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up to 95% classification accuracy.
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1. Introduction

Underwater imaging has a wide range of applications, from
pipeline inspection to seabed classification and underwater
object classification [1]. Although both optical and acoustic
sensors can be used for underwater imaging, the working
range of the optical sensors is

severely limited (a few meters), even in clear water
conditions. This makes acoustic systems the preferred option
for underwater imaging, with ranges up to hundreds of
meters independently of the water turbidity.

One of the most widely used acoustic systems is the sides-
can sonar, which was developed in the 1950s and has evolved
along the years [2]. Sidescan sonars can provide high-
resolution images of the seabed but resolution along the path
of the sonar (the azimuth or along-path direction) decreases
with range (across-path direction), limiting the effective
swath width, and also depends on the aperture (number of
wavelengths of the array) of the receiver, with large arrays
or very high frequencies being required for higher levels
of resolution. For several years, there has been ongoing
work on the development of synthetic aperture sonar (SAS)
to overcome these limitations. SAS systems eliminate the
decrease of resolution with range [3] by stacking more pings
at longer range, analogous to the approach used in airborne
and satellite radar systems for decades [4]. Recently, SAS

has started to become a commercial reality following the
solution of the motion estimation problem. SAS systems are
now able to provide images of constant resolution, which for
recent platforms, such as NURC’s MUSCLE vehicle, result
in full swath images with resolutions of as good as about 20
mm/pixel (see Figure 1). This improved image quality makes
SAS sensors potentially highly beneficial for underwater
automatic target recognition (ATR) tasks.

Broadly speaking, ATR schemas rely on the computation
of different types of image features, which can be grouped in
three main categories:

(i) texture-based features, which depend on patterns and
local variations of the image intensity [5],

(ii) spectral (or radiometric) features, based on spectral
characteristics of the backscatter radiation of the
targets (i.e., color, energy) [6],

(iii) shape-based (or geometrical) features, which rely on
spatial form or contour information extracted by
different means (i.e., length, area) [7].

Traditionally, ATR systems based on side-scan have relied
on a combination of radiometric and geometric features
to identify objects of interest, focusing mainly on the
spectral highlight response produced by the target and
the configuration of the shadow cast on the seafloor. By
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Figure 1: High-resolution synthetic aperture sonar image showing
the acoustic backscatter from a patch of seabed measured with the
MUSCLE system by NURC off the coast of Latvia. Range runs
downward and along-track from left to right. The total image is 30
by 30 meters.

using SAS, more detailed information for the shadow and
highlights of underwater targets is available, which could be
exploited to improve classification results.

In this paper, we present a new supervised classification
approach for target recognition in SAS images. The approach
uses geometrical features and aims to make use of the
increased image fidelity available in both target highlight
and shadow response. The recognition procedure starts with
a novel detection/segmentation stage based on the Hilbert
transform [8], which partitions the image into highlights and
shadow areas in order to estimate the most likely position
of the target. A number of geometrical features are then
extracted around the estimated target position, and are then
used to classify the object against a previously compiled
database of target and nontarget features.

This paper is organized as follows: Section 2 provides a
description of the datasets used for testing and validating
the proposed approach; the detection and segmentation
scheme are discussed in Section 3. The geometrical features
used for classification are explained in Section 4, while
the classification schema and the classification results for
different parameters are shown in Section 5. The geometric
feature extraction methods are applied to a small set of
images recorded with the MUSCLE system in Section 6.
Finally conclusions are drawn in Section 7.

2. Data

Development and evaluation of an automatic target recogni-
tion (ATR) system requires an appropriate test data set. Given
that high-resolution SAS data is scarce and ground truth
knowledge is often lacking, we have used NURC’s simulator
(SIGMAS) Synthetic Image Generator for Modeling Active
Sonar to generate the data used for this work. SIGMAS allows
the generation of SAS and side-scan test sets for arbitrary
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Figure 2: Sonar acquisition geometry. The sensor is imaging a
cylinder at a range R.

target models, including bottom topography effects such as
ripples, sea bottom slope variations, and partial burial of
targets [9].

