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90123 Palermo, Italy

Correspondence should be addressed to Cristina Di Bari, dibari@math.unipa.it

Received 21 May 2008; Accepted 3 September 2008

Recommended by Wolfgang Kuehnel

We introduce a new generalized contractive condition for four mappings in the framework of
metric space. We give some common fixed point results for these mappings and we deduce a fixed
point result for weakly compatible mappings satisfying a contractive condition of integral type.

Copyright q 2008 C. Di Bari and C. Vetro. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction and preliminaries

The study of common fixed point of mappings satisfying contractive type conditions has
been a very active field of research during recent years. The most general of the common
fixed point theorems pertaining to four mappings, A, B, S, and T of a metric space (X, d),
uses either a Banach-type contractive condition of the form

d(Ax,By) ≤ kM(x, y), 0 ≤ k < 1, (1.1)

where

M(x, y) = max
{
d(Sx, Ty), d(Ax, Sx), d(By, Ty),

[
d(Sx, By) + d(Ax, Ty)

]
2

}
, (1.2)

or aMeir-Keeler-type (ε, δ)-contractive condition, that is, given ε > 0, there exists a δ > 0 such
that

ε ≤M(x, y) < ε + δ =⇒ d(Ax,By) < ε, (1.3)
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or a ψ-contractive condition of the form

d(Ax,By) ≤ ψ(M(x, y)
)
, (1.4)

involving a contractive gauge function ψ : [0,+∞[→ [0,+∞[ such that ψ(t) < t for each t > 0.
Clearly, Banach-type contractive condition is a special case of both conditions Meir-Keeler-
type (ε, δ)-contractive and ψ-contractive. A ψ-contractive condition does not guarantee the
existence of a fixed point unless some additional condition is assumed. Moreover, a ψ-
contractive condition, in general, does not imply the Meir-Keeler-type (ε, δ)-contractive
condition [1, Example 1.1].

Recently, some fixed point results for mappings satisfying an integral-type contractive
condition are obtained in [2–5]. Suzuki [6] showed that Meir-Keeler contractions of integral
type are still Meir-Keeler contractions. Zhang [7] introduced a generalized contractive-type
condition for a pair of mappings in metric space and proved common fixed point theorems
that extend results in [3–5]. In this paper, we give a new generalized contractive-type
condition for four mappings in metric space and prove some common fixed point results
for these mappings. The results obtained extend well-known comparable results in [2–5, 7].

Lemma 1.1 (see [8]). For every function ψ : [0,+∞[→ [0,+∞[, let ψn be the nth iterate of ψ. Then
the following hold:

(i) if ψ is nondecreasing, then for each t > 0, limn→+∞ ψn(t) = 0 implies ψ(t) < t;

(ii) if ψ is right continuous with ψ(t) < t for t > 0, then limn→+∞ ψn(t) = 0.

2. Common fixed points

In this section, we give our main result. Two self-mappings A and S of a metric space (X, d)
are called weakly compatible if they commute at their coincidence points. Let A, B, S, and T
be self mappings of a metric space (X, d). In the sequel, we set

M(x, y) = max
{
d(Sx, Ty), d(Ax, Sx), d(By, Ty),

[
d(Sx, By) + d(Ax, Ty)

]
2

}
. (2.1)

Lemma 2.1. Let A, B, S, and T be self-mappings of a metric space (X, d) such that AX ⊂ TX,
BX ⊂ SX. Assume that there exist F, ψ : [0,+∞[→ [0,+∞[ such that

(i) F is nondecreasing, continuous, and F(0) = 0 < F(t) for every t > 0;

(ii) ψ is nondecreasing, right continuous, and ψ(t) < t for every t > 0.

If for all x, y ∈ X,

F
(
d(Ax,By)

) ≤ ψ(F(M(x, y)
))
, (2.2)

then for each x0 ∈ X, the sequence (yn) of points of X defined by the rule

y2n = Ax2n = Tx2n+1, y2n−1 = Bx2n−1 = Sx2n (2.3)

is a Cauchy sequence.
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Proof. We have

M
(
x2n, x2n+1

)

= max
{
d
(
y2n−1, y2n

)
, d

(
y2n, y2n−1

)
, d

(
y2n+1, y2n

)
,

[
d
(
y2n−1, y2n+1

)
+ d

(
y2n, y2n

)]
2

}

= max
{
d
(
y2n, y2n−1

)
, d

(
y2n, y2n+1

)
,
d
(
y2n−1, y2n+1

)
2

}

= max
{
d
(
y2n, y2n−1

)
, d

(
y2n, y2n+1

)}
.

(2.4)

Similarly

M
(
x2n, x2n−1

)
= max

{
d
(
y2n, y2n−1

)
, d

(
y2n−1, y2n−2

)}
. (2.5)

If for some n we have either y2n = y2n−1 or y2n = y2n+1, then by condition (2.2) we
obtain that the sequence (yn) is definitely constant and thus is a Cauchy sequence. Suppose
yn /=yn−1 for each n.

