficiently in ELAN.

6

VIRY
2.4 Internal vs. External Communications

The reduction relation of m-calculus describes internal moves of processes but
is not able to take into account external communications. However, an ex-
ternal communication between a process P and an environment E (another
m-calculus process) is nothing else than an internal communication within the
combined process P | E (at the top level, ruling out communications within
P or within E).

Observation of the external communications of P can be defined as predi-
cates as follows:

Definition 2.3 The observation predicates are defined as:

p 9 p iff. P = (v)...(v)(in(c).P"| Q)
p e prag p o= (v)...(v)(out(c,z).P" | Q)
The relevance of this definition is stated by the following property :

Proposition 2.4 There is a step of the reduction relation P — Q if and
only if P is of the form P = (v)...v)(P1 | P), Q is of the form Q =
)-..()(@i[z/] | Q2), with P, — Q1 and Py e, Q2.

A process P can communicate with an environment E if P —“ P’ and
E e, E’, or the opposite. Property 2.4 basically says that there P can
communicate with E if and only if there is an internal reduction P | B —
P’ | E': any transition can be considered equivalently as an internal transition
or an external communication, depending what we consider as the external
environment,.

The whole implementation of I/O is based on this idea: even for imple-
menting external communication, it is enough to implement internal transi-
tions.

Proof of proposition 2.4

e Only if part:

Consider P = (v)...(v)(P, | P,). If P, == @, then P is of the
form P, = in(¢).Q; + U;. Similarly P, = out(c,x).QQ2 + Us. Then using
the expansion rule, we have P = (v)...(v)(7.(Q:1[z/] | @2) + in(c).(Q1 |
out(c, z).Q2 + Uz) + out(c, z).(in(c).Q1 + Uy | @2)), and the Choice rule
applies giving P — (v)...(v) (@1 [z/] | Q2).

o If part:

If P — @, then by definition of the reduction relation and the equation
U|l(w)V — (v) (U[t] | V), P must be of the form P = (v)...(v)(7.Q + V).
The 7 symbol can only be introduced by the expansion rule, hence P is of
the form P = (v)...(v)(r.(Q1[z/] | Q2) + in(c).(Q1 | out(c,z).Q2 + Us) +
out(c,x).(in(c).Q1 + Uy | @Q2)) = in(c).Q1 + Uy | out(c,z).Q2 + Uy, thus
P =P, | P, with P, =" @, and P, 2“™ Q,, and Q = Q, | Q.

7

VIRY

3 Implementation

ELAN [KKM095] is a rewrite interpreter and compiler developed in Nancy, with
a strong emphasis on efficiency. Two of its specific features are of particular
interest to us:

e It offers a powerful means of defining strategies, which makes it easy to
define the Choice rule as a rewrite rule that can be applied only under some
contexts, and to encode the lazy application of the replication rule.

e It has a powerful preprocessor that we use for defining rule schemata for
the substitution rules, since they must apply to any variable type.

The relations = and — are thus easily encoded into ELAN.

3.1 Communication scenario

A process in weak disjunctive normal form exhibits the possible external and
internal communications :

P:Oél.P1+"'—|—Oén.Pn—|—T.Q1—|—"'—|—T.Qn

The subterms «;.P; offer possible external communications, that can be “per-
formed” if the environment accepts them, namely if the corresponding Unix
file descriptors are ready for input or output.

The subterms 7.¢); correspond to possible internal choices and can possibly
be “selected” by applying the Choice rule.

The problem is what to do with a process P containing both «;.F; and
7.(0; subterms. We can imagine three scenarios:

(i) Perform an internal transition by applying the Choice rule to one of the
T.Q;

(ii) Perform an external communication, waiting as long as necessary until
one is accepted.

(iii) Check if one of the external communications is accepted, if yes perform
it, if no perform an internal transition

In the first case, the problem is that applying the Choice rule may not
terminate. There exist so-called divergent processes that can perform infinitely
many internal moves.

