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Abstract
The quality of a companion robot’s reaction is important to make it acceptable to the users and to sustain interactions.
Furthermore, the robot’s reaction can be used to train socially acceptable behaviors and to develop certain skills in both
normally developing children and children with cognitive disabilities. In this study, we investigate the influence of reaction
time in the emotional response of a robot when children display aggressive interactions toward it. Different interactions were
considered, namely, pickup, shake, drop and throw. The robot produced responses as audible sounds, which were activated at
three different reaction times, namely, 0.5 s, 1.0 s, and 1.5 s. The results for one of the tasks that involved shaking the robotic
toys produced a significant difference between the timings tested. This could imply that producing a late response to an
action (i.e. greater than 1.0 s) could negatively affect the children’s comprehension of the intended message. Furthermore, the
response should be comprehensible to provide a clear message to the user. The results imply that the designers of companion
robotic toys need to consider an appropriate timing and clear modality for their robots’ responses.

Keywords Companion robots · Machine learning · Autism spectrum disorders · Children · Robots for therapy · Meltdown ·
Long short-term memory network (LSTM)

1 Introduction

The recent advances in robotics accelerated the integration of
robots to new areas, such as in healthcare. More specifically,
social robots or rehabilitation robots are being developed to
monitor and improve health, to assist with difficult tasks,
and to prevent the declining of one’s health [48]. Assisting
in therapy is an application of robots in healthcare that has
shown a promising potential. For example, social robotswere
found to be effective in improving the outcomes of therapy
sessions, especially among children with autism [21,54].

Aggression is a behavior that is done by a living agent,
such as a human or an animal, that causes harm and violates
the rights of others [23]. The American Psychological Asso-
ciation (APA) defines aggression as a behavior that is aimed
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at hurting others either physically or psychologically [8].
APA categorizes aggression as hostile aggression, which is
intended to cause harm; instrumental aggression,which is not
intended to cause harm; and affective aggression, which is
emotionally motivated toward the source of distress. The fre-
quency of physical aggression among children was reported
to peak during the years before school [41]. Kicking, biting,
and hitting are examples of the physical aggressive behav-
iors that might occur during the early years of childhood [7].
Aggression among children is considered as one of the most
common reasons for mental health referrals [56]. The occur-
rence of aggression or disruptive behavior was reported to be
higher among children with psychiatric disorders. For exam-
ple, the prevalence rate of such behaviors was reported to
reach 62.3% among children with anxiety disorders, while it
could reach 45.8% among those with mood disorders [42].

Considering all the children with or without develop-
mental disabilities, challenging behaviors appear to have
higher prevalence rates among those affected by autism spec-
trum disorder (ASD) [26,29]. Even within the spectrum
itself, those with severe autism have displayed challenging
behaviors at a higher rate as compared to those with less
ASD severity [39,40]. Even in their infancy, children with
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autism have displayed more challenging behaviors as com-
pared to their neuro-typical peers [27,34]. Previous studies
reported high prevalence rates of challenging behaviors (e.g.
49–69% [12,15,32]). Aggression against others, meltdowns,
tantrums, withdrawal, and stereotyped behaviors are some
of the forms of the challenging behaviors that are exhib-
ited by children on the spectrum [31,37,38]. These behaviors
pose a risk on themselves and others around them, such as
family members, companions, and care givers [31,46]. The
mitigation of challenging behaviors is possible with early
intervention [49].

The current progress in technology is offering new
improvements to intervention and therapy sessions, such
as hands-on learning, independent learning, individualizing,
and others [25]. The interest in integrating social robots
into therapy is increasing due to the reported evidence of
their efficacy [21,52]. However, the presence of social robots
could pose a risk during the exhibition of challenging behav-
iors, such as throwing objects, hitting, banging on objects,
and kicking objects [38]. Children showed some aggression
toward the robots as reported in previous studies [6,14,19].
For smaller companion robots, children might pick it up
and mishandle it (Fig. 1). The throwing of such objects (i.e.

small robotic toys) might hit another person’s head and cause
harm [2]. Due to safety and legal concerns, robot designs
must account for such scenarios and adopt new methods and
ways to mitigate any potential harm [4,5,18,22,58].