Figure 2 shows the general sonar acquisition geometry.
The sensor is flying at a height h over the sea bottom, imaging
a rget sitting on the seabed. The target is at a range (distance)
R and is seen under a grazing angle β from the sensor. Aspect
angle α specifies the orientation of the target with respect to
the azimuth direction. The ground range to the target is Rg ,
the result of projecting the distance R on the seafloor. The
area of the seabed shown in black is being shadowed by the
target, and is, therefore, not scattering any energy back to the
sensor.

The images are simulated in several steps.

(i) First, the background level is computed for each pixel
assuming Lambertian scattering off the sea floor,
which results in lower values for pixels corresponding
to shallow grazing angles.

(ii) Subsequently, shadow regions in the image are identi-
fied by ray-tracing, which results in pixels set to zero.
Penumbral regions, that is, regions that are shadow
only in a part of the synthetic aperture, are accounted
for.

(iii) The target response is stacked to this template,
which is accomplished through ray-tracing under
the assumption of a constant sound speed in the
water column. The target can have an arbitrary 3D
shape, which is decomposed into facets each having
their own travel time (or range R) and amplitude.
In this way for each facet, the corresponding pixel
is determined, whilst the amplitude is computed
using a Lambert’s scatter law in combination with
the Rayleigh reflection coefficient that depends on the
angle between facet normal vector and acoustic ray.

(iv) The target response stacking operation is repeated
two times in order to include first- and second-
order bottom multipath arrivals of the object. The
bounces on the sea floor are affecting the response via
spreading and via an amplitude reduction according
to [10].

(v) The penultimate step in the process transforms the
smooth template into a sonar image by adding the
pixel to pixel amplitude variability which is charac-
teristic of the fluctuations in acoustic pressure. For
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Figure 3: Examples of SAS image snippets in the database. The range axis is pointing downward.

this model, the commonly used Rayleigh statistical
distribution is used to adjust both highlight and
reverberation responses.

(vi) Finally, the image is convolved with the SAS (or
sidescan) impulse response to account for sonar reso-
lution and side lobes. This convolution is performed
in the 2D Fourier space of the image.

The use of a realistic simulator such as SIGMAS permits
to evaluate the sensitivity of the ATR system to various
configuration parameters, for example, sonar height or
aspect angle of the target. The variations in performance
caused by differences in grazing and aspect angles are
evaluated in this paper.

The dataset used for the testing described in this paper
contains a total of 1528 simulated SAS images comprising
six different objects (cylinder, sphere, rock, car wheel,
truck wheel, oil drum). The resolution of the images is
25 mm/pixel in azimuth and 8.6 mm/pixel in range. The sea
bottoms slope up and down by up to 2 degrees and the
bottom type varies from mud to coarse sand. Target burial
depths vary from 0 to 10 cm. Rotation angles for targets in
every axis range from−5 to +5 degrees in azimuth and range
directions, while the aspect angle varies from −180 to 180
degrees. The sonar height over the seabed ranges from 5 to
40 m and the targets are placed at ranges between 25 and
200 m enabling a wide range of sonar to target geometries
to be examined. Some examples of the images contained in
the database are shown in Figure 3.

Whilst showing only six simulated images, Figure 3
demonstrates many of the fundamental ATR issues and the
sensitivity of the final image to small changes in viewing
parameters. The difficulty of visually classifying these images
indicates that the overall ATR performance is highly depen-
dent on the specific dataset used to test the system. The
image on the far left shows an example that contains good
discriminative information for a cylindrical target shape.
The third image contains much less information and could
be from several different shapes, depending on orientation
and the amount of burial. Successful classification in this

latter case will almost certainly require a second view on the
object from a different direction. We can also see that the sea
floor characteristics have an important effect on the visual
classification, and will show that they have a large influence
on classification with geometric features as well.

3. Detection

A novel technique based on the Hilbert transform (HT)
[8] is used for target detection. The HT can be seen as a
border detector even in the presence of noise, is easy and
fast to compute [11], and can also be used as the basis of
more advanced edge detection techniques, such as the phase
congruency technique [12].