In the second case, the implementation would not be “fair”, in the sense
that the program may block indefinitely even if a communication would have
been possible after performing an internal move.

The third case avoids both these problems, but raises an issue of efficiency
since checking if file descriptors are ready for input or output is a costly
operation.

We opted for the first scenario in our implementation, leaving to the user
the task of ensuring that there are no divergent processes. This choice is
motivated by the feeling that nobody would ever want to design divergent
processes, and that we may safely consider this case as an error.

8

VIRY

3.2 Actual input/output

Reduction to normal form thus computes a term of the form
P=o.P 4+ +a,P,
where all the o;’s are input or output guards referring to an external channel.

The selection of a particular external communication among all possible
ones (selection of one of the «;) is implemented by adding a new built-in
to ELAN, calling the Unix primitive select. Given a set of file descriptors
(streams) as arguments, select returns the ones that are ready for reading
and/or writing.

Effective input/output is then performed by implementing the in and out
predicates with the corresponding read and write Unix system calls. This is
done by adding another two new built-in operators in the ELAN source code.

Reduction then proceeds again starting from P; if out(c, z).P; had been
selected, or from P[z/] if in(c).P; had been selected and x is the value read.
The whole program stops if the normal form nil is reached, indicating no more
possible communication.

3.3 Unix interface

Some adaptations of the program have been necessary in order to cope with
“real” input/output :

(i) Since external channels correspond to Unix file descriptors, rather than
maintaining a table of associations between m-calculus channels and des-
criptors, we choose to introduce a special constructor for external chan-
nels, extchan(i), where i is the file descriptor.

This also makes possible the addition of a simplification rule: since an
input or output guard on an internal channel may never interact with the
outside, we may safely remove processes with such guards from the weak
disjunctive normal form computed by =—>.

(ii) A Unix file descriptor must be opened before its use. We introduced in the
calculus a new guard for this purpose, open(filename, type, Psyce, Prail),
with the intuitive meaning of opening the file whose name is given, then
behave as Psycc[extchan(i)/] if the opening succeeded, binding 0 with the
corresponding channel, or behaving as Pr,y[i/] in case of failure, binding
0 with a system error number. The type argument is used to convert
between ELAN and Unix data representation (for instance ELAN integers
may be encoded in Unix files as bit fields of various lengths, or even as
their printable representation).

The rules for the expansion and replication theorem must be extended
in order to take this new guard into account.

We did not address in this stage of prototype the possibility of closing
files, but this would be needed as well for practical applications.

(iii) The semantics of communication in 7-calculus and of input-output in
Unix are quite different. The former is synchronous and atomic, the
latter is asynchronous and may fail in the middle of a transfer.

9

VIRY

Asynchronicity is actually not a problem, because it is internal to Unix :
the semantic of a communication between a process P and the Unix en-
vironment is preserved. Atomicity is guaranteed when reading or writing
one byte at a time. It is possible to simulate atomicity for bigger trans-
fers as well, but at the expense of efficiency. A real I/O system should
certainly provide a choice between these both options.

Possible failure is more problematic because it does not fit in the model
of m-calculus. A possible approach would be to extend input and out-
put guards to allow for failure in a way similar to the open guard, at
the expense of simplicity in designing processes. Another more “practi-
cally” satisfying approach may be to add a notion of exception handling
to the calculus, but this seems a non trivial task. For the moment we
simply suppose that such events will make the whole program fail (gos-
sipers note : this is not much different from most commercially available
software...)

3.4 Value-passing and typing

So far, we have considered the plain monadic w-calculus. As shown in [Mil91],
this calculus is powerful enough to encode any kind of structured data, so the
game may end here. However, implementing a value passing calculus based
on this encoding loses one of the main advantages of rewriting logic, namely
the fact of being able to combine various calculi, using for each domain the
more adequate calculus without having to do unnatural encodings.