Social robots represent a new type of stimuli that aremeant
to elicit behaviors and initiate interactions, and that might
trigger unwanted ones. To date, the studies to characterize the
unwanted and aggressive interactions are limited [14,35,51].
Additionally, limited work has been done to investigate the
proper reactions once such behaviors are detected [3]. The
ability of a robot to detect and respond to unwanted interac-
tions will provide many benefits, such as the prevention of
potential harm, monitoring, promoting safety culture, and to
prevent the progression of an aggressive behavior [19]. Fur-
thermore, it could be used as a therapeutic tool to address
aggressive behaviors.

In this study, we investigate the effects of reaction time
and sound modality employed in robotic toys on the per-
ceived perception by children interacting with the robots. A
recognition architecture based on Long Short-term Memory
Cell (LSTM) was adopted to classify the behaviors based
on the acceleration data received. Different reactions with
different timings were produced once a pickup, a shake, a

Fig. 1 Some of the unwanted and aggressive interactions that might be exhibited by children toward a companion robotic toy
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drop or a throw was detected. This paper is organized as fol-
lows. Section 2 presents the background. Section 3 describes
materials and methods. Section 4 provides results and Sect. 5
discusses the results.

2 Background

Species in nature offer a lot of biologically-inspired concepts
and ideas to roboticists. One of thesemechanisms is the reflex
system that can be adopted in the design and development
of robots [1]. Reflexes are meant to ensure the survival of
the living organism externally while ensuring the balance of
operations internally. Reaction to a stimulus is usually carried
out by the reflex arc that consists of several stages, namely,
arrival of stimulus, activation of sensory neuron, information
processing, motor neuron activation, and peripheral effector
response. The implementation of reflexes in a robotic system
should operate without affecting the main objectives of the
robot (Fig. 2). Once an unwanted interaction is detected, the
robot may respond with the appropriate reaction to deliver
the correspondingmessage to the user [19]. The timing of the
reaction and its modality should be felt as natural to provide
a clear implication about the interaction.

Few robots were developed that demonstrate some reac-
tions to a human interactions. PARO is one of the com-
mercially available robots that reacts to physical interac-
tions [53]. PARO is a seal-looking interactive therapeutic toy
that is covered with white fur and emits voices similar to that
of a baby seal. Different embedded sensors enable PARO to
interact with its environment. The light sensor enables it to
recognize dark and light. The audio sensor gives PARO the
ability to recognize the direction of voices. The tactile sensor
gives PARO the ability to feel any stroke or pressure. PARO

Fig. 2 The proposed reflex model to respond to unwanted interactions.
A layer to detect the unwanted interactions will temporarily inhibit the
system to produce an appropriate response

interacts with people by making sounds and moving some
parts of its structure, such as the head, paddle and eyelid.

Roball is another robot that was developed to react to cer-
tain physical interactions [51]. The robot is shaped like a
ball with a diameter of 0.27m and weighs around 2kgs. It is
equipped with accelerometers and tilt sensors that allows it
to interact and navigate in its environment. Based on the sen-
sors’ readings, several interaction modes are possible, such
as being alone, general interaction, being carried, and being
spun.

Teo is a mobile soft robot, which was developed to inter-
act with children with ASD [16]. It can sense distance and
touch, and it can distinguish different dynamic interactions,
like hug, push, punch, getting close, and others. Based on
the interpretation of sensory data, the robot can react with
sounds, words, movements, and coloured lights.

Different sensors and wearable devices were considered
in human activity recognition research [10,20]. A frequently
used sensor is the accelerometer, which is a relatively low-
cost sensor that is able to detect acceleration on three
orthogonal directions. When associated to a gyroscope, the
rotational speed can be detected along the same axis. One of
the earliest works classifying different daily physical activi-
ties, such as walking and running, used five wearable small
accelerometers ondifferent bodyparts of 20participants [13].
The data collectedwere from subjects performing a sequence
of different daily tasks. The best classifier selected (i.e. a deci-
sion tree) was able to recognize the actions with an accuracy
rate of 84%. Another study considered using acceleration
and sound data to recognize workshop related activities to
develop a proactive system [36]. The data collected were
based on tasks performed in a wood shop. The system was
able to recognize different activities with an accuracy of
84.4% on continuous simulated stream of data. Nowadays,
accelerometers are used in smart phones to detect a wide
range of activities [24].

