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ABSTRACT
The importance of data quality assessment has significantly increased
with the boom of information technology and the growing demand
for remote sensing (RS) data. The Remote Sensing Data Quality
Working Group of the International Society for Photogrammetry and
Remote Sensing aimed to conduct an investigation on the principles of
data quality. Literature review revealed that most publications intro-
duce data quality models for application specific processing chains
and quality schemes are built case by case with particular domain
indicators only. Yet no general concept independent from applications
has been developed so far. This paper focuses on the formulation of a
RS quality concept adopted from information technology domain
describing a triangular RS data quality scheme that relates data
sources, quality dimensions and lifecycle phases. Following the intro-
duction it provides examples of international standards and funda-
mentals of theoretic quality modelling. After a short overview on
platforms/sensors, definitions of different quality dimensions are pre-
sented with their metrics organised in clusters (like resolution or
accuracy). The main achievement of the paper relates lifecycle phases
to different quality dimensions of high relevance. The objective is not
only to address experts of RS but to raise awareness of uncertainty for
the general RS user community.
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1. Introduction

In the early age of topographic, cadastre, military and environment application users
agreed that RS technology is a highly efficient method for environmental monitoring
and analyses. From the beginning, experts studied the direct and indirect influences of
RS data uncertainty on the reliability of spatial analysis and decision support (Chrisman
1984, 1987). Gradually, the complexity of the issue has increased with emerging tech-
nology enabling a growing group of users less aware of spatial data quality. In the
traditional fields of geodesy and surveying (Mueller 1964, Leick and Emmons 1994),
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cadastre (Jakobsson and Giversen 2007), photogrammetry (Konecny and Lehmann 1984,
Krauss 1994, Jacobsen 2006, Kresse 2010), cartography (Chrisman 1982), RS (Di and
Kobler 2000) and geography (Goodchild and Gopal 1989) expert users have developed
data quality indicators. With the development of Geographic Information Systems (GIS)
and the rapidly growing availability of the RS data, the importance of the data quality
issue has sharply increased (Goodchild and Gopal 1989, Salgé 1995, Veregin and Hargitai
1995, Veregin 1999). The widespread and extensive use of RS data is a beneficial
progress, but also increases the risk of incorrect usage. Goodchild concluded similarly
from his study of the growing GIS community in 1989: ‘GIS is its own worst enemy: by
inviting people to find new uses for data, it also invites them to be irresponsible in their
use’ (Goodchild and Gopal 1989).

In the past decades, RS data quality has become a major issue of Earth Observation
(EO) (Lecomte 2010) and geomatics (Kresse and Fadaie 2004). The closed community of
sophisticated RS professionals, like members of academic, governmental or industrial
stakeholders have opened up to a wider group of non-expert end-user community. The
introduction of high-resolution satellites resources on commercial bases and the public,
open-source access to several RS resources have driven these accelerated developments.
The exponential increase in the availability of data sources and user community has
caused an intense decrease in the sophisticated understanding of RS technology and its
quality indicators. In many cases, users assume that the only important RS data quality
measure is geometric accuracy just like in the domain of cartography or geodesy. In
limited cases where thematic mapping is involved, classification quality is additionally
considered. But no comprehensive quality evaluation procedure is carried out in uncer-
tainty assessment.

Today, heterogeneous applications flourished with data quality estimation models
mostly developed for a given RS data source or for a processing chain applied in
a specific RS area. As a result, in RS communities various and conceptually different
approaches have been developed to manage data quality (Zhang et al. 2018b, Moon
et al. 2019, Liu et al. 2019). Up to now the uncertainties in the RS domain have raised
a challenging task with no single global solution. Several methods try to answer the
urging question: how good is the RS data set or product?

Moreover, the exceptionally diverse set of solutions existing in the scientific literature
are also partially caused by the fact the user community of RS is very diverse. Different
users reflect a fundamentally different understanding of the subject. To draw a typical
example, governmental agencies working with large EO datasets try to understand their
most relevant user requirements and develop an official RS data quality scheme that
mostly reflects the agency’s requirements (Barsi et al. 2018). Other key leaders like space
agencies from the sensor’s side are focusing on the verification, calibration and doc-
umentation of uncertainties in data acquisition and processing chain (Masek et al. 2013).
Data providers are delivering RS data quality information to users by standardised
quality models (Sampaio et al. 2010). Even if these quality measures are delivered to
the end-users, often they are misused or ignored due to the lack of technical and
theoretical. As a result, heterogeneous RS data sets with precise uncertainty measures
provided by the producer often result in false assumptions of the end-users supposing
that data are error-free. Based on this, in general, a single global RS quality model is
impossible to determine by exact and simple definitions from the user’s perspective,
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since requirements vary across diverse user groups and application domains. End users
look for a solution to evaluate their data set as ‘fitness for use’ for their certain
application domain, but up to now, there is no global, general solution (Oort 2005).
Consequently, there are heterogeneous RS data and application-specific quality models
from the perspective of the diverse user community (see section 2.2), but so far there is
no comprehensive, uniform, systematic approach for data quality model in RS.

Therefore, the ISPRS has launched an international working group called Remote
Sensing Data Quality (ISPRS ICWG III/IVb) to conduct an extensive investigation to
develop a non-application specific, general RS data quality model. It follows the same
strategic objectives as similar initiatives from IEEE, CEOS and GEO, e.g. with the Quality
Assurance Framework for Earth Observation (QA4EO). Their mission is to enhance trust
in Earth Observation (EO) derived information and to prevent wrong decisions based on
EO-derived information by ensuring proper usage of EO data through the entire infor-
mation production process.

Based on the prior papers of the working group (Batini et al. 2017, Albrecht et al.
2018, Barsi et al. 2018, Kugler et al. 2018) this paper aims at giving a brief overview of
existing data quality schemes described by standards. Followed by the establishment of
a quality model scheme for RS domain based on Batini’s concept for information
technology domain (Batini and Scannapieco 2016). Batini’s scheme is based on the
close relation between quality dimensions, data sources related to lifecycle phases of
RS (Figure 1). The relationship of the three pillars of the quality scheme is that a great
variety of data sources are used in different phases of the RS lifecycle. Both the lifecycle
phases and the data sources are relevant for RS quality dimensions. Quality dimension
metrics are represented by suitable metrics. These three elements of the scheme
essentially depend on the application domain. Figure 1 illustrates the concept of data
quality model introduced in this paper.

Yet we have to emphasise that no comprehensive data quality system can be
developed due to the fact that it is a particularly complex area with no global solution.
Its complexity is demonstrated by the aspect that for well-defined features, uncertainty
can be considered as errors in the measurement process, for which statistical methods
can be used to quantify uncertainty. However, for poorly defined features, uncertainty
may be caused by vagueness or ambiguity of the features (Fisher 1999, Oort 2005). The
different types of uncertainty estimations are based on the observed, measured and
processed object classes that can be either Well Defined Object (Error, Probability), or
Poorly Defined Objects (Vagueness- Fuzzy Set Theory, Ambiguity, Discord, Non-
Specificity-Fuzzy Set Theory) (Fisher et al. 2006, Shekhar and Xiong 2008).

