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A B S T R A C T

Introduction: Parkinson's disease (PD) is a common neurodegenerative disorder characterized by disabling motor
and non-motor symptoms. For example, idiopathic hyposmia (IH), which is a reduced olfactory sensitivity, is
typical in> 95% of PD patients and is a preclinical marker for the pathology.
Methods: In this work, a wearable inertial device, named SensHand V1, was used to acquire motion data from
the upper limbs during the performance of six tasks selected by MDS-UPDRS III. Three groups of people were
enrolled, including 30 healthy subjects, 30 IH people, and 30 PD patients. Forty-eight parameters per side were
computed by spatiotemporal and frequency data analysis. A feature array was selected as the most significant to
discriminate among the different classes both in two-group and three-group classification. Multiple analyses
were performed comparing three supervised learning algorithms, Support Vector Machine (SVM), Random
Forest (RF), and Naïve Bayes, on three different datasets.
Results: Excellent results were obtained for healthy vs. patients classification (F-Measure 0.95 for RF and 0.97 for
SVM), and good results were achieved by including subjects with hyposmia as a separate group (0.79 accuracy,
0.80 precision with RF) within a three-group classification. Overall, RF classifiers were the best approach for this
application.
Conclusion: The system is suitable to support an objective PD diagnosis. Further, combining motion analysis with
a validated olfactory screening test, a two-step non-invasive, low-cost procedure can be defined to appropriately
analyze people at risk for PD development, helping clinicians to identify also subtle changes in motor perfor-
mance that characterize PD onset.

1. Introduction

1.1. Clinical background

Millions of people worldwide are affected by Parkinson's Disease
(PD) [1], a neurodegenerative pathology caused by a significant loss of
dopamine in the forebrain, characterized by both cardinal motor
symptoms [2] and non-motor manifestations (NMMs) [3]. Today, PD
diagnosis is typically made by analyzing motor symptoms based on
diagnostic criteria [4]. Clinical scales, such as the Movement Disorder
Society-sponsored revision of the Unified Parkinson's Disease Rating
Scale (MDS-UPDRS) [5] and the Hoehn & Yahr (HY) [6], are semi-
quantitative tools used by neurologists to assess PD patients by as-
signing a score according to the disease severity. The evaluation can be
subjective and affected by variability. Therefore, an objective tool that

can help neurologists to quantitatively identify small changes in motion
performance is necessary to have an unbiased assessment of the disease.

Since motor symptoms appear when several neurological areas are
already damaged, recently, interest has grown toward new diagnostic
criteria focusing also on NMMs, which are involved in the neuro-
pathological process and can anticipate the onset of motor symptoms by
5–7 years [7].

Idiopathic hyposmia (IH), a reduced olfactory sensitivity, is a
common NMM in 95% of PD patients [8]. The risk of developing PD is
about 10–12% greater in healthy adults with IH compared to those
without IH [9]. However, IH is not sufficient to identify PD onset, since
it has low specificity for PD development. Currently, PD diagnosis is
confirmed by imaging techniques, which can reveal dopamine trans-
mitters in the brain (i.e., SPECT-DaTSCAN) [10], or can investigate the
PD pathophysiology (e.g., NMR-DTI) [11]. However, these methods are
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invasive and expensive.
Thanks to their accuracy, unobtrusiveness, low cost, and ease of use,

wearable sensors can represent an interesting solution for objective and
quantitative evaluation of the motor performance [12]. Moreover,
novel machine learning (ML) algorithms can enable mining of data
acquired by wearable sensors, providing a useful tool for supporting
clinicians in PD diagnosis since the beginning of the pathology [13,14].

In particular, hypothesizing IH as a preclinical biomarker for PD, it
would be possible to combine the olfactory screening with a non-in-
vasive motion analysis using wearable sensors to identify the early PD
onset [15].

1.2. Related works

ML techniques recently have been applied in studies for PD classi-
fication, particularly for speech analysis, comparing different ML al-
gorithms such as Naïve Bayes (NB), J48, Random Forest (RF), and
Support Vector Machine (SVM) [16,17]. Generally, a two-group clas-
sification was implemented (PD patients vs. healthy subjects of control
(HC)), with valuable results obtained. In addition, a multiclass classi-
fication work was proposed (i.e., identification of HC, and early, in-
termediate, and advanced patients) with 93% overall classification ac-
curacy [18].