It is possible to discriminate between shadow and
highlight by using the analytic signal of the image. The

analytic signal of f (t) (1D case) is a complex signal ˜f (t) for

which f (t) is the real part and ̂f (t) is the imaginary part
given by the Hilbert transform of f (t):

̂f (t) = 1
π
P
∫∞

−∞

f (τ)
t − τ

dτ, (1)

where P
∫∞
−∞ f (x) is the principal value of the integral.

The amplitude of the analytic signal ˜f (t) provides a clear
differentiation of the highlight areas in the image, while its
phase can be used to robustly discriminate shadowed regions.
For the 1D case, a target 1 meter wide can be regarded
as a step signal Π(t), which is 1 if t ε[−1/2, 1/2], and 0
elsewhere. The HT for this shows a constant phase of π/2 for
the shadowed areas, because the real part of the HT tends
to zero as can be verified in the formula derived for a step
function:

̂Π(t) = 1
π
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For SAS images, the HT is applied in the range direction
line by line, applying the argument expressed for 1D
signals. Once shadows and highlights are segmented, the
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potential positions of targets are inferred by assuming they
produce a highlight immediately followed by a shadow with
dimensions that match that of an object of a given size
at the current range from the sensor. Since the training
and evaluation images used in the database contain a
single target, in what follows only the most likely target
location is considered, yet for processing full images the
procedure should be applied to all likely locations that
are found.

The result of the application of the HT to a simulated
image of a car wheel imaged at 100 meters range is shown in
Figure 4.

Once the separation in shadow and highlight of the
potential target is done, its edge closer to the sonar is
extracted by analyzing the highlight. Targets of interest have
smooth surfaces and are expected to produce a uniform
and strong backscatter signal, as opposed to the noisier
and weaker signal returned by the coarser surface of the
seafloor. Taking these characteristics into account, a simple
algorithm for discarding most of the ripples and elements
of topography can be applied: the maximum of every line
of constant azimuth is computed, and a curve joining all the
maxima is generated; those maximal points are then removed
and the process repeated selecting the new maxima from the
remaining pixels and generating a new curve. The number of
times the procedure is iterated depending on the size of the
targets for the given range. For the results presented in this
paper, the procedure has been applied, on average, 1/3 times
the expected target size in pixels, which amounts to 16 times.
The curves resulting from this iterated procedure are shown
in Figure 5.

Then, the standard deviation of all the curves is com-
puted for each azimuth value a. If it is less than 1/3 of the
expected size of the target, then the pixel is considered part
of a potential target. The longest curve fulfilling the standard
deviation criteria, Ch(a), is picked up as the one marking the
target’s front shape and will later be used by the geometrical
features extraction algorithm.

4. Feature Extraction

Geometric features are commonly used for classification in
controlled environments such as integrated circuit manufac-
ture plants, where the position and orientation of the object
with respect to the light source are known [13]. The proposed
ATR system for sonar uses the same type of geometric
features but in a less controlled environment where the target
can present any aspect to the sonar and the signal-to-noise
ratio is much smaller. To do so, 24 geometrical features have
been selected to differentiate a set of targets. The features are
computed from the segments extracted in the detection stage
(Section 3). Nine features concentrate on the highlight area,
twelve focus on the shadow, and three extract information
from the low backscatter area in between them. The low
backscatter area is defined as the region that is limited in
the range direction by a highlight segment (with pixel values
above a given threshold th) and a shadow segment (below ts,
see Sections 4.1, 4.2, and 4.3 for more details).

Details on the highlight and the low-backscatter area
contain useful information for discrimination among target
types, but have generally not been exploited due to the
limited resolution of older sonar sensors, where the highlight
typically consisted of just a few pixels.