The quality model in this paper is a methodology that can assist the general user
community to develop an understanding of the issue related to RS quality. Unlike the
application or data-oriented models found in literature, this methodology defines gen-
eralised aspects of data quality in RS domain.

For this reason, the next section is starting with a brief introduction on the theoretical
modelling background of data quality. Then, it introduces and describes the elements of
the developed RS data quality scheme from Figure 1, starting with the systematic review
of data sources, quality dimensions and its metrics. The following section discusses
lifecycle phases of RS in general, relating them to relevant quality dimensions.
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Previous publication of the authors covered case studies of RS data quality (Albrecht et al.
2018, Barsi et al. 2018), while the current paper aims at giving a general scheme of RS data
quality. It is a primary elaboration of a data quality propagation theory, which covers
obviously the whole perspective to cover from data acquisition to end-user’s requirements.

2. Standards for data quality in remote sensing

The discovery, access, exchange and sharing of RS information and services among
stakeholders from various levels in the spatial data user community are facilitated
through an Earth Observation (EO) ecosystem. For this reason, standards are a key for
the quality and development of interoperable RS information and geospatial software.
Standardisation bodies aim at establishing a structured set of standards for information
concerning objects or phenomena that are directly or indirectly associated with
a location relative to the Earth. More specifically, it covers semantic, syntactic and service
issues, as well as procedural and quality standards at various levels of abstraction.

In the last decade, the standardisation for spatial information data quality has devel-
oped rapidly. After the standardisation for the vector domain had reached maturity
some organisations for standardisation focused their activities on image data and
gridded data. The major organisations involved are the ISO/TC 211 ‘Geographic informa-
tion/Geomatics’ which publishes the official standards, the Open Geospatial Consortium
(OGC), which publishes industry standards, as well as the Quality Assurance Framework
for Earth Observation (QA4EO) which publishes best practice guidelines (Kresse and
Fadaie 2004, Kresse 2010).

Figure 1. Concept of RS quality scheme adopted from information technology domain (Batini and
Scannapieco 2016).
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2.1. The data quality standardisation bodies and relevant standards

The Quality Assurance Framework for Earth Observation (QA4EO) compiled by the Group
on Earth Observation (GEO) and CEOS contributed to validation and overarching ideas
(Lecomte 2010). The QA4EO initiative has produced a number of guidelines that have
been adopted as Global Earth Observation System of Systems (GEOSS) best practice
documents. The key principle of QA4EO is that all data and derived products must have
associated with them a Quality Indicator (QI), which must be unequivocal and universal
in terms of its definition and derivation based on a statistically derived value. This value
should be the result of an assessment of its traceability to an agreed reference standard
as propagated through the data processing chain. Quality indicators may be entirely
objectively derived by measurement and calculation or, if necessary, may be elicited by
subjective expert judgement, but the data provider must specify how the quality
indicator was derived. The scientific literature suggest that quality indicators can inform
users of a global measure of quality without them having to examine the data in detail.

The most relevant standardisation organisation for photogrammetry and RS is the
ISO/TC 211 Geographic information/Geomatics. Within the ISO/TC 211 the Working
Group 6 ‘Imagery’ integrates all related developments. The ISO focus on the theme
specific metadata (Kresse and Fadaie 2004).

The Open GIS Consortium OGC is the worldwide leading consortium of GIS industries
promoting the interoperability of geographic information across platform, system, and
country borders. The main field of current activity is the complete integration of the
sources of geographic information based on the Internet. The (OGC) plays an important
role on the implementation level. In theory, the ISO/TC211 develops the abstract
standards and the OGC develops the implementations standards.

2.2. Standards for designing validation approaches in remote sensing projects

Standards play an important role when it comes to the quality assessment of individual
projects that apply RS data or systems. Users try to understand the specifications of all
the quality measures involved in the project. These specifications can be understood
from the used data, the applied process and the anticipated/achieved goals. The QA4EO
was established with a focus on individual projects and with the objective to facilitate
interoperability of GEO systems provided by EO.

An example that goes beyond the scope of individual application scenarios is NASA’s
Earth Science Data and Information System (ESDIS) project where standards were
adopted based on defined EO mission requirements. Thereby, NASA was adopting and
approving a list of standards including ISO 19115 Geographical Information Metadata
Standard, NASA Earth Science Data Preservation Content Specification, and Digital
Object Identifiers (DOIs) for Earth Observing System Data and Information System
(EOSDIS). NASA ensured to provide the users with the necessary required information
to understand and use the data and products of their EO missions. Approved standards
include data format standards, status of data and systems together with specification
document and user resources. Approved data formats are for example HDF EOS 5 and
OGC KML. Additional information related to the specific formats can be found in the
NASA Earth Science Community Recommendations for users. Thus, a user of the data
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can refer to those approved standards to understand the quality aspects and the
limitations of data used for their project. Further, the community recommendations
provide valuable information including the strength, weakness, applicability and limita-
tions of specific data formats. Consequently, the designer of an RS validation process for
a certain project is able to employ the metadata that provides standardised RS data
parameters as candidates for the QC in the RS lifecycle. This includes temporal and
positional information and many more factors relevant for the specific project at hand.

Some standards are formulated to add a value to other standards making sure to cover
the elements related to RS, example of which is what the EOSDIS adds to Federal
Geographic Data Committee (FGDC). Content Standard for Digital Geospatial Metadata
added metadata elements in the RS domain, such as platform information, sensor informa-
tion, the history of data processing, and the spatial representation of sensor data (Di and
Kobler 2000). Thus, standards help to regulate the broadened use of EO data and inter-
operability. Taking the EOSDIS as an example, the system provides structural and product
metadata, covering relationships, data storing information, and the product information.
Other types of standards exist that potentially have implications for designing the valida-
tion processes such as the FGDC Content Standard for Remote Sensing Swath Data from
the context of mission planning. The standard defines the minimum data content of
a swath and the relationships among its internal components with semantic definitions.
This type of standard can be beneficial to certain applications of RS as it helps to under-
stand the contents, coordinates, time scale of a swath data.

Thus, standards can provide the necessary support for designing the quality valida-
tion approaches, especially when detailed information is required. But initially, a unified
process can be of benefit and guide to the user to develop a process that is compliant
and interoperable. Finally, standards regulate the reporting process, which being fol-
lowed will enable the continuity and clearness of the produced products.

3. Theoretic modelling in data quality

Data Quality (DQ) is considered a multifaceted concept, i.e. different dimensions concur
to its definitions. Traditionally, DQ has been investigated focusing especially on data as
represented in relational tables adopted in Data Base Management Systems (DBMS) (for
an extensive survey of DQ in the relational model see (Batini and Scannapieco 2016)).
The relational model adopts a clean distinction between the intentional part of data, the
database schema, and the extensional part, made of data values that change in time.
Such distinctions have raised a corresponding distinction between schema quality
dimensions and data quality dimensions. An example of schema quality dimension is
normalisation while examples of DQ dimensions are accuracy, i.e. how close are data
aiming to represent an observable in the real world to the true data representing the
observable, and currency, to what extent data are up-to-date.