Accelerometers were also considered in devices that
detect the fall of the elderly [11]. One study considered
a wearable device that contains an accelerometer to detect
falls [55]. To facilitate the therapy for those with special
needs, one study considered using accelerometers to detect
problem behaviors among this population [47]. In this study,
the data to develop the recognition model were simulated
by trained clinical staff. Their approach was able to achieve
an accuracy of 69.7% when evaluated with realistic data.
For more advanced and interactive applications, accelerom-
eters were considered in robot games to model players and
recognize activities [43,44]. One study considered using a tri-
axial accelerometer module embedded in a player’s chest to
acquire the motion data [45]. Their work showed promising
results in detecting different activities with the robot, such as
running, walking or dodging, and blocking the robot’s path.
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3 Materials andMethods

In this section, the adopted methods and approaches to con-
duct the investigation in our experiments are presented. The
section starts with the model by describing the recognition
architecture, data format, and the evaluation of the model.
Then, we proceed to the experimental setup that describes
the robotic toys, recognition device, and the employed reac-
tions. Finally, we present the participants, the evaluation of
reactions, and the data analysis methods.

3.1 TheModel

3.1.1 Recognition Architecture

The recognition network that was adopted in our work was
proposed by an earlier study that relied on Long Short-term
Memory network (LSTM) in combination with bidirectional
and residual connections [61]. In their proposed model, the
networkwas able to produce improved results (i.e. 93.5%) on
the public domain (i.e. UCI Machine Learning Repository)
dataset on human activity recognition as compared to other
configurations [9]. We considered that the recognition prob-
lem in our study would benefit from this network due to the
similarity in the characteristics of the activities that needs to
be recognized. In this section, we provide a brief description
about this recognition network.

LSTM network is a special structure based on a Recurrent
Neural Network (RNN) that is used to process a data stream.
In RNN, the prediction depends on the history information
that is maintainedwithin the internal memory of the network.
A typical RNNconsists of three layers, namely, an input layer
x, a hidden layer h, and an output layer y. The relations among
these layers are defined as follows:

h(t) = f (Ux(t) +Wh(t − 1)) (1)

y(t) = g(Vh(h)) (2)

whereU is the connectionweightsmatrix from the input layer
to the hidden layer,W is the connectionweightsmatrixwithin
the hidden layers, and V is the connection weights matrix
between the last hidden layer and the output. Furthermore, f
and g represent the activation functions.

Compared to standard RNN structure, LSTM showed sta-
bility and powerful performance in the modeling of long
sequences (e.g. [57]). The structure of LSTM is unique due to
a memory cell ct that accumulates the state information [60].
Furthermore, this structure allows one to deal with the van-
ishing gradients problem [30]. The LSTM cell contains three
controlling gates, namely, input gate, forget gate, and out-
put gate (Fig. 3). These gates control what information that
should be kept, updated, or forgotten. More complex struc-
tures can be formed by combining multiple LSTM cells. The

X

X

X h

Input Gate Output Gate

Forget Gate

Fig. 3 A graphical representation of the Long Short-term Memory
(LSTM) cell. The LSTM cell consists of three gates, namely, the input
gate i, the output gate o, and the forget gate f. These gates control the
information within the cell

internal parameters of an LSTM cell are defined as follows
[28]:

it = σ (Wxi xt +Whiht−1 +Wcict−1 + bi ) (3)

ft = σ
(
Wx f xt +Whf ht−1 +Wcf ct−1 + b f

)
(4)

ct = ft ct−1 + it tanh (Wxcxt +Whcht−1 + bc) (5)

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) (6)

ht = ot tanh (ct ) (7)

where i is the input gate, f is the forget gate, o is the output
gate, σ is the logistic sigmoid function, and c is the cell
activation vectors.

The recognition network also made use of bidirectional
LSTM due to its advantages over standard LSTM. For exam-
ple, the output of bidirectional LSTM is related to previous
and subsequent information, hence, a better overall perfor-
mance. The output of the proposed algorithm is determined
by concatenating the results of the forward and backward
sequences through a hidden layer that reduces the number of
features [61]. Finally, the algorithm uses a residual network
that provide different advantages, such as efficient training
and easier optimization.

3.1.2 Data Format

The data that were used in training and testing the recognition
model were acquired from an earlier study [3]. The data for
the acceleration were in the form of the resultant acceleration
computed as the square root of the sum of the squares of the
individual accelerations. The relation is defined as follows:

|A| =
√
A2
x + A2

y + A2
z (8)
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Fig. 4 Five samples of the artificially created sequences from the data
samples obtained from an earlier study [3]. The sequenceswere selected
based on their likelihood of occurring in realistic scenarios. The behav-
iors in the sequences were obtained randomly from the available pool
of samples from each participant

where Ax represents the acceleration in the X axis, Ay rep-
resents the acceleration in the Y axis, and Az represents the
acceleration in the Z axis.