The solution is immediate. Extend the calculus by letting input and out-
put values be not only w-calculus channels, but also any arbitrary data type
(indices now range over arbitrary values, including channels). One may for in-
stance write a process in(0),.out(_,, 3 + 0,).nil, whose behaviour is intuitively
“receive an integer value z on a channel ¢, add it 3 and send the result back
on the same channel.

In order to have a conceptual difference between channels and values, some
notion of typing is called for. This notion of typing should also be able to take
into account a possible typing of values.

However, well-typedness cannot be expressed in the many-sorted frame-
work of ELAN, because the type of an index should depend on its value.
In our prototype we rely on the user to provide well-typed terms. Classical
techniques borrowed from functional programming may be used to guarantee
well-typedness.

10

VIRY

4 Examples

4.1 Double-way buffer

Q

A double-way buffer consists of two processes in parallel, each of them
repeatedly reading a data element from a channel and writing it on the other
channel. These processes are most naturally specified using recursive equa-
tions:

P =in(a),.out(b,0,).P
Q@ = in(b),.out(a,0,).Q

We cannot implement directly recursive equations, and need to restate
this definition using the replication operator. Note that this is always possi-
ble [Mil91] and that the two specifications are weak equivalent (i.e. equivalent
up to the internal actions). P and @ are redefined as

P Y (1),(0ut(0,, void).nil | lin(0,).in(a)x.out(b, 0,).out(_,, void).nil)

0 def (v)q(out(0,, void).nil | lin(0,).in(b)y.out(a, 0,).out(_,, void).nil)

where void is the only value of the single-valued type of channels that only
exchange synchronizations. Intuitively, the process below the replication op-
erator of P (resp.) can only be “activated” by an input from channel p
(resp. q).

The process P | @ reduces to the weak disjunctive normal form

(V)p(V)4(in(a),.P" +in(D),.Q")

with
P’ = out(b,0,).out(p, void).nil (1)
| in(b),).out(a,0,).out(q, void).nil (2)
| 1in(0,).in(a),.out(b, 0,).out(_,, void).nil (3)
| 1in(0,).in(a),.out(b,0,).out(_,, void).nil (4)

and similarly for ' by swapping p with ¢ and a with b.

The normal form exhibits the two possible external communications in(a)
and in(b). As soon as one of them is possible, the communication takes place
and the computation proceeds with either P’ or '. In P’ term (1) is the
continuation of the buffer process P, term (2) is the buffer process @, and
terms (3) and (4) are the “pools” of processes that are activated by an input
on channel p or q.

The two-way buffer example can be trivially extended by adding compu-

11

VIRY

tation of the output values, for instance
P = in(a),.out(b, f(0,)).P
@ = in(b),.out(a,g(0,)).P

where f and g are functions defined by rewrite rules. Since these defined
operators appear only strictly below process operators, we are guaranteed
that strong coherence is preserved [Vir95] and thus that our implementation
remains correct.

4.2 Filter

The previous example exhibits the typical programming style of our approach :
processes exchanging data, possibly computing output values with defined
functions. But process expressions may also appear below defined symbols,
as long as no non-linear rewrite rule may ever be applied above a process
expression, in order to preserve strong coherence [Vir95].

This is the case for instance with the if...then...else... operator, defined
by the following linear rules

if true then z else y — x
if false then x else y — ¥y

Then we can write a FILTER process, that repeatedly inputs values on
a channel 7 and copies them on an input channel o only when they verify a
given condition :

FILTER = in(i),.if ¢(z) then out(o,0,).FILTER else FILTER

This recursive definition is then restated using the replication operator as in
the previous example.

This possibility allows for a more “natural” programming style, for instance
closer to CSP/Occam [Hoa78], but the constructs that may appear above
processes must be clearly identified in order to ensure the condition about
non linear rules.