Notice that dimension definitions (Batini and Scannapieco 2016) do not provide in
general a method of measurement of the level of quality; to get this we have to define
quality metrics. For instance, to measure the accuracy of an alphanumeric value v, we
need a lookup table, e.g. of names, and the measure of accuracy is the minimal
normalised distance between v and values in a reference-certified list of values, usually
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called look-up table, where the distance is measured in terms of a given distance
function, e.g. edit distance.

In the recent years, digital data collected through various types of sensors have
reached a remarkable size, and are growing and growing exponentially, assuming the
denomination of ‘big data’. In the world of big data (BD), to which remote sensing data
belong, we have to consider first of all that the ‘ground truth’ is frequently no longer
available, and the assessment of data quality is often results in the assessment of the
data source. Besides this change of paradigm, in BD, data quality dimensions evolve in
DQ are influenced by two relevant issues, namely data types and data quality in use.

Data types – Big data correspond to a variety of data types rising from linguistic and
visual information, gathered through social networks, enterprise and public sector
information systems as well as the Internet and the Web; research in data quality has
produced a deep investigation on how DQ concepts can be extended to such vast set of
data types, encompassing, e.g. semi-structured texts, maps, images, linked open data.
Notice that in such data types the distinction between schema and instance fades or
even vanishes.

Adopting the streams of activities discussed by (Boell and Cecez-Kecmanovic 2014,
Batini and Scannapieco 2016) focuses on what Boell calls the inner hermeneutic cycle,
made up of searching, sorting, selecting, acquiring, reading, identifying, refining. Such
complex data cycle, and the variety of sources of data, results in high variability and
heterogeneity of data types used in the area of big data; this evolution led to:
a classification of structural characteristics associated to each data type.

● a clustered classification of data quality dimensions, where cluster representative
dimensions are Accuracy, Completeness, Redundancy, Readability, Accessibility,
Consistency, and Trust.

● a posteriori justification of the evolution of quality dimensions from relational data
types in a database setting to dimensions mentioned in the literature for each type.

The method discussed in (Batini and Scannapieco 2016) can be adopted also for a priori
discovery of relevant dimensions and metrics for a given BD type. In this case, the target
of the exploratory research is a methodological process that has as input (i) a quality
dimension in a given quality dimension cluster, and (ii) a data type described in terms of
its structural characteristics; such a methodological process should allow to discover or
at least to explore the conception of specific dimensions and metrics, and possibly
assessment and improvement methods and techniques for achieving BD quality.

Data Quality in use – Organisations make use of information for different purposes,
among them taking decisions, doing actions, producing interpretative or predictive
models. In the context of DQ, the term fitness for use has been first used to underline
the characteristics of data quality not considered as intrinsic, but else when data are
used for some goal or process, and one wants to predict the influence of quality on the
outcome, namely, the degree of achievement of the goal or process.

The concept of data utility considered independently from the quality perspective has
been long investigated in the literature on management of information systems; see, e.g.
(Ahituv 1980). One of the first authors to deal with the relationship between decision
quality and IQ is Stephenson (1985), in which it is observed that to make high-quality
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decisions, it is crucial to have access to information that is as complete and relevant to
decision tasks as possible, rather than just having a high volume of information.
A qualitative investigation of the relationship between decision quality and DQ is
performed in (Jung 2004) where the DQ conceptual framework proposed in (Wang
and Strong 1996) is adopted, in which DQ is classified in terms of intrinsic, contextual,
representational, and accessibility dimensions.

Contextual dimensions are discussed in (Batini and Scannapieco 2016) as an extension of
intrinsic dimensions that we have considered so far. In a contextual dimension, a weight is
associated to data values that encapsulate the utility of the value for a given task.

4. Data sources in remote sensing

4.1. Remote sensing platforms

The data quality model introduced in the introduction section describes that RS data
sources used in different phases of the lifecycle are relevant for dimensions and their
metrics. For this reason, it is essential to provide a brief reflection on data sources. In the
RS domain datasets are acquired from different platforms. In general, RS platforms can
be distinguished according to their elevation above ground. They can be divided into
three categories: space platforms, aerial platforms and terrestrial platforms (Table 1).
Space platforms are usually satellites carrying different types of sensors. Aerial vehicles
are airplanes, helicopters or UAVs. Terrestrial sensors carry out measurements on the
ground, sensors are often mounted on tripod like in close-range photogrammetry,
terrestrial laser scanner (Tóth and Jóźków 2016).

With the highest altitude and stability, space-borne satellite platforms are significant
parts of RS for almost 50 years (Gu and Tomgjia 2016). In addition, different sensors can
be mounted in a single platform resulting in simultaneous coverage benefits. Platform
revisit cycle and coverage cycle greatly depend on the elevation of the platform over the
Earth’s surface. The general classification of the satellite platforms is based on their
orbital geometry and timing. Geostationary, equatorial and polar orbiting, Sun-
synchronous orbits can be distinguished (Ge and Yan 2012, Tong 2016).

Airborne platforms can be mainly divided into two categories: manned aircraft and
UAV. Manned airborne platforms have the longest history in Earth Observation, as it was
the sole method in the early age of RS. The first aerial images were acquired on balloons
in the XIX century providing images with significant uncertainty. Aerial RS systems have
played an important role in topographic mapping which has been the primary applica-
tion in the early age. Nowadays, stability and predictable flight tracks have become
crucial expectations. In aerial RS, a wide spectrum of aircrafts and helicopters exist in
both civil and military domain. The more necessity for higher altitude and stability, the
more sophisticated aircraft must be used. The low altitude aircrafts include fixed-wing
propeller-driven airplanes, ultralight single seat-powered flying machines, helicopters
and drones. This latter technology has been extensively used both for civil and military
applications.

The UAV systems can complement manned aircraft and satellite RS system observations
(Pajeres 2015). Fixed, rotated-wing and combined solutions are all used in UAV technology
with different flying heights, distances, manoeuvrability. It has the characteristics of small
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size, light weight, low-cost platform when compared to manned airborne platforms (Yan
et al. 2004). A wide range of different sensors (camera, multi-camera, radar, LiDAR, magnet-
ometer, etc.) can be mounted on UAVs to acquire data for mapping, modelling and
monitoring spatial phenomena. (Guo et al. 2019).

Mid-altitude elevation aircrafts include mostly turbo-prop airplanes and jets. These
have more stability and ability to obtain higher spatial coverage. Special applications,
like satellite system simulations, atmospheric researches or reconnaissance require high
altitude aircrafts, which provide very large areal coverage with lower resolution.