The training data were acquired from adult participants
performing the behaviors of interest while the test data were
acquired fromchildren participants. To create a temporal data
stream from these discrete data samples, artificial sequences
were created from the data samples randomly (Fig. 4). The
sequences were selected based on the likelihood of their
occurrence in realistic interaction scenarios. This approach
will support the creation of more variability in the data
and decrease subject-dependent learning. For example, a
sequence could contain samples from any of the participants
and from any of the robotic toys used. This procedure was
applied to both the training and testing data.

3.1.3 Model Evaluation

Three training parameters were tested to identify the model
with the most promising results. The tested range for the bias
mean was 0.1–1.0 while for weights SD was 0.3–0.5. As for
the number of neurons per layer, the range was 10–40. Sev-
eral models were trained and the best one (i.e. accuracy close
to 90%) was considered. The configuration of the selected

Table 1 The classification report for the recognition algorithm when
tested with the children’s data

Precision Recall F1-score Support

Drop 0.98 1.00 0.99 120

Hit 0.72 0.83 0.77 210

Idle 0.98 1.00 0.99 390

Pickup 0.86 0.73 0.79 270

Shake 0.82 0.91 0.86 150

Throw 0.99 0.86 0.92 120

Avg/total 0.89 0.89 0.89 1260

Fig. 5 The confusion matrix for the recognition algorithm when tested
with the children data. The recognition performance of the model is
higher than 90% for drop, idle, and shake. The recognition performance
is less than 90% for hit, pickup, and throw

model included a bias mean of 0.3, weights SD of 0.3, and 28
hidden neurons per layer. The configuration of the architec-
ture was 2× 2, where there are 2 hidden layers that contains
2 bidirectional layers each. More details about the architec-
ture can be found in [61]. The model achieved promising
results that considered precision, recall, and f1-score metrics
(Table 1). The confusionmatrix revealed that themodelmight
confuse some of the behaviors (Fig. 5). For example, it might
confuse hit as pickup. For the purpose of this study, we will
focus on detecting pickup, shake, and throw or drop. Once
these behaviors are detected, the robot will produce the cor-
responding responses. All other interactions will be ignored
and will not produce any response once they are detected.

3.2 Experimental Setup

3.2.1 Robotic Toys

Three different toys embeddedwith recognition deviceswere
considered. The toys were a stuffed panda (KRAMIG Soft
toy, IKEA, Sweden), a stuffed toy robot (LATTJO soft toy,

123



International Journal of Social Robotics

Fig. 6 The companion toys used in the study. a The three different toys that were considered in our experiments. From left to right, a soft toy panda,
a soft toy robot, and an excavator toy. b The data collection system used in this study. It consists of a Sense Hat board mounted on a Raspberry Pi
board

IKEA, Sweden), and an excavator toy (Fig. 6a). The masses
and dimensions of the selected toys were in the range that
allowed the ease of carrying andmanipulation for the targeted
users. The same toys were previously used to collect the data
that were then used to train the recognition model [3].

3.2.2 Recognition Device

The recognition device used was a small computing device
(Raspberry Pi 3 Model B+, Raspberry Pi Foundation, UK).
This device is powered by a 1.4GHz quad-core processor
and supports wireless, Bluetooth, and Ethernet communica-
tion. The availability of such communication channels make
it easier to access, program, and configurewith other devices.
Furthermore, it contains many peripherals that make it pos-
sible to augment it with other devices. The official operating
system (Raspbian v4.19, Debian Project) was installed on a
micro SD card (16 GB, Edge, Sanddisk). The selected stor-
age should provide more than enough space for the operating
system, trained recognition mode, collected data, and for any
needed packages. A remote access software (TeamViewer
Host for Raspberry Pi, US) was installed to allow ease
of access to the device and more flexibility for debugging
and testing. The kernel, firmware, and packages were all
upgraded to their latest versions.