The geometrical feature extraction starts by approximat-
ing the curve fitted to the highlight, Ch(a). The subscript h
refers to the highlight, whereas a is the azimuth coordinate
and Ch are the range values defining the curve for each a
(Figure 6(b)). Ramer’s algorithm [14] is used to approximate
Ch(a) by a list of linear segments (see Figure 6(a) for a brief
demonstration of Ramer’s algorithm).

(i) Get the two extremes Ch(a1) and Ch(a2) ,of the curve
(crosses in Figure 6).

(ii) Compute the straight line λ(a) fromCh(a1) toCh(a2).

(iii) Select the corner C1 = (ac, Ch(ac)) that maximizes
the distance in range coordinate from Ch(a) to (a)λ.

(iv) Add C1 to λ(a).

(v) Divide λ(a) in two segments [Ch(a1), C1] and
[C1, Ch(a2)] and recursively apply the algorithm to
them.

(vi) The algorithm stops once four corners (C1 to C4)
have been found. The use of more corners does not
provide better performance for the dataset used.

For each recursion level, three scores are computed:

(i) maximum-range distance from Ch(a) to λ(a) (score
S1);

(ii) sum of range distances from Ch(a) to λ(a) (score S2);

(iii) sum of the range distances from Ch(a) to the poly-
line defined by the two segments [Ch(a1), C1] and
[C1, Ch(a2)] (score S3).

Once the approximation by linear segments is done, the
following corners are retained to compute features from the
highlight: corners Ch(a1) and Ch(a2) and the four corners
with the lower S3 scores.

4.1. Highlight Features. The distribution of the corners on
the highlight segment enables the computation of several
parameters to geometrically describe the target, the corners
being one of the following features.

(i) Highlight corners: these corners are computed using
the algorithm described in Section 3, and then cen-
tered to the center of gravity of the highlight segment:

cg =
(

acg , rcg
)

=
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∑
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⎞
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(3)

where H(a,r) is the highlight mask (one if a pixel
belongs to the highlight segment, zero elsewhere).
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(a) (b) (c)

Figure 4: Synthetic SAS image of a car wheel on a sand seabed. (b) Modulus and (c) phase of the Hilbert Transform of (a).

Figure 5: Curves obtained by iteratively computing the maximum
values for every azimuth (horizontal coordinate in the image). In
the target area the variation of these curves is small because the
target return is uniform, however, outside the target, since the sea
bottom is noisy, the curves exhibit large variations.

(ii) Highlight significant directions: computed by applying
principal component analysis (PCA) [15] to the
corner distribution. The significant directions are the
orientations of the principal components axis. The
values used are angles formed by these axes and the
azimuth direction.

(iii) Highlight significant directions’ scores: the PCA gives
a score to the two significant directions it extracts
(the normalized value of the eigenvalues). These two
scores P1 and P2 (with P1 > P2) are used as values of
significance.

(iv) Length of the longest axis of the highlight (ll).

(v) Length of the shortest axis of the highlight (ls).

(vi) Highlight real eccentricity: The real eccentricity is
computed using the actual lengths of the target.

E1 =
√

√

√

√1− [ls]
2

[ll]
2 . (4)

(vii) Highlight PCA eccentricity: the two values of signifi-
cance (P1 and P2), instead of the lengths of the axis,
are used to compute eccentricity of the highlight. This
reduces the effect of outliers that can affect the length
of the axis.

(viii) Ratio of longest to shortest axis.

(ix) Correlation of corner distribution of the highlight
with a semicircle: a semicircle of 50 cm diameter is
correlated with the corner distribution to obtain an
indicator of target roundness.

4.2. Shadow Features. Corners on the shadow segment
are also extracted, although the curve Cs(a) for the
shadow boundary is computed differently. Only the shadows
observed right after the highlight segment are considered.
Then azimuth line by azimuth line where there is shadow
content, the range value closest to the sonar and belonging
to the shadow is taken to create Cs(a). Once this curve is
obtained, four corners and extremes are computed using the
algorithm described in Section 4, and the same nine features
are estimated for the shadow segment. Additionally, three
extra features are extracted.

(i) Shadow area divided by range.

(ii) Shadow width in contact with highlight.