Terrestrial platforms can carry sensors on towers, cars or ships measuring the spec-
trum of various objects. There are several applications (industrial, agricultural, military,
environmental, etc.) of these platforms and devices, similar to the space-born and aerial
specifications, mentioned above. In some cases, the acquired data of terrestrial platforms
and their sensors can be efficiently integrated into RS datasets with smaller resolution
(Zhang et al. 2018a). In connection with ground-based alternatives, mobile mapping
systems (from trains to human-carried devices) and the static handheld devices, tripods,
towers and cranes are the commonly used ground platforms. The mobile mapping
technology is widely applied recently and includes all georeferenced platforms with
fully digital sensor implementation. Airborne RS systems, traditional land-based vehicles
and personal navigation systems (outdoor and indoor) are the basic types. A great
variety of static and permanent platforms are used in close range RS laboratories too.

4.2. Remote sensing sensors

Platforms carry the key component of the RS systems, the sensor itself. Sensors are
devices for acquiring electromagnetic radiation of the targeted object or surface.
Generally, sensors can be distinguished according to the range of wavelength they
measure and active or passive nature of detecting electromagnetic radiation (Remote
Sensors 2019). Besides, the illumination source, data form also plays a major aspect in
sensor classification. Passive or active sensors refer to the first, imaging or non-imaging
sensors refers to the second aspect. Passive RS systems measure light reflected or
emitted by a target. The first depends primarily on solar electromagnetic radiation. On
the contrary, active instruments emit their own source of energy and measure the
returned quantity after it has interacted with a target. RS sensors measure the reflected
or emitted radiation of a target or surface. Imaging sensors can produce image of an
area, where visualisation is resolved by smaller parts of the sensors whole view (pixels).

Table 1. Table shows different types of RS
platforms.
Type Subtype

Space geostacionary
sun-synchronous

Aerial aircraft
helicopter
UAV/drone
balloon

Terrestrial mobile
static
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Non-imaging instruments register only a single response value from the measurement,
therefore usually no image is created from the data (Xu 2005, Weng 2017).

Most common passive sensors are typically the optical sensors that are either single
channel, multichannel, hyperspectral or thermal depending on their sensitivity to the electro-
magnetic spectra (Table 2). Other sensors emit their own energy to register backscatter of the
radiation like RADAR systems using the microwave range of the spectra. It usually produces
elevation measurements like InSAR technology or performs nadir single measurement like
RADAR Altimeter. Furthermore, laser beam can be also used to range distance to target with
laser scanning technology. Besides, microwave emission of surfaces or objects can be mea-
sured with passive microwave sensors like scatterometers and microwave satellites.

Optical sensors are the most common RS instruments and photographic cameras are
the oldest sensors in EO. In the first era of EM radiation detection, film was placed in the
focal plane behind the optics mounted in a camera to obtain images. In the last decades,
digital sensors (CCD/CMOS) have widely replaced this technology (Zhao 2003). Obtained
panchromatic and monochrome images were certainly a perfect solution for geometric
data acquisition in mapping, but the need for spectral information to classification
processes was an essential step forward. Filters, beam splitting and multi-camera heads
were the major technological solutions to obtain multispectral images. Radiometer is an
instrument designed to measure the intensity of electromagnetic radiation in a set of
wavebands reaching from visible light to infrared radiation. The electro-optic radiometers
are similar in design to cameras, but instead of film, they use an electronic detector to
record the intensity of electromagnetic energy. Radiometers that measure more than one
waveband are called multispectral radiometers. Light is separated into discrete wavebands
to obtain multiple waveband or multichannel data. This separation can be carried out
using filters, prisms or other sophisticated techniques (Srivastava et al. 2014).
Hyperspectral sensors or imaging spectrometers are instruments that acquire images in
many narrow contiguous spectral bands throughout the visible, and infrared portion of
the spectrum (Qian et al. 2004). They collect data in up to hundreds of bands enabling the
construction of continuous reflectance measures (Lillesand et al. 2015).

Thermal infrared RS is a slightly different type of RS data than visible light RS data. It is
measuring radiance temperature in the thermal part of the electromagnetic spectra. The
measured thermal brightness temperature of objects or ground then can be related to the
kinetic temperature of the observed ű target (Künzer and Dech 2013). The sensor to obtain
such data, the thermal infrared radiometers often differ from other multispectral radiometers.

Active RS has two significant advantages over passive instruments. They do not require
solar illumination for measurement and are basically independent of weather conditions

Table 2. Table shows the classification of different RS sensors.
Illumination source Type Subtype

Passive electro-optical single channel
multispectral
thermal
hyperspectral

Active microwave radar
altimeter

Passive passive microwave
Active laser laser scanning
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(Sui 2009). RADAR technology is by now more than a half-century old technology in RS
observation. There are several factors influencing the intensity of the returning RADAR
pulses, however the geometric and di-electrical properties of the surface or object reflect
the most important ones. Consequently, information on the structure and material compo-
sition of target can be measured with microwave radiation. RADAR sensors with their all-
weather capability are penetrating clouds, rain and snow, providing different information
from optical sensors. The time required for the energy to travel to the target and return back
to the sensor determines the distance or range to the target. By recording the range and
magnitude of the energy reflected from all targets as the system passes by, a two-
dimensional image of the surface can be produced (Remote Sensors 2019). Radar altimetry
is recoding surface height by measuring the time taken by a radar pulse to travel from the
satellite antenna to the surface and back to the satellite receiver. Combined with precise
satellite location data, altimetry measurements yield surface heights. This instrument is
a non-imaging sensor since measurements are taken only in nadir direction as the platform
moves forwards (Altimetry 2019).

Lidar (Light detecting and ranging) systems use laser for illumination of the target.
This technology became affordable in the past 20 years. Nowadays, systems are
mounted on space, aerial and terrestrial platforms too. Lidar is a sensor with high
precision position and high sensitivity. They acquire data combining high-precision
models with radiation intensity measures. Considering the number of digitised back-
scattered pulses, there are instruments, which can detect 2 returns, 4–6 returns and by
now, full-waveform signals (Luo et al. 2014).

The passive microwave RS sensors are collecting electromagnetic radiation in the low
frequency, microwave portion of the spectra responding to a low level of energy emitted by
the target. The instruments operate the samemanner as thermal radiometers and scanners.
Sensors incorporate antennas rather than photon detectors (Qian et al. 2004).

5. Data quality dimensions and metrics

5.1. Data quality dimensions in remote sensing

The physical attributes and acquisition properties of the RS data cannot be the only
condition influencing the choice of the best data set for a given application domain. It
has to be extended with quality indicators characterising the fitness for use of the
selected domain. For this reason, this section describes data quality dimensions and
their metrics directly related to data source and lifecycle. The latter is highly influenced
by the domain of the application in use. The GEO QA4EO initiative has defined Quality
Indicators as ‘a means of providing a user of data or derived product (which is the result
of a process) with sufficient information to assess its suitability for a particular applica-
tion’ (Lecomte 2010). Therefore, a comprehensive list of all quality indicators is
a challenging issue with no general solution. Its metrics should be based on
a quantitative assessment of its traceability to an agreed reference or measurement
standard ideally SI, the International System of Units.