Some researchers also applied ML to classify PD patients and HC
investigating motion abilities. Although most works focused on lower
limbs [13], interest in upper limb motion is growing (Table 1). Com-
monly, the works focused on a single task [19,20], or a single symptom
(i.e., tremor) [21,22], while three works involved more exercises
[23–25]. Accelerometers and gyroscopes were the most used technol-
ogies. Different typologies of classifiers were implemented in these
works, without consensus on the most suitable approach for PD as-
sessment. Limited datasets were typically analyzed; thus, the applic-
ability of ML must be demonstrated further.

To the best of our knowledge, none of the studies applies these al-
gorithms to a wide set of features extracted by several exercises, and
none consider multiclass classification that includes people at risk for
developing PD (i.e., IH subjects). Currently, only imaging diagnostic
techniques demonstrated that IH is a preclinical marker of this pa-
thology [8].

In this context, starting from the results obtained by the same au-
thors on lower limb motion [26], this work aims to investigate differ-
ences in classes of people (i.e., healthy subjects, IH people, and PD
patients), analyze their motor performance in the upper limbs, which
are measured using wearable inertial sensors, and compare three dif-
ferent supervised ML approaches. In particular, in this work, the au-
thors propose to:

i) Analyze a comprehensive experimental protocol for a complete
motor evaluation of upper limbs in PD using six exercises taken
from MDS-UPDRS III and, therefore, increasing the number of ex-
ercises with respect to previous works.

ii) Evaluate a wide set of features extracted from the kinematic ana-
lysis that enable evaluation of spatial, temporal, and frequency
parameters.

iii) Investigate the most suitable ML approach for motor assessment of
upper limb performance in PD by using three supervised classifiers
(i.e., SVM, RF, and NB).

The final idea is to provide the neurologist with a decision support
system, based on the analysis of motor data acquired by inertial sensors
during the performance of a structured protocol, applying machine
learning techniques aiming to help him in objective clinical diagnosis of
PD patients, since the early stage.

2. Materials and methods

2.1. Participants

Three age-matched groups composed of 30 HC (25 males, 5 females,
mean age ± standard deviation 65.2 ± 2.5 y), 30 subjects with idio-
pathic hyposmia (IH) (21 males, 9 females, 66.0 ± 3.2 y), and 30 pa-
tients with Parkinson's Disease (PD) (25 males, 5 females,
67.9 ± 8.8 y) were involved in this study. All patients were clinically
assessed, and measurements were performed in a clinically defined ON-
state. The PD patients were mild to mid (mean MDS-UPDRS III ± SD
score: 14.7 ± 8.6; mean HY ± SD score: 1.9 ± 0.8), with lateraliza-
tion prevalence of the disease almost equally distributed: 9 right, 10
left, and 11 bilateral. Impairments or diseases, other than PD, that could
affect the performance of daily activities represented exclusion criteria.
IH subjects were recruited through the IPMP-MS Project that provided
screening for IH using the IOIT olfactory test [9]. All the subjects signed
written informed consent, and the study procedure was approved by the
local Ethical Committee (Azienda Sanitaria Locale, Massa, Italy,
n°1148/12.10.10) according to the most recent Declaration of Helsinki.

2.2. Instrumentation

A novel wearable device based on inertial measurement units
(IMUs) was developed to objectively analyze the upper limb motor
performance of the subjects. The patented device, named SensHand V1
(Supplementary Fig. 1), is low cost, low power, non-invasive, small in
size, lightweight, wireless, and easy to use [27]. Supplied by a re-
chargeable LiPo battery, it allows the collection of data with 100 Hz
sampling frequency. The device consists of four IMUs: a coordinator on
the wrist, and three units on the distal phalanxes of thumb, index, and
middle fingers. Each unit is an IMU integrated into the iNEMO-M1
board based on microelectromechanical systems (MEMS) sensors (3-
axis gyroscope L3G4200D and 6-axis geomagnetic module
LSM303DLHC) and dedicated ARM-based 32-bit microcontroller
STM32F103RE (STMicroelectronics, Italy). Data transmission and syn-
chronization between the units is implemented through the CAN-bus
standard. The data are sent through Bluetooth to a control station for
offline processing. Movements between sensors and anatomical seg-
ments are avoided thanks to Velcro straps.

2.3. Experimental protocol

The subjects’ motor performance were analyzed by defining an ex-
perimental protocol composed of six exercises (forearm pronation/su-
pination (PSUP), hand opening/closing (OPCL), thumb-forefinger tap-
ping (THFF), postural tremor (POST), resting tremor (HRST), and arms
swing during the gait (GTAH)) that followed the tasks described in the
MDS-UPDRS III.