(iii) Correlation with the shadow-edge model of an object of
interest, for instance from a mine.

4.3. Low Backscatter Area Features. The area delimited by the
shadow and highlight curves is also used to compute some
geometrical features.

(i) Low backscatter highlight’s centre of gravity (COGLB).

(ii) Area of low backscatter highlight.

(iii) Distance between the corners of the highlight and the
corners of the shadow.
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Figure 6: (a) An example of Ramer’s algorithm on a simple curve Step 1) showsthe schematic curve (Ch(a)) which corners shall be found
(all corners of the curve are marked with a cross, while only the most relevant ones will be detected (subsequently marked with circles)),
the two extremes of the curve [C1, C2] are marked with circles and the area delimited by the curve can be found as the area inside the area
described by the curve and the segment delimited by the two extremes of the curve. Then the algorithm looks for the first corner as the point
belonging to the curve Ch(a1) which minimizes the area delimited by [C1, Ch(a1)] + [Ch(a1), C2], which is marked with a circle. Then the
algorithm is applied recursively to obtain 3) and 4). (b) The Ch(a) and Cs(a) curves of a real target where the algorithm will be performed. In
white the curve Ch(a) for the highlight segment from the image of a cylinder (axes in meters). The extremes of the curve Ch(a1) and Ch(a2)
are the left-most and right-most white crosses, the rest of the crosses marks all the possible corners of Ch(a). Also shown in black is the
curve Cs(a) that delimits the start of the shadow region.

5. Classification Results

For classification we used the MATLAB tree function [16],
trained to discriminate a particular type of target against
all other types, effectively creating a set of binary classifiers
for the targets of interest (one classifier per target class,
discriminating between that class and all other classes). This
common approach [17, 18] gives information about the
worst performance of a non binary classifier against the worst
target:

∑

i /= j

P (c /∈Ci) · P(Ci) = P
(

c /∈Cj

)

· P
(

Cj

)

, hence

Pi /= j(c /∈Ci) · P(Ci) ≤ P
(

c /∈Cj

)

· P
(

Cj

)

,

(5)

where Ci represent classes and c is an object to be classified.
The six classes considered in this study were cylinder, sphere,
rock, car wheel, truck wheel, and oil drum.

Classification performance using the proposed geomet-
rical features has been estimated by cross-validation. The
dataset (1528 simulated SAS images as described in section
2) was divided into two random halves, one used for training
and the other for validation. The process was repeated 100
times to obtain the average performance estimates. Receiver
operating characteristic (ROC) curves were then produced
for each object class.

Strong
backscatter

area

Sonar

Shadow 
area

Low backscatter area

Figure 7: Areas which can be distinguished in the sonar image
of a proud object on the seabed due to the different levels of
backscattered signal.

Figure 8 shows the ROC curves obtained for four classes
in the database, including the best and the worst cases found
(cylinder and oil drum, resp.).

Results show the best performance for cylinders, well
described by the lengths of the longest and shortest axis
(longest axis of 2.4 m with the following longest axis being
the truck wheel at 1.2 m). Nevertheless, targets of similar
sizes, such as the sphere and the wheel, were still well
differentiated. The worst case was found to be the oil drum,
which for certain aspect angles and burial depths is confused
with several other target classes.
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Figure 8: ROC curves for four different target classes. X-axis
represents the false alarm rate (non targets classified as targets) and
the Y-axis is the success rate (targets classified as targets).

Of particular focus of this article is the sensitivity of
the classification system to variations on the parameters
describing the sonar acquisition geometry.

Aspect angle, for instance, was found to be a critical
characteristic for identifying oil drums, but relatively nonin-
formative for cylinders. End-fire aspects (aspect angle from
75 to 125 degrees) make oil drums resemble other classes
of similar dimensions, but end-fire cylinders are still well
discriminated (Figure 9). The most discriminative features in
this case belong to the low backscatter area of the objects,
which are sufficient to estimate the sizes of the cylinders. The
low performance observed for the end-fire oil drums lowers
the overall classification performance of the proposed system
for that class (Figure 8).