Resolution has an outstanding importance in RS domain. The most common quality
related dimension is mainly associated to the RS sensors and data sources. Various
resolution dimensions fundamentally influence the whole lifecycle and obviously the
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obtained products. Elements of the resolution cluster with a short definition and their
metrics are presented in Table 3.

The accuracy quality cluster is a multilevel feature group containing similar categories
as in the resolution cluster. The main subgroups are the precision and the accuracy
dimension elements. Precision is the ‘Closeness of agreement between indications or
measured quantity values obtained by replicate measurements on the same or similar
objects under specified conditions’ (VIM 2012). Accuracy is the ‘Closeness of agreement
between a measured, quantity value and a true quantity value of a measurand’ (VIM 2012).
While spatial precision is defined, the instability of the observation, in contrast spatial
accuracy is the positional accuracy of features in relation to the Earth. The multilevel
feature groups of accuracy quality cluster are presented in Table 4.

In the cluster Completeness (Table 5) spatial completeness is dealing with the fullness
of a dataset handling for example the effect of shadowing objects, sun flares on water
surfaces or masking by an object (e.g. propeller of a UAV). It is a feature about area
coverage. In photogrammetry (especially in stereophotogrammetry) stereo completeness
has key importance, representing the ratio of the stereo coverage in image pairs. In
monitoring systems and applications, temporal completeness describes how the obtained
data represents a complete time series of a phenomenon (Nyquist-rate 2019). The
thematic completeness measure describes the data interpretation quality how the
expected and defined classes are evaluated. This feature is important when using of
e.g. multiple classifiers.

Spatial redundancy in the Redundancy cluster (Table 6) is a value proportional to the
number of overlapping images or overlapping area. To set an example using stereo
image evaluation or Structure-from-Motion (SfM) algorithm this dimension has
a fundamental importance. While temporal resolution is a measure describing the revisit
cycle or acquisition repetition in time, temporal redundancy defines the amount of
repetitive/multiplicative observations for a certain area or object set.

The Readability cluster (Table 7) is divided into spatial readability and radiometric
readability subtypes. It is a measure in data interpretation, how objects can be identified/
separated in a spatial and radiometric context.

The Accessibility cluster (Table 8) focuses on the sources of the images. Data
providers control how fast the captured images can be obtained or delivered. Some
institutions established speed-up processes for specific RS data acquisitions. To set an
example the International Charter on Space and Major Disasters is facilitating rapid
response to natural or man-made disasters enabling fast delivery after acquisition. In
environmental monitoring domain, the fast accessibility can be crucial in some applica-
tions, but it has temporal, technical and legal limitations too.

Table 3. Resolution dimension cluster in RS.
Dimension name Short definition Dimension metric

Spatial resolution smallest distinguishable object on ground m, km
Radiometric resolution quantisation level of a measurement bit
Spectral resolution number of bands and their wavelength intervals nm, μm or dimensionless
Temporal resolution frequency of obtaining image over an area sec, hour, day, week, year
Point density number of measured points on surface units or in volume units points/m2, points/m3
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In RS spatial consistency can be described by the superposition of geometric, thematic
and topologic consistency in the Consistency cluster (Table 9). It represents the quality
of image interpretation/understanding: how integrally are the different objects or
classes recognised or evaluated. The question is for example, how coherent is a bridge
detected with roads and lanes from RS data. Thematic consistency can be described as
recognition integrity, how uniform are the thematic classes detected on the area of
interest. The topologic consistency is defined to measure the connection and topological

Table 4. Accuracy dimensions cluster in RS.
Dimension name Short definition Dimension metric

Geometric precision instability of the observation variance of the pixel size
Spatial precision correctness of the spatial representation of the

feature
%

Radiometric precision/stability correctness of the quantisation %
Spectral precision correctness of the boundaries of the spectral bands nm, μm, Hz
Temporal precision goodness of the data capture date and time sec, hour, day, week, year
Spatial accuracy accuracy of position of features in relation to Earth RMSE, m
Radiometric accuracy correctness of the intensity values (radiance

uncertainty)
%

Spectral accuracy correctness of the sensor’s imaging capability in the
given channel

nm, μm

Temporal accuracy/validity quality of the RS product in time (how long does it
store good information)

sec, hour, day, week, year

Classification/thematic accuracy correctness of the classification or of the quantitative,
non-quantitative attributes

confusion matrix and its
derived metrics

Semantic accuracy goodness of the semantic information in the RS
product (e.g. interpreted map)

confusion matrix and its
derived metrics

Table 5. Completeness dimension cluster in RS.
Dimension name Short definition Dimension metric

Data completeness ratio of data fullness %
Spatial completeness obstacle ratio on the observed area %
Stereo completeness ratio of stereo coverage %
Temporal completeness appropriateness of the temporal coverage %
Thematic completeness ratio of semantic content of phenomena reliability %

Table 6. Redundancy dimension cluster in RS.
Dimension name Short definition Dimension metric

spatial redundancy number of overlapping observations No.
temporal redundancy number of repetitive or synchronous observations in time No.

Table 7. Readability dimension cluster in RS.
Dimension name Short definition Dimension metric

spatial readability interpretation capability m/m
radiometric readability differentiation capability bit

Table 8. Accessibility dimension cluster in RS.
Dimension name Short definition Dimension metric

Temporal accessibility time delay between data capturing and data delivery sec, hour, day, week, year
Data accessibility RS database availability rating
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clarity of an object. In urban mapping focusing on objects of the built-up environment,
house-parcel inclusions can be characterised by consistency dimension. The temporal
consistency represents a measure about the possibility or impossibility of observation
matching the phenomenon that changes in time.

5.2. Examples of dimension metrics

RS data quality is a complex area and it goes beyond the scope of this paper. For this
reason, only metrics of the most common dimensions are in focus. These quality
dimensions in RS context are the implementation of a generic quality dimension
taxonomy. None of the dimensions can be represented without its suitable metric. All
have to be interpreted with respect to the data sources and their processing workflow
that is called lifecycle phases. Since they are usually presented by numeric values in daily
RS practice, their common understanding is crucial. Literature studies emphasise the
weakness of their definitions, although many of them have the same or very similar
meaning. The following collection has the goal to systematically explain the occurring
terms and their definitions together with their synonyms and references.

The root-mean-square error (RMSE) is the accuracy measure of the differences
between the actual (true) and measured values. In practice, as an example in spatial
accuracy measure, RMSE is defined for coordinates in X and Y directions.

The confusion (error) matrix is a specific table that allows the visualisation of the
classification performance. The matrix is an excellent base to derive further quality
measures. Two basic types exist: the binary and the multiclass confusion matrix (Barsi
et al. 2018). The binary confusion matrix visualises, how a single class (C) and its
complementary (not C) were classified in comparison to the true recognition. The
rows of the matrix contain the classified (sometimes called as predicted or estimated
or output) results, while the columns present the actual (true or target) belongings
(Campbell 1996). The original table can be extended by the goodness and error
measures computed from the original table values.