The standard Raspberry Pi does not contain any on-board
board sensors, however, the 40-pin can support different
boards with different functionalities. A Sense Hat board
(Raspberry Pi Foundation, UK), which contains different
sensors and a display, was mounted on the Raspberry Pi.
The built-in accelerometer (LSM9DS1, STMicroelectronics,
Switzerland) was used in the recognition model to acquire
the raw acceleration data at a rate of around 30 Hz and at
a magnitude of up to 16 g. This rate and magnitude were
shown to be adequate enough for the recognition of human
activities [17,33]. The entire devicewas placed in a dedicated

enclosure with a small fan mounted on the side for cooling
(Fig. 6b). For the experiments, the devices were embedded
inside the toys and each was powered by a dedicated power
bank (Slim 2, 5000 mAh, POWERADD).

3.2.3 Reactions

We believe a companion robot should exhibit the feeling
of pain once the robot is thrown or dropped. Hence, the
responses for these behaviors were selected to be similar
once an event is detected. The detection of being picked up or
carried would produce a response to imply an event related
to being surprised. As for being shaken, the robot would
produce a response corresponding to being annoyed by the
shaking action. The detection of the idle case produces no
response as it means that there is no physical interaction that
has occured. For simplicity and to avoid redundancy with the
throw and drop cases, the detection of hit does not produce
any response. The reason for that is the logical response after
being hit is to express pain, which is already covered by the
other two cases. Hence, the reactions triggering actions were
limited to pickup, shake, and drop or throw.

The robotic toys showed reactions when manipulated by
the user. For example, a robotwould display discomfortwhen
shaken. The reactions were implemented as different short
sounds. The samples were obtained from https://freesound.
org and were modified for the experiments. The sound sam-
ples were cut and shortened to less than one second and
were saved as wav files. For the behaviors considered in
the experiments, 6 different sound samples for each behav-
ior were selected to provide a variety. For example, when a
pickup is detected, one sound sample is randomly selected
from the pool of the available samples for pickup and then
played (See supplementary material1). A Bluetooth speaker

1 See https://youtu.be/uY1dpT1REIE.
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(AQLSparkle, Cellularline, Italy) was used to emit the sound
samples for the behaviors. The speaker was activated by the
system embedded in the robot.

To investigate the effects of response time on the inter-
actions, three different timings were considered. The three
robotic toys were configured with reactions at different tim-
ings, namely, 0.5 s, 1 s, and 1.5 s. The timing of each toy
was altered once after performing half of the experiments
with each toy. For example, the timing of the panda toy was
changed from 0.5 to 1.5 s. A scheduled task that periodically
checks the detected behaviors was used to control the tested
reaction times. This task generates a reaction based on the
detectedmanipulationwith a delay equal to the selected time.
However, a condition has been implemented that prevents the
generation of two consecutive responses in less than one sec-
ond. This was designed to make the toymore natural in terms
of response rate and more pleasant to interact with.

3.3 Experimental Procedure

3.3.1 Participants

The experiments conducted in this study were focused on
the evaluation of the appropriateness of the reactions imple-
mented in the robots, in particular on the reaction timing.
Subjects (9 females and 21 males) volunteering in the exper-
iments were students aged 8–13 years old (10.26 ± 1.48
years old). The consent from the parents was secured by
their school and the children were accompanied by their
teachers to the experiment site. The children were introduced
in the experimental room one at a time. In the room, one
researcher and one assistant were present. The procedures
for these experiment did not include any invasive or poten-
tially hazardous methods and were in accordance with the
Code of Ethics of the World Medical Association (Declara-
tion of Helsinki).

3.3.2 Reaction Evaluation

Robotic toys or social companion robots should provide a
timely feedback, a reaction, to the user performing an inter-
active act. A late and less frequent response might render
the interaction slow and uninteresting while a very fast and
more frequent response might be felt as eerie and unnatu-
ral. The frequency and the speed of a response should be
natural and comfortable to the user. To evaluate the effects
of these, a set of experiments were performed with a group
of children individually. The three robotic toys were con-
figured with reactions at different timing, namely, 0.5 s, 1 s,
and 1.5 s. The participants were divided into three groups
accordingly. A robotic toy was placed on a small table and
a child was encouraged to interact with it. The evaluated
behaviors were limited to pickup, shaking, and throwing

or dropping (Fig. 7). All tasks were requested in the form
of imaginative scenarios that the children need to perform
with the robotic toys (Table 2). After each session, a ques-
tionnaire containing five simple questions was given to the
child (Table 3). The questions were related to the interactions
and the possible answers were in Likert scale showing five
different levels of agreement (i.e. from total agreement to
total disagreement). All sessions were recorded with a web-
cam (C310 HD, Logitech, Switzerland) and then annotated
with an open-source software (BORIS, version 3.12, Torino,
Italy).