Grazing angle has also a strong impact in the viewing
geometry. It determines the amount of energy that will
be returned to the sensor via different paths. Higher
grazing angles produce more reverberation from the seafloor
and therefore less signal-to-noise ratio (SNR) between
the highlight and the background noise coming from the
seafloor. The proposed detection and segmentation algo-
rithm assumes that the target has a stronger backscatter
signal than the seafloor, which doesn’t hold for high grazing
angles. The loss in classification performance observed for
high grazing angles is mainly caused by that poor detection
performance. The poor highlight features are accompanied
by shortened shadows, which make the classification even
more difficult in these cases.

The performance of the system has also been evaluated
for the case where only highlight features are considered
(Figure 11). The results obtained are comparable to the ones
for the full set of geometrical features (Figure 8), which
means that a good part of the discriminative information
are located in the highlight segment. That information can
only be exploited if the imaging sensor has enough resolution
to capture the details in the echo structure, something that
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Figure 9: ROC curves for the man-made target classes without
rotation symmetry (oil drum, cylinder) when the objects are
observed end-fire (aspect angle of the target between 75 and 125
degrees). X-axis is false alarm rate and Y-axis success rate.
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Figure 10: ROC curves depending on grazing angle. Grazing
angles higher than 20 degrees degrade the system performance
significantly. X-axis is false alarm rate and Y-axis success rate.

is only possible for wide ranges when using a modern SAS
system.

6. Results for Real Data

The limited amount of high-resolution SAS imagery pre-
vented the ATR being tested with real data. However, tests
done on the few existing samples available to us have shown
promising results, and an extensive set of real images will be
available shortly. Training and testing on synthetic data—
and validation on the limited available real samples—have
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X-axis represents the false alarm rate (non targets classified as
targets) and the Y-axis is the success rate (targets classified as
targets).

permitted the system to be fully prepared for testing with real
data as soon as a suitable test set is available.

An example of the extracted Ch and Cs curves for a real
image of a cylinder is presented in Figure 12. Comparison
of the geometrical features extracted from the image against
a training set obtained from the synthetic sample database
successfully classify the observed object as a cylinder.

7. Conclusions

A system for the extraction of geometrical features for ATR
applications has been presented in this paper. The system
is composed of two main blocks: segmentation based on
the Hilbert transform (HT) and classification based on
geometrical features extracted from the segmented image.
The system has been trained and tested on a synthetic
dataset containing 1528 images has been produced using
the SIGMAS model, containing objects of eight different
types lying on a flat sea bottom. Different bottom types
ranging from soft mud to gravel have been considered (with
different scattering strengths), as well as different acquisition
geometries (variations in range, grazing angle and aspect
angle).

In total 24 geometrical features were computed for
each database object. The features were extracted from the
highlight, the shadow, and the low backscatter segments of
the target image. The best classification results were observed
for cylindrical targets, while oil drums proved to be the most
difficult to identify for various aspect and grazing angles.

Sensitivity of the classification system to variations in the
image acquisition geometry has been studied, with the most
influential parameter found to be the grazing angle from the
sonar to the target. High grazing angles make the detection
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Figure 12: In white, the curve Ch(a) for the highlight segment from
a real image of a cylinder. In black, the curve Cs(a) that delimits the
start of the shadow region.

task more difficult and therefore lower the performance of
the classification stage. Grazing angles below 20 degrees seem
to provide the best classification results.

To demonstrate the powerful imaging capabilities obtain-
able by new SAS sensors, the classification has been per-
formed using only features extracted from the highlight
segments. The satisfactory results obtained showed only
a slight decrease in performance when compared to the
classification using all available features. This shows that the
increased resolution of the new SAS sensors is a definitive
advantage compared to older underwater imaging systems,
primarily utilizing the highly discriminative information that
is contained in the details of the target’s echo.

Satisfactory results for the limited real data available have
been presented. More extensive real datasets are nevertheless
required to properly assess the actual performance of the
techniques proposed in this paper.
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