Derived quality indicators are TP the true positive (hit or power), TN the true negative
(correct rejection), FP the false positive (false alarm, Type I error) and FN the false
negative (miss, Type II error) values. Based on these items further indicators are to be
defined, as PA is the producer’s accuracy (recall or true positive rate or sensitivity), UA
the user’s accuracy (consumer’s accuracy or precision or positive predictive value), OA
the (overall) accuracy, OE the omission error (false negative rate), CE the commission
error (false discovery rate), TNR the true negative rate, FPR the false-positive rate, NPV
the negative predictive value and finally FOR the false omission rate. The rate values are
often given in per cent (Barsi et al. 2018).

Table 9. Consistency dimension cluster in RS.
Dimension name Short definition Dimension metric

Geometric consistency integrity of geometric primitives %
Thematic consistency recognition integrity %
Topologic consistency measure the connection and topological clarity of object %
Temporal consistency temporal matching of the observation to the phenomena sec, hour, day, week, year
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Confusion matrix can be extended also for multiclass cases. The measures are the same
as in binary case, but the above formulas must be extended by the increased number of
classes. Accordingly, user’s accuracy is computed as the right classified pixels divided by all
pixels belonging to the certain class. In multiclass case, two further measures are frequently
used, which are the average accuracy and Cohen-kappa (Cohen 1960).

The quantitative evaluation metrics for the radiometric quality of RS images can be
classified as follows. One is reference-based method, which requires the availability of
another high-quality image as the reference. The other one is based only on the
statistical information of the image to be evaluated.

Important radiometric reference-based metrics are the PSNR (Peak Signal-to-noise
Ratio), the UIQI (Universal Image Quality Index), the SSIM (Structural Similarity Index),
whereas non-reference metrics are the SNR (Signal-to-noise ratio), the MG (Mean
Gradient), (information) entropy. Spatial quality description is sometimes given by signal
processing terms, like the MTF (Modulation Transfer Function) or the PSF (Point Spread
Function) (Weng 2017).

6. Data lifecycle in remote sensing

Remotely sensed data are captured and processed to meet the goals of an application
domain. To be able to obtain the targeted results, particular data processing workflow is
applied from data capturing to RS outputs. The elements of RS workflow in general are
discussed in this section described as phases of the RS data lifecycle. In order to keep the
most general approach, the following operation groups are compiled:

● Data acquisition
● data source selection: selection of the domain relevant physical data source,
which implies the RS platform and sensor.

● data reading/data capture: “detailed description of a measurement according to
one or more RS measurement principles and to a given measurement method,
based on a measurement model and including any calculation to obtain
a measurement result” (VIM 2012).

● sensor calibration: Following the sense of the definition of International Bureau of
Weights and Measures: “An operation that, under specified conditions, in a first
step, establishes a relation between the quantity values with RS measurement
uncertainties provided by measurement standards and corresponding indications
with associated measurement uncertainties (of the calibrated instrument or sec-
ondary standard) and, in a second step, uses this information to establish a relation
for obtaining a measurement result from an indication” (VIM 2012).

● Storage.
● data format management (DFM): “analysis of data formats and their associated
technical, legal or economic attributes which can either enhance or detract from the
ability of a digital asset or a given information systems to meet specified objectives”
(Wikipedia 2019). It also contains the selection and change of data formats.

● data compression: “encoding information using fewer bits than the original repre-
sentation” (Wikipedia 2019).

● data replication: copying data into multiple realisations.
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● data distribution: replication of data among different sites.
● Data preprocessing, processing and analysis.
● restructuring: change of the organisation/structure of the originally obtained data.
● data selection: finding data cases satisfying one or more concrete conditions on
attribute values.

● transformation: operations of converting data sets between different representa-
tions, formats, content.

● sampling, resampling: creation of representative subset of initial data set
● filtering: removing unwanted components or features of captured RS data.
● feature extraction: derivation of measures in describing target objects.
● segmentation: partitioning of remotely sensed data into two or more groups.
Sometimes its meaning is e.g. an image splitting into similar attributed regions.

● clustering: creating data groups of similar features.
● classification: separation of remotely sensed image/raster/point cloud data into
various (thematic) categories.

● sensor/data fusion: integration and/or merge of multiple heterogeneous data
even with different representations.

● optimisation: selection of the best element/parametrisation/scenario with regard
to some given criterion from some available alternatives (Wikipedia 2019)

● abstraction: derivation of general rules from specific examples.
● Data visualisation and delivery.

As our basic data quality scheme has been presented in Figure 1, the elements of the
data lifecycle has strong relation to data quality dimensions and their adequate metrics.
Table 10 shows the most relevant dimensions of the above lifecycle phases and
subphases.

Table 10. Quality dimensions versus lifecycle.
Lifecycle phase Lifecycle subphase Dimension name

Data acquisition data source selection resolution, accessibility, spatial accuracy
data reading/data capture completeness, temporal validity
sensor calibration accuracy, precision

Storage data format management readability
data compression redundancy, radiometric accuracy
data replication accessibility, completeness
data distribution readability

Data preprocessing, processing
and analysis

restructuring consistency, completeness
data selection temporal validity, consistency,

completeness, resolution
sampling, resampling resolution, accuracy
filtering radiometric, geometric accuracy
feature extraction thematic, semantic accuracy
segmentation resolution, thematic, semantic accuracy
clustering resolution, thematic, semantic accuracy
classification consistency, thematic, semantic accuracy
sensor/data fusion consistency, resolution, accuracy
optimisation consistency
abstraction semantic accuracy

Data visualisation and delivery readability, completeness, temporal validity
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7. Conclusions

During the last decade, the community working with geospatial and RS data has faced
an exponential increase opening a new perspective in data management. The RS
community itself has undergone a fundamental change: the minor group of profes-
sionals has been extended to a broader community of non-professional users. In the
past they were mostly using RS products, now they started to take an active part in RS
data collection and processing. In many cases, non-professional users assume that digital
data are by definition an error-free source of information. Google’s Map service has
started to visualise geometric uncertainty in location data by drawing areas instead of
dots on its maps. It is a step forward for the general user community to understand that
data uncertainty is an important issue.

In the practice of surveying and geodesy observations and measurements include
errors. Measurement result is complete only when it is accompanied by a statement of
the associated uncertainty which can propagate when new variables are derived from
the original measurements. This phenomenon is called error propagation. With the help
of error propagation calculation, an objective description of uncertainty can be devel-
oped for processing complete chains e.g. the error in the area calculation of a rectangle
can be estimated from the uncertainty assessment of the length measurement. The
procedure of how to calculate the area of a rectangle is widely known, but the
uncertainty assessment procedure is only known and applied by a minority of
professionals.

In the domain of RS geometric accuracy is a widely known measure for uncertainty
estimations however further key indicators introduced in this paper like completeness,
redundancy or consistency are less known features. Applying the error propagation
estimation in the RS domain helps to elaborate a more generic approach of data quality
and its behaviour during the processing workflow.