Before starting the acquisitions, the clinical staff showed the users
the correct execution of each exercise, and a preliminary training phase
was performed by the subjects to test all the required tasks. During the
entire protocol, except for GTAH that implies a standing position, the
subjects assumed a comfortable sitting posture, holding right angles at
the hip and at the knee. At the beginning of each exercise, the subjects
were asked to maintain a specific fixed position for 3 s to acquire a
static baseline for each trial. The detailed description of the exercises
can be found in Supplementary Table 1.

Every subject was consecutively examined two times, for both the
right hand (R_HAND) and left hand (L_HAND). For comparison between
groups, the mean value of the two repeated measures was used.

2.4. Pre-processing

Inertial data were acquired and offline processed via
Matlab®R2016b (The MathWorks, Inc., Natick, MA, USA).
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Accelerometer and gyroscope data were filtered with a fourth-order
low-pass digital Butterworth filter. A 5 Hz cut-off frequency was applied
for repetitive exercises (i.e., PSUP, OPCL, THFF, and GTAH) to elim-
inate high-frequency noise and tremor frequency bands [12,21,26].
Angular rates were integrated using the trapezoidal rule, with sub-in-
tervals of integration equal to 100ms, to calculate the movement am-
plitudes. Moreover, a linear drift correction based on the Zero Velocity
Update method (ZUPT) was applied step by step to avoid cumulative
effects in amplitude calculation [26]. Differently, for HRST and POST,
where tremor was investigated, 15 Hz and 20 Hz as cut-off frequency
were respectively applied, and an additional fourth-order high-pass
digital Butterworth filter was applied with a 0.5 Hz cut-off frequency to
avoid the continuous component of the signal due to the static position
maintained during these exercises, focusing on the components related
to potential tremor. Fast Fourier Transform was applied for frequency
analysis implementing the fft function provided by Matlab (FFTW li-
brary, http://www.fftw.org).

The detailed set of measured parameters and their acronyms for
each exercise are reported in Supplementary Table 1 where is also re-
ported the exact sensor that provides useful information for each ex-
ercise.

2.5. Feature selection and classification

Combining the three groups of people involved in the study, three
datasets were composed, considering IH as an independent class, as
healthies, or not considered at all:

• 2C60: 30 HC vs. 30 PD.

• 2CIH: 15 randomly selected IH subjects, considered as healthy per-
sons, and 15 randomly selected HC, obtaining, therefore, a group
composed of 30 HC (15 HC plus 15 IH) vs. 30 PD. Testing on this
dataset allowed classification of healthy people vs. patients without
information about the possible olfactory disorder.

• 3C90: 30 HC vs. 30 IH vs. 30 PD, considering the three groups se-
parately.

Since each extracted parameter resulted in a no parametric dis-
tribution according to Kolmogorov-Smirnov test, Kruskal-Wallis test in
the three-class case (i.e., dataset 3C90), and Wilcoxon rank sum test in
the two-class case (i.e., datasets 2C60 and 2CIH) were performed to
evaluate the statistical significance for each feature in distinguishing
among the groups. Features with a p-value<0.05 at least for one side
were considered statistically significant and were included in the fol-
lowing analysis. The Spearman's correlation coefficients of the obtained
datasets were evaluated to remove highly correlated (rho>0.85) fea-
tures. In particular, to create the final dataset, only one feature was kept

of the ones with a high correlation coefficient.
Three supervised learning classifiers, namely SVM, RF, and NB,

were implemented using functions of Matlab®R2016b to distinguish
among the different groups of people, within the aforementioned da-
tasets (2C60, 2CIH, and 3C90). In particular, regarding the SVM, a third-
order polynomial kernel was set, and the hyper-parameters were au-
tomatically optimized thanks to the dedicated Matlab function. The
analogous optimization process was implemented for NB. Also for the
RF, a Matlab function was used, but, in this case, the number of trees
was varied using a base two exponential rate with the exponent from 1
to 12 [28]. According to Ref. [28], the Area Under the Curve (AUC) was
evaluated. A tradeoff between the AUC and the processing time to
obtain it was used as a parameter to choose the optimal number of
trees. A ten-fold cross-validation method was applied.

The performances of the classifiers were evaluated in terms of
sensitivity or recall, specificity, precision, accuracy, and F-measure
calculated as in Ref. [26]. Supplementary Fig. 2 summarizes the
methodological approach implemented in this work.