3.3.3 Data Analysis

The data collected from the participants were based on ques-
tionnaires containing five different questions. To visualize
the collected responses, histogram plots were generated for
each question to check for the peaks, spread, and sym-
metry. A Mann-Whitney U test was performed to check
the effect of gender at p < 0.05. Furthermore, Kruskal–
Wallis tests were performed on each question to check for
any statistically significant differences between the medi-
ans of the three groups at p < 0.05. Furthermore, the test
was performed to check for any effect due to gender differ-
ences.

4 Results

In this section, a summary of all the responses for each ques-
tion are presented as histogram plots for the different groups.
Then, the statistical analysis is provided for the effect of gen-
der and the response time.

4.1 Summary of the Questionnaire

The first statement in the questionnaire was: The robot
reacted to my interaction. The frequency of answers for each
groupwere presented as a histogramplot in Fig. 8. Themajor-
ity (i.e. 80%) of the responses for each group fell into the
agreement region. This clustering of the responses created a
right-skewed symmetry for all the groups. The peak of the
data was at the Strongly agree response for group 3 (i.e. reac-
tion time of 1.5 s). There was only one subject’s response in
the disagreement region for group 3. This could be due to
the slow reaction time compared to other groups (i.e. 1.5 s vs
1.0 s or 0.5 s) that gave the wrong impression of the robot’s
responses to the subject. Alternatively, this could have been
simply an outlier.

The distribution of the responses changed when the sub-
jects were asked about the second statement of the question-
naire,whichwas:The robot reacted quickly tomy interaction.
Similar to Q1, the majority of the participants have answered
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Fig. 7 Samples of the conducted experiments. a A child exploring the toy. b A child shaking the toy. c A child throwing the toy

Table 2 The experimental protocol for the experiments conducted in
this study

Number Reaction evaluation

Task 1 Pick up the robot up and explore it

Task 2 The robot is sleeping and in order to wake it up you need to
shake it

Task 3 The robot would like to go to a specific place, toss it there

Table 3 The questions stated in the questionnaire

Number Questionnaire statement

Q1 The robot reacted to my interaction

Q2 The robot reacted quickly to my interaction

Q3 The robot liked it when I picked it up

Q4 The robot liked it when I shook it

Q5 The robot liked it when I threw it

in agreement to the statement, with group 2 being the highest
(i.e. 80% of the subjects) and group 3 the lowest (i.e. 60% of
the subjects) (Fig. 9). The data for each group appear to be
skewed to the right. There were three peaks for each group at
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Fig. 8 A histogram summarizing the responses for the first question of
the questionnaire: The robot reacted to my interaction

the Strongly agree and Agree scales. More responses were in
the disagreement region as compared to the previous ques-
tion. Group 3 contained the highest number (i.e. 40% of the
subjects) of responses in the disagreement scales. This could
be attributed to the relatively late response of the robot for
this group as compared to the other groups.

The distributions for the third question (i.e.The robot liked
it when I picked it up) showed different spread for each group
(Fig. 10). The responses for group 2 (i.e. reaction time of
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Fig. 9 A histogram summarizing the responses for the second question
of the questionnaire: The robot reacted quickly to my interaction
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Fig. 10 A histogram summarizing the responses for the third question
of the questionnaire: The robot liked it when I picked it up

1.0 s) appears to be right-skewed with 60% of the responses
in the agreement region. Group 3 (i.e. reaction time of 1.5 s)
also appears to be right-skewed, but with 50% of the subjects
in agreement with the statement. The peak for group 2 was at
Strongly agree selection while for group 3 the peakwas at the
Agree selection. As for group 1 with a reaction time of 0.5 s,
the overall responses appear to be scattered in the agreement
region (i.e. 50% of the subjects), however, the peak is at the
Not sure scale. There were some responses in the disagree-
ment region mainly for reaction time of 1.0 s and 1.5 s (i.e.
20%). The discrepancy in the responses could be attributed
to the perceived understanding of the robot’s reactions due
to the subjects’ interaction. The robot voice reaction to being
picked up was similar to that of being surprised, but in a
joyful manner. This could have confused some of the partic-
ipants which made more responses leaning toward the Not
sure scale or even into the disagreement region.