This paper aims at speeding up this development by raising awareness for both
professional and non-professional users of RS data uncertainty. It is reviewing quality
dimensions to understand that geometric accuracy is not the only quality indicator and
data are not error free. On the other hand, uncertainty cannot be eliminated but we
have to learn how to minimalise and to live with it. Geometric accuracy is a crisp
uncertainty feature, while other quality measures are more fuzzy features. Crisp features
can be considered by exact and similarly crisp laws, fuzzy phenomena require fuzzy rules
and management mechanisms.

The data quality model described in the paper relates the three basic elements of
data source – lifecycle – quality dimension in a triangular quality scheme.

RS data sources were presented as platforms and sensors in the paper. Regarding
data fusion aspects satellite-based, terrain-based or similar data capture equipment have
great importance in the lifecycle, which is more substantial if several sources are to be
integrated or fused. Beyond the commonly expected advantages of fusing multiple data
sources, uncertainty estimations raise further issues. As an example, satellite- and terrain-
based optical imagery can be fused to increase geometric and/or radiometric resolution,
but the resulting integrated data cube has modified consistency measures. Satellite-,
terrain-based or similar equipment, Internet of Things (IoT) components, field sensors,
etc., have dominant importance in the workflow; their integrated and fused use
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underline the necessity of data quality analyses covering the most available features not
limiting for the (existing and widely spread) geometric descriptors.

References

Ahituv, N., 1980. A systematic approach toward assessing the value of an information system. MIS
Quarterly, 4 (4), 61–75. doi:10.2307/248961

Albrecht, F., et al., 2018. Providing data quality information for remote sensing applications. The
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XLII (3), 15–22. doi:10.5194/isprs-archives-XLII-3-15-2018

Altimetry, 2019. Available from: http://www.altimetry.info/glossary_/altimetry/ [Accessed on 5
November 2019].

Barsi, Á., et al., 2018. Accuracy dimensions in remote sensing. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII (3), 61–67. doi:10.5194/
isprs-archives-XLII-3-61-2018

Batini, C., et al., 2017. Data quality in remote sensing. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII (2/W7), 447–453. doi:
10.5194/isprs-archives-XLII-2-W7-447-2017.

Batini, C. and Scannapieco, M., 2016. Data and information quality: dimensions, principles and
technques. Switzerland: Springer International Publishing. ISBN 978-3-319-24106-7

Boell, S.K. and Cecez-Kecmanovic, D., 2014. A hermeneutic approach for conducting literature
reviews and literature searches. Communications of the Association for Information Systems, 34
(1), 257–286. doi:10.17705/1CAIS

Campbell, J.B., 1996. Introduction to remote sensing. London: Taylor and Francis. ISBN-13: 978-
0415416887.

Chrisman, N.R., 1982. A theory of cartographic error and its measurement in digital databases.
Proceedings, AutoCarto, 5, 159–168.

Chrisman, N.R., 1984. The role of quality information in the long-term functioning of a geographic
information system. Cartographica, 21 (2–3), 79–87. doi:10.3138/7146-4332-6J78-0671

Chrisman, N.R., 1987. A draft proposed standard for digital cartographic data quality. In:
H. Moellering, eds. The American cartographer report 8. Columbus, OH: National Committee
for Digital Cartographic Data Standards, 129–135

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20 (1), 37–40. doi:10.1177/001316446002000104

Di, L. and Kobler, B., 2000. NASA standards for earth remote sensing data. International Archives of
Photogrammetry and Remote Sensing, XXXIII (Part B2), 147–155.

Fisher, P., Comber, A., and Wadsworth, R., 2006. Approaches to uncertainty in spatial data. In:
R. Devillers and R. Jeansoulin, eds. Fundamentals of spatial data quality. London, UK: ISTE.
ISBN:9781905209569

Fisher, P.F. Models of uncertainty in spatial data. In: P.A. Longley, et al., eds., 1999. Geographical
information systems. Chichester, UK: Wiley, 191–205. ISBN-13: 978-0470721445

Ge, B. and Yan, Y., 2012. High resolution earth observation system and application. Satellite
Applications, 5, 24–28.

Goodchild, M.F. and Gopal, S., 1989. Accuracy of spatial databases. London: Taylor & Francis, 81–90
Gu, X. and Tomgjia, Y., 2016. Up to the higher altitude – the new “three campaigns” for the

development of China. Spaceborne remote sensing application. Journal of Remote Sensing, 20
(5), 781–793.

Guo, Y., Senthilnath, J., and Wu, W., 2019. Radiometric calibration for multispectral camera of
different imaging conditions mounted on a UAV platform. Sustainability, 11 (4), 978.
doi:10.3390/su11040978

Jacobsen, K., 2006. Calibration of imaging satellite sensors. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 36, 1.

18 Á. BARSI ET AL.

https://doi.org/10.2307/248961
https://doi.org/10.5194/isprs-archives-XLII-3-15-2018
http://www.altimetry.info/glossary_/altimetry/
https://doi.org/10.5194/isprs-archives-XLII-3-61-2018
https://doi.org/10.5194/isprs-archives-XLII-3-61-2018
https://doi.org/10.5194/isprs-archives-XLII-2-W7-447-2017
https://doi.org/10.5194/isprs-archives-XLII-2-W7-447-2017
https://doi.org/10.17705/1CAIS
https://doi.org/10.3138/7146-4332-6J78-0671
https://doi.org/10.1177/001316446002000104
https://doi.org/10.3390/su11040978


Jakobsson, A. and Giversen, J., 2007. Guideline for implementing the ISO 19100 geographic
information quality standards in national mapping and cadastral agencies. Eurogeographics
Expert Group on Quality. doi:10.1094/PDIS-91-4-0467B

Jung, W., 2004. A review of research: an investigation of the impact of data quality on decision
performance. Proceedings of the 2004 international symposium on information and communica-
tion technologies, Trinity College, Dublin, 166–171.

Konecny, G. and Lehmann, G., 1984. Photogrammetry. Berlin: De Gruyter.
Krauss, K., 1994. Photogrammetry. 4th ed. Köln: Dümmler Verlag, Stamm GmbH.
Kresse, W., 2010. Status of ISO standards for photogrammetry and remote sensing. Castelldefels,

Spain: ISPRS – EuroSDR, EuroCOW.
Kresse, W. and Fadaie, K., 2004. ISO standards for geographic information. Berlin, Heidelberg:

Springer-Verlag.
Kugler, Z., et al., 2018. Time-related quality dimensions of urban remotely sensed big data. The

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XLII (4), 315–320. doi:10.5194/isprs-archives-XLII-4-315-2018.

Künzer, C. and Dech, S., 2013. Thermal infrared remote sensing sensors, methods, applications.
Dordrecht: Springer Science + Business. ISBN 978-94-007-6639-6.

Lecomte, P., 2010. A quality assurance framework for earth observation (QA4EO). Key guidelines,
version 4.0, Group on Earth Observations/Committee on Earth Observation Satellites.

Leick, A. and Emmons, M., 1994. Quality control with reliability for large GPS networks. Surveying
and Enginnering, 120, 26–41.