3. Results

This section reports the results obtained from the motor perfor-
mance assessment using SVM, RF, and NB on three different datasets
(2C60, 2CIH, 3C90).

3.1. Feature selection

Forty-eight features were extracted from upper limbs, both for right
and left sides (see Supplementary Table 2 for numerical results, and
Supplementary Fig. 3 for graphical results of the trend among the three
groups of some of the most significant features). Among them, 39 fea-
tures per limb produced statistically significant results to differentiate
between groups in the 3C90 dataset, while 35 parameters produced
statistically significant results for 2CIH and 36 for 2C60. Thirty-three
features were common to all the datasets. According to Spearman's
correlation coefficients, highly correlated parameters were removed
and final datasets were reduced to 31 features per limb for 3C90, 27
features for 2CIH, and 28 features for 2C60 as highlighted in grey in
Supplementary Table 2.

3.2. Classification results

The classification results are reported in Table 2, considering both
right and left hand separately, and the hands together.

Focusing on both hands, among the three classifiers, the best results
were achieved with RF and SVM when considering the 2C60 dataset
(accuracy and F-measure both equal to 0.95 for RF, and to 0.97 for

Table 2
Comparative results from SVM, RF and NB classifiers in terms of Precision, Recall, Specificity, Accuracy and F-measure for the three different datasets (3C90, 2CIH,
2C60) calculated on Right Hand, Left Hand and both Hands.

Precision Recall Specificity Accuracy F-Measure

SVM RF NB SVM RF NB SVM RF NB SVM RF NB SVM RF NB

3C90

R_Hand 0.701 0.753 0.722 0.667 0.744 0.711 0.833 0.872 0.856 0.667 0.744 0.711 0.683 0.748 0.716
L_Hand 0.781 0.817 0.687 0.778 0.800 0.689 0.889 0.900 0.844 0.778 0.800 0.689 0.780 0.808 0.688
Hands 0.716 0.803 0.716 0.711 0.789 0.700 0.856 0.894 0.850 0.711 0.789 0.700 0.714 0.796 0.708
2CIH

R_Hand 0.962 0.962 0.893 0.833 0.833 0.833 0.967 0.967 0.900 0.900 0.900 0.867 0.893 0.893 0.862
L_Hand 0.931 0.889 0.897 0.900 0.800 0.867 0.933 0.900 0.900 0.917 0.850 0.883 0.915 0.842 0.881
Hands 0.893 0.963 0.963 0.833 0.867 0.867 0.900 0.967 0.967 0.867 0.917 0.917 0.862 0.912 0.912
2C60

R_Hand 0.967 1.000 0.929 0.967 0.867 0.867 0.967 1.000 0.933 0.967 0.933 0.900 0.967 0.929 0.897
L_Hand 0.967 1.000 0.964 0.967 0.933 0.900 0.967 1.000 0.967 0.967 0.967 0.933 0.967 0.966 0.931
Hands 0.967 1.000 0.933 0.967 0.900 0.933 0.967 1.000 0.933 0.967 0.950 0.933 0.967 0.947 0.933
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SVM) and with RF and NB for 2CIH dataset (accuracy and F-measure
equal to 0.92 and 0.91, respectively), while RF gave better perfor-
mances for the multiclass classification (accuracy equal to 0.79 and F-
measure equal to 0.80). Thus, RF appeared as the best classifier (Fig. 1).
The results per class are reported for the 3C90 dataset for both hands in
Fig. 2, where PD is the best-identified class, and IH is the worst one, as
evidenced also by the confusion matrix. Actually, IH were misclassified
both as patients and healthy subjects, while any PD is misclassified as
HC and vice versa.

4. Discussion

This work aimed to provide an objective and quantitative assess-
ment of upper limb motion for identifying different classes of people
(i.e., HC, IH, and PD). The protocol applied was based on six MDS-
UPDRS III tasks. Inertial data collected were processed through ad hoc
algorithms for feature extraction. Statistical tests enabled the selection
of a feature array as input for ML algorithms. Multiple comparisons
were implemented and analyzed in this work, using three different
supervised classifiers (i.e., SVM, RF, and NB) that were tested on three
datasets (i.e., 2C60, 2CIH, and 3C90), for two-group or three-group
classification, based on data from a single limb or both sides (i.e.,
R_HAND, L_HAND, HANDS).