The fourth question was The robot liked it when I shook it.
For this case, the robot produced a voice that indicated being
annoyed to being shook. Hence, the responses are expected
to be mostly in the disagreement zone. More than 70% of
the responses for group 1 and group 2 fell into the disagree-
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Fig. 11 A histogram summarizing the responses for the fourth question
of the questionnaire: The robot liked it when I shook it

ment region (Fig. 11). Group 1 and group 2 (i.e. reaction
time of 0.5 s and 1.0 s) appear to be left-skewed with two
peaks occuring at the Strongly disagree scale. The major-
ity of the participants in group 3 (i.e. reaction time of 1.5 s)
voted in agreement (i.e. 70% of the subjects) to the fact that
the robots liked being shaken. These results could be due to
the relatively late response time for this group that made the
robot produce delayed or incorrect reactions for the current
interaction being made. For example, the robot is making the
reaction for pickupwhile it should produce the one for shake.
Clearly, a reaction time greater than one second could alter
the perceived perception of a robot’s response.

The fifth questionwas related to the perceived understand-
ing of the robots’ response after being thrown. The robot
produced a sound indicating the feeling of pain in this case.
The majority of the responses appear to be clustered in the
disagreement region when the participants were asked The
robot liked it when I threw it. The peak was found for group
1 (i.e. reaction time of 0.5 s) at the Strongly disagree scale
followed by group 2 (i.e. reaction time of 1.0 s) at the Dis-
agree scale (Fig. 12). Group 3 with a reaction time of 1.5 s
achieved the highest number of responses (i.e. 40% of the
subjects) in the agreement region followed by group 1 (i.e.
30% of the subjects).

4.2 Statistical Analysis

4.2.1 Gender Effect

As a secondary objective, it is interesting to find if there is
an effect of gender on the responses for the different groups.
For this analysis, only group 1 and group 2 were considered
because of the close number of participants’ genders (i.e.
total of 8 females vs. 12males). AMann–Whitney U test was
run on 20 participants to determine if there were differences
in the responses between males and females. The median
response scores for males (3.5) and females (4.0) were not

123



International Journal of Social Robotics

0

10

20

30

40

50

60

Strongly
agree

Agree Not sure Disagree Strongly
Disagree

)
%(stcejbuS

Agreement scale

Reac�on �me = 0.5 s

Reac�on �me = 1.0 s

Reac�on �me = 1.5 s

Fig. 12 A histogram summarizing the responses for the fifth question
of the questionnaire: The robot liked it when I threw it

statistically significantly different, p = 0.948. These results
were expected as the human perception of a response should
be similar regardless of the gender.

4.2.2 Response Time Effect

AKruskal–Wallis test for each item in the questionnaire was
conducted to check for any significant difference between
the three groups.

For the first question, the median values for group 1 (4.0),
group 2 (4.0), and group 3 (5.0) were not statistically signif-
icantly different, p = 0.827.

The median values for the second questions of group 1
(4.0), group 2 (4.5), and group 3 (4.0) were not statistically
significantly different, p = 0.223.

As for the third question, the differences between the
median values of group 1 (3.5), group 2 (4.0), and group
3 (3.5) were not statistically significant, p = 0.666.

Themedian values for the fourth question of group 1 (1.5),
group 2 (1.5), and group 3 (4.0) had statistically significant
differences, p = 0.023. The average rank and median values
showed that group 3 was different compared to the other
groups. Group 3 was the one with the longest reaction time
(i.e. 1.5 s) and that could explain the statistical difference.

As for the fifth question, the differences in the median
values of group 1 (2.0), group 2 (2.0), and group 3 (3.0) were
not statistically significant, p = 0.415. However, the average
rank for group 3 (18.5) is higher than that of group 1 (14.3)
and group 2 (13.8).

5 Discussion

The participants displayed different reactions while perform-
ing the tasks with the robotic toys. The first task was to pick
up the robot and explore it, and the robot would respond with
sounds implying a joyful reaction. For this task,many showed

curiosity and laughter about the sounds that the robots were
emitting. Some of the children showed surprised expressions
and stopped temporarily to explore the robots then looked at
the experimenters. The second task was to shake the robot,
and the robot would respond with sounds implying annoy-
ance. For this task, manywere surprised, stopped shaking the
robot, and then placed it back after hearing the robots’ reac-
tions. A few resumed shaking after stopping temporarily. The
last task was to throw the robot to a specific target, and the
robot would emit a sound, which implied pain.Many showed
surprised expressions about the responses while some of
them gazed at the experimenter with astonished looks.