These constructs may also be the constructors of data types, and we may
be able for instance to specify in a unique framework a system of windows
each running its own independent process.

5 Conclusion

Starting from a rewriting definition of the reduction relation of m-calculus, we
have designed an input/output system for the ELAN rewriting interpreter that
is totally explicit in the rewriting framework itself and integrates smoothly
with any other “application program”.

This system has been implemented in ELAN to show its effectiveness. An
important issue yet to be checked is the strategy used for applying the sub-
stitution rules. Applying them eagerly is hopelessly inefficient, but particular

12

VIRY

strategies correspond to different types of known abstract machines [HMP95]
and can achieve the same efficiency once compiled.

We plan to add this system to a future ELAN distribution, and hope that
adding I/O capabilities to rewrite interpreters will make these systems very
attractive.

References

[BB89] T. Bolognesi and E. Brinksma. Introduction to the ISO specification
language LOTOS. In P. H. J. van Eijk, C. A. Vissers, and M. Diaz,
editors, The Formal Description Technique LOTOS, pages 23-73.
Elsevier Science Publishers B. V. (North-Holland), 1989.

[Biin93] R. Biindgen. Reduce the redex — ReDuX. In Proceedings
5th Conference on Rewriting Techniques and Applications, Montreal
(Canada), number 690 in LNCS, pages 446-450. Springer-Verlag, 1993.

[GKK'87] J. A. Goguen, Claude Kirchner, Héléne Kirchner, A. Mégrelis,
J. Meseguer, and T. Winkler. An introduction to OBJ-3. In J.-
P. Jouannaud and S. Kaplan, editors, Proceedings 1st International
Workshop on Conditional Term Rewriting Systems, Orsay (France),
volume 308 of LNCS, pages 258-263. Springer-Verlag, July 1987. Also
as internal report CRIN: 88-R-001.

[Gor94] A. Gordon. Functional Programming and Input/Output. Distinguished
Dissertations in Computer Science. Cambridge University Press, 1994.
ISBN 0 521 47103.

[HMP95] T. Hardin, L. Maranget, and B. Pagano. Functional back-ends within
the weak lambda-sigma-calculus. In Procs. of Workshop on the
Implementation of Functional Languages, Sept. 1995.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666—677, August 1978.

[KKM95] C. Kirchner, H. Kirchner, and M. Vittek. Designing CLP using
computational systems. In P. Van Hentenryck and S. Saraswat, editors,

Principles and Practice of Constraint Programming. The MIT press,
1995.

[Les94] P. Lescanne. From Ao to Av, a journey through calculi of explicit
substitutions. In Hans Boehm, editor, Proceedings of the 21st Annual
ACM Symposium on Principles Of Programming Languages, Portland
(Or., USA), pages 60-69. ACM, 1994.

[LRDY94] P. Lescanne and J. Rouyer-Degli. The calculus of explicit substitutions
Av. Technical Report RR-2222, INRIA-Lorraine, January 1994.

[Mes92] J. Meseguer. Conditional rewriting logic as a unified model of
concurrency. Theoretical Computer Science, 96(1):73-155, 1992.

[Mil91] R. Milner. The polyadic w-calculus: a tutorial. Technical Report ECS-
LFCS-91-180, LFCS, University of Edinburgh, 1991.

13

VIRY

[MOMO93] N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and semantic
framework. Technical Report CSL-93-05, SRI International, 1993.

[Vir95] P. Viry. Rewriting modulo a rewrite system. Technical Report TR-95-
20, Dipartimento di Informatica, Universita di Pisa, 1995.

[Vir96] P. Viry. A rewriting implementation of m-calculus. Technical Report
TR-96-29, Dipartimento di Informatica, Universita di Pisa, 1996.

[Vit94] Marian Vittek. ELAN: Un cadre logique pour le prototypage de langages
de programmation avec contraintes. These de Doctorat d’Université,
Université Henri Poincaré - Nancy 1, October 1994.

14