Since the selected feature array is composed of parameters derived
from all six exercises, the use of a comprehensive protocol that does not
focus only on a single task is endorsed because it enables a complete
analysis of the motor status of subjects, including both motor tasks and
tremor analysis. According to literature, the selected feature array
should be composed of parameters that are clinically significant and
easily understandable for neurologists (e.g., number of movements,
amplitudes, and velocities) to significantly enhance support to clinical
practice [29,30]. Performances calculated from both hands or a single
limb are comparable. Since the PD onset is typically asymmetrical,
clinically there is no reason to choose one particular side instead of the
other one. Actually, the analysis of both hands is recommended to
identify PD even when motor symptoms are unilateral.

The use of ML approaches is appropriate to discriminate among
different classes of people. Thus, concerning both hands, the best results

were obtained for two-class classification (2C60) between HC and PD
with RF (0.90 recall, 1.00 specificity) and SVM (0.97 recall and speci-
ficity). These results are similar [23] or better than those found for PD/
HC discrimination in Refs. [19,22,25] as reported in Table 1. However,
no conclusive deduction can be made concerning the most suitable
classifier to use since each work used different approaches (e.g., Bag
DT, SVM, nearest mean classifiers) and methodologies (single or multi-
tasks and different extracted parameters). Nevertheless, the excellent
results obtained are promising to sustain the application of the pro-
posed system in clinical practice for supporting clinicians in quantita-
tive assessment and PD diagnosis.

The involvement of a third class of people, such as the IH, allowed
the study of the combined datasets in which they could be treated as HC
(2CIH) or as a separate group (3C90). The first group simulates the ty-
pical situation where, not knowing whether people are affected by IH,
they are labelled as healthy persons, which is clinically reasonable since
the possible pathology is latent in them and it will be developed only in
10–12% of IH within 5 years [9]. The results for 2CIH achieved the best
accuracy (0.92) using RF, which is slightly lower than those obtained in
the 2C60 dataset (i.e., RF 0.95 accuracy) because few IH can have motor
performance that is more similar to PD than it is to HC. Finally, the last
dataset, 3C90, allows testing of a multi-group classification, distin-
guishing between the three classes with an average 0.80 precision and
0.79 recall adopting RF. These results are not directly comparable with
any other work in literature, since, to our knowledge, no studies have
included motor assessment of IH subjects; nor have they applied ML for
multi-class classification based on upper limb motion evaluation. The
main difficulties for classification improvement are related to the IH
category that shows intermediate motor performance between the HC
and PD groups but can be misclassified both as HC and PD, which is
clinically justifiable because only a reduced part of the IH will actually
develop the disease.

Despite the good results, some limitations are disclosed in this
study. First, PD severity or the level of idiopathic hyposmia were not
considered, and neither was the correlation with the clinical scale.
Thus, it could be interesting, for example, to evaluate whether the IH
misclassified as PD have severe olfactory impairments, as well as
whether the PD misclassified as IH are mild PD. Second, even if the

Fig. 1. Comparative classification results for SVM, RF, and NB classifiers, considering both hands in the three datasets 2C60, 2CIH, and 3C90.

Fig. 2. Results for 3C90 dataset for HANDS with RF classifier. (A) Confusion matrix: correct predictions are reported in dark grey, while incorrect predictions are
reported in light grey. (B) Obtained values for: Precision/class, Recall/class, and F-Measure/class.
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dataset employed is large enough, these cannot be definitive results
because wider samples are required to compute normative data to en-
sure clinical validation. Thus, the selected feature array should be
confirmed with further investigations.

5. Conclusion

In conclusion, the results obtained for two-class analysis are high
(0.95 accuracy), and, to the best of our knowledge, this is the first work
where motor assessment of IH subjects, as people at risk for developing
PD, is evaluated. The system was able to recognize IH as a separate
group in a three-class classification, even if it had some difficulty in
distinguishing between IH and HC. Although improvements could be
applied in future research (e.g., enlarged sample size, IH follow-up,
correlation to clinical scale), the good results obtained confirm and
show improved results compared to the previous study by the same
authors concerning lower limb assessment [26], promoting the idea
that quantitative motion evaluation can be a valuable support for
neurologists in objective PD diagnosis. Further, by combining motion
analysis with a validated olfactory screening test, a two-step, non-in-
vasive, low-cost procedure can be defined to appropriately analyze
people at risk for PD development and help clinicians to identify subtle
changes in motor performance that characterized PD onset.
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