The results of the questionnaire implied that there is an
effect for the reaction timings on the perceived understanding
of the robots’ responses. Group 3 (i.e. reaction time of 1.5 s)
scored more incorrect responses across most of the ques-
tions as compared to other groups. This was very evident in
the responses for the fourth item in the questionnaire (Fig.
11). The delay in producing a reaction to an interactionmight
have given the wrong impression about the causation effect,
hence,making it difficult to understand the aimor goal behind
a robot’s response. In other words, the longer the duration to
make a reaction, the more likely it will deliver an incorrect
message to the user for the intended interaction. Produc-
ing a response within one second from detecting a stimuli
should produce more favorable results. The Kruskal–Wallis
test results for the fourth question support these findings.

Another dimension that might have influenced the
responses is the modality of the response itself. The sounds
for the responses were considered to indicate three differ-
ent expressions, namely, joyful surprise, being annoyed, and
feeling pain. These responses were selected by adults to
target children as the primary users. Some of the incorrect
responses to the questions could be attributed to a possible
confusion about the intended message behind each sound
(i.e. response). This implies the need for more commonly-
accepted responses that could be easily understood regardless
of age, culture, or geographical region.

The number of participants in our study was limited to
30 subjects. Hence, experiments with a larger sample size
are required to make a better generalization. Furthermore,
the experiments in our study were conducted with neurotyp-
ical children. The findings cannot be necessarily generalized
to include those with special needs or cognitive disorders.
More tailored and individualized experiments need to be
conducted to study and address the needs of those popu-
lations. The experiments in this study were limited to three
different responses corresponding to three different interac-
tions. However, more responses could exist to imply different
emotions and reactions. Sound was the only modality that
was considered to convey the robots’ responses. Different
modalities could be considered and integrated to provide
clearer responses. Children were the only participants in our
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experiments because of the targeted end-users of this study.
However, adults participants could be considered to obtain a
more comprehensive and in-depth feedback about the exper-
iments. Finally, the recognition model could be improved to
increase its capabilities in recognizing more behaviors accu-
rately and quickly.

6 Conclusions

Wehave presented an approach to detect and respond to three
types of manipulation of robotic toys, namely, being picked
up, being shaken, and being thrown. Furthermore, we have
evaluated the perception of a response provided at different
reaction timings through the emission of sounds. The results
showed that the reaction time affects the understanding of a
robot’s response to an interaction. Furthermore, sound as a
modality to be used in a robot’s response provided a sufficient
message to be understood by the majority of the participants.

Ideally, the response to an action for robotic toys should
occur not more than one second after the detection of an
aggressive behavior or an unwanted interaction. This implies
the need for fast recognition algorithms that must provide
a quick prediction about an interaction. The modality of
the response should be clear enough to provide the right
message intended from the interaction. Multiple modalities
could be fused together to provide a stronger response and
clearer message to the user. Hence, it would reduce the like-
lihood of user’s misinterpreting the intendedmessage behind
a response.

Companion robots would benefit from having the capabil-
ity of detecting and reacting to aggressive interactions. This
layer to detect unwanted interactions would operate inde-
pendently from the robot’s main objectives. Having such
capabilities to detect undesired behaviors could be used to
make children experiment with the consequences of their
actions and their effects on others. For example, a robot dis-
playing sad emotion after being hit can influence a child to
believe that this behavior is not appropriate in social interac-
tions. Furthermore, this also has the potential to be extended
to target aggression among neurotypical and neurodivergent
children.

The perception of children with special needs and cog-
nitive disorders toward an emotional response might differ
compared to neurotypical children and might even differ
among the same disorder group. For example, children with
autism are different in their symptoms depending on the
degree and diagnosis of ASD [59]. This diversity among
these populations opens the possibility formore personalized
models of various timings and settings of robotic designs to
meet their requirements [50].

Future studies can investigate the emotional appropriate-
ness of sounds along with other modalities. Furthermore,

a potential future work would consider monitoring some
aspects of the participants’ reactions to determine more
quantitative analysis. For example, aspects, such as gaze,
emotions, and others, can be considered. Moreover, further
improvements on the recognition algorithm should be con-
sidered to ensure smoother interactions,which should reach a
much higher performance to become acceptable as a product
in the mass market.
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