Lillesand, T., Kiefer, R.W., and Chipman, J., 2015. Remote sensing and image interpretation. 7th ed.
USA: John Wiley & Sons, 736. ISBN: 978-1-118-34328-9.

Liu, Y., et al., 2019. Geometric accuracy of remote sensing images over oceans: the use of global
offshore platforms. Remote Sensing of Environment, 222, 244–266. doi:10.1016/j.rse.2019.01.002.

Luo, S., Xi, X., and Wang, C., 2014. Application of lidar remote sensing in cultural heritage
protection. Remote Sensing Technology and Application, 29 (6), 1054–1059.

Masek, J.G., et al., 2013. Version 2. Model product. Oak Ridge, Tennessee, USA: ORNL DAAC.
doi:10.3334/ORNLDAAC/1146

Moon, M., et al., 2019. Long-term continuity in land surface phenology measurements:
a comparative assessment of the MODIS land cover dynamics and VIIRS land surface phenology
products. Remote Sensing of Environment, 226, 74–92. doi:10.1016/j.rse.2019.03.034.

Mueller, I.I., 1964. The geodetic applications of satellites. Columbus, Ohio, USA: Defense Technical
Information Center.

Nyquist-rate, 2019. Available from: https://en.wikipedia.org/wiki/Nyquist_rate [Accessed 5
November 2019].

Oort, P., 2005. van Spatial data quality: from description to application. Publications on Geodesy.
Pajeres, G., 2015. Overview and current status of remote sensing applications based on unmanned

aerial vehicles. Photogrammetric Engineering and Remote Sensing (Pe&Rs), 81 (4), 281–329.
doi:10.14358/PERS.81.4.281

Qian, L., Pei, X., and Zhao, W., 2004. Progress in the application of hyperspectral imaging remote
sensing in China. Remote Sensing for Land and Resources, 2, 1–6.

Quality assurance framework for earth observation. Available from: http://QA4EO.org/ [Accessed 5
November 2019].

Remote sensors, 2019. Available from: https://earthdata.nasa.gov/user-resources/remote-sensors
[Accessed 5 November 2019].

Salgé, F., 1995. Semantic accuracy. In: S.C. Guptill and J.L. Morrison, eds. Elements of spatial data
quality. Oxford: Elsevier Science, 139–151.

Sampaio, P., Saraiva, P., and Rodrigues, A.G., 2010. A classification model for prediction of
certification motivations from the contents of ISO 9001 audit reports. Total Quality
Management & Business Excellence, 21 (12), 1279–1298. doi:10.1080/14783363.2010.529367

Shekhar, S. and Xiong, H., 2008. Encyclopedia of geographical information sciences. Berlin: Springer.
ISBN-13: 978-0387359755.

INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION 19

https://doi.org/10.1094/PDIS-91-4-0467B
https://doi.org/10.5194/isprs-archives-XLII-4-315-2018
https://doi.org/10.1016/j.rse.2019.01.002
https://doi.org/10.3334/ORNLDAAC/1146
https://doi.org/10.1016/j.rse.2019.03.034
https://en.wikipedia.org/wiki/Nyquist_rate
https://doi.org/10.14358/PERS.81.4.281
http://QA4EO.org/
https://earthdata.nasa.gov/user-resources/remote-sensors
https://doi.org/10.1080/14783363.2010.529367


Srivastava, P.K., Mukherjee, S., and Gupta, M., 2014. Remote sensing applications in environmental
research. Springer, 211. ISBN: 978-3-319-05905-1.

Stephenson, B., 1985. Management by information. Information Strategy: The Executive’s Journal, 1
(4), 26–32.

Sui, L., 2009. Active radar remote sensing. China: Surveying and Mapping Press.
Time, 2019. Available from: https://en.oxforddictionaries.com/definition/time [Accessed 5

November 2019].
Tong, X., 2016. Progress in the construction of major special projects for high-resolution Earth

observation systems in China. Journal of Remote Sensing, 20 (5), 775–780.
Tóth, C. and Jóźków, G., 2016. Remote sensing platforms and sensors: a survey. ISPRS Journal of

Photogrammetry and Remote Sensing, 115, 22–36. doi:10.1016/j.isprsjprs.2015.10.004
Veregin, H., 1999. Data quality parameters. In: P.A. Longley, et al., eds.. Geographical information

systems. Chichester, UK: Wiley, 177–189. ISBN-13: 978-0470721445.
Veregin, H. and Hargitai, P., 1995. An evaluation matrix for geographical data quality. In: S.C. Guptill

and J.L. Morrison, eds.. Elements of spatial data quality. Oxford; Elsevier Science, 167–188.
VIM, 2012. Joint committee for guides in metrology (JCGM) international vocabulary of metrology –

basic and general concepts and associated terms. Sèvres, France: BIPM.
Wang, R.Y. and Strong, D.M., 1996. Beyond accuracy: what data quality means to data consumers.

Journal of Management Information Systems, 12 (4), 5–33. doi:10.1080/07421222.1996.11518099
Weng, Q., 2017. Advances in environmental remote sensing: sensors, algorithms, and applications.

Taylor & Francis Group, 610. ISBN: 9781138072916.
Wikipedia, 2019. Available from: https://www.wikipedia.org/ [Accessed 5 November 2019].
Xu, X., 2005. Physics of remote sensing. China: Peking University Press.
Yan, L., Lv, S., and Zhao, H., 2004. Research on key technologies of UAV aerial remote sensing

system. Journal of Wuhan University, 37 (6), 67–70.
Zhang, X., Jayavelu, S., and Liu, L., 2018a, June 15. Evaluation of land surface phenology from VIIRS

data using time series of PhenoCam imagery. Agricultural and Forest Meteorology, 256–257,
137–149. doi:10.1016/j.agrformet.2018.03.003

Zhang, X., et al., 2018b. Generation and evaluation of the VIIRS land surface phenology product.
Remote Sensing of Environment, 216, 212–229. doi:10.1016/j.rse.2018.06.047.

Zhao, Y., 2003. Principles and methods of remote sensing application analysis. China: Science Press.

20 Á. BARSI ET AL.

https://en.oxforddictionaries.com/definition/time
https://doi.org/10.1016/j.isprsjprs.2015.10.004
https://doi.org/10.1080/07421222.1996.11518099
https://www.wikipedia.org/
https://doi.org/10.1016/j.agrformet.2018.03.003
https://doi.org/10.1016/j.rse.2018.06.047

	Abstract
	1. Introduction
	2. Standards for data quality in remote sensing
	2.1. The data quality standardisation bodies and relevant standards
	2.2. Standards for designing validation approaches in remote sensing projects

	3. Theoretic modelling in data quality
	4. Data sources in remote sensing
	4.1. Remote sensing platforms
	4.2. Remote sensing sensors

	5. Data quality dimensions and metrics
	5.1. Data quality dimensions in remote sensing
	5.2. Examples of dimension metrics

	6. Data lifecycle in remote sensing
	7. Conclusions
	References