From

F
(
d
(
y2n, y2n+1

))
= F

(
d
(
Ax2n, Bx2n+1

)) ≤ ψ(F(M(
x2n, x2n+1

)))

= ψ
(
F
(
d
(
y2n, y2n−1

)))
< F

(
d
(
y2n, y2n−1

))
,

F
(
d
(
y2n, y2n−1

))
= F

(
d
(
Ax2n, Bx2n−1

)) ≤ ψ(F(M(
x2n, x2n−1

)))

= ψ
(
F
(
d
(
y2n−1, y2n−2

)))
< F

(
d
(
y2n−1, y2n−2

))
,

(2.6)

we deduce

F
(
d
(
yn+1, yn

))
< F

(
d
(
yn, yn−1

))
, (2.7)

for all n ∈ N. Now, from

F
(
d
(
yn+1, yn

)) ≤ ψ(F(d(yn, yn−1))) ≤ · · · ≤ ψn(F(d(y0, y1))) (2.8)

and (ii) of Lemma 1.1, we obtain limn→+∞ F(d(yn+1, yn)) = 0, which implies

lim
n→+∞

d
(
yn+1, yn

)
= 0. (2.9)

We prove that (yn) is a Cauchy sequence. Suppose not, then there exists ε > 0 such
that d(yn, ym) ≥ 2ε for infinite values ofm and nwithm < n. This assures that there exist two
sequences (mk), (nk) of natural numbers, withmk < nk, such that

d
(
y2mk , y2nk+1

)
> ε ∀ k. (2.10)
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It is not restrictive to suppose that nk is the least positive integer exceedingmk and satisfying
(2.10). We have

ε < d
(
y2mk , y2nk+1

)

≤ d(y2mk , y2nk−1
)
+ d

(
y2nk−1, y2nk

)
+ d

(
y2nk , y2nk+1

)

≤ ε + d(y2nk−1, y2nk) + d(y2nk , y2nk+1).
(2.11)

Then d(y2mk , y2nk+1) → ε. We note

d
(
y2mk , y2nk+1

) − d(y2mk , y2mk+1
) − d(y2nk+2, y2nk+1)

≤ d(y2mk+1, y2nk+2
)

≤ d(y2mk , y2nk+1
)
+ d

(
y2mk , y2mk+1

)
+ d

(
y2nk+2, y2nk+1

)
,

(2.12)

and thus d(y2mk+1, y2nk+2) → ε as k → +∞. We have

M
(
x2nk+2, x2mk+1

)

= max
{
d
(
y2mk , y2nk+1

)
, d

(
y2nk+1, y2nk+2

)
, d

(
y2mk , y2mk+1

)
,
d
(
y2mk+1, y2nk+1

)
+ d

(
y2mk , y2nk+2

)
2

}

= d
(
y2mk , y2nk+1

)
+ dk,

(2.13)

where dk → 0 as k → +∞ and dk ≥ 0 for all k. Then from

F
(
d
(
y2mk+1, y2nk+2

))
= F

(
d
(
Ax2nk+2, Bx2mk+1

)) ≤ ψ(F(M(
x2nk+2, x2mk+1

)))

= ψ
(
F
(
d
(
y2mk , y2nk+1

)
+ dk

))
,

(2.14)

as k → +∞, F being continuous and ψ right continuous, we get

F(ε) ≤ ψ(F(ε)) < F(ε). (2.15)

This is a contradiction. Therefore (yn) is a Cauchy sequence.

Lemma 2.2. Let (X, d) be a metric space and let A, B, S, T, F, and ψ be as in Lemma 2.1. If one of
AX, TX, BX, and SX is a complete subspace of X, then the following hold:

(i) A and S have a coincidence point;

(ii) T and B have a coincidence point.

Proof. Fix x0 ∈ X and let (yn) be the sequence defined in Lemma 2.1. If y2n = y2n−1 for some
n, then Ax2n = Tx2n+1 = Bx2n−1 = Sx2n, and A and S have a coincidence point. If y2n = y2n+1
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for some n, then Ax2n = Tx2n+1 = Bx2n+1 = Sx2n+2, and T and B have a coincidence point.
Assume that yn /=yn+1 for every n and TX is complete. By Lemma 2.1, the sequence (yn) is
Cauchy; as (y2n) ⊂ TX, there exists u ∈ TX such that yn → u. Let v ∈ X be such that Tv = u.
To prove that Bv = u. We have

M(x2n, v) = max
{
d
(
y2n−1, u

)
, d

(
y2n, y2n−1

)
, d

(
Bv, u

)
,

[
d
(
y2n−1, Bv) + d

(
y2n, u

)]
2

}
.

(2.16)

If Bv /=u, thenM(x2n, v) = d(u, Bv) definitely and consequently for large n,

F
(
d
(
Ax2n, Bv

)) ≤ ψ(F(M(
x2n, v

)))
= ψ

(
F
(
d(u, Bv)

))
. (2.17)

F being continuous, as n→ +∞, we obtain

F
(
d(u, Bv)

) ≤ ψ(F(d(u, Bv))) < F(d(u, Bv)). (2.18)

This is a contradiction, therefore Bv = u and v is a coincidence point for T and B. From
BX ⊂ SX, which gives u ∈ SX, we deduce that there existsw ∈ X such that Sw = u. To prove
that Aw = u. We have

M(w,v) = max
{
d(u, u), d(Aw,u), d(u, u),

[
d(u, u) + d(Aw,u)

]
2

}
= d(Aw,u), (2.19)

and hence

F
(
d(Aw,Bv)

) ≤ ψ(F(M(w,u)
))

= ψ
(
F
(
d(Aw,u)

))
< F

(
d(Aw,u)

)
, (2.20)

which gives Aw = u.
The same result holds if we suppose that one of SX, AX, BX is complete.

Theorem 2.3. Let A, B, S, and T be self-mappings of a metric space (X, d) such that AX ⊂ TX,
BX ⊂ SX. Assume that there exist F, ψ : [0,+∞[→ [0,+∞[ such that

(i) F is nondecreasing, continuous, and F(0) = 0 < F(t) for every t > 0;

(ii) ψ is nondecreasing, right continuous, and ψ(t) < t for every t > 0;

(iii) F(d(Ax,By)) ≤ ψ(F(M(x, y))) for all x, y ∈ X.

If one of AX, TX, BX, and SX is a complete subspace of X, then the following hold:

(iv) A and S have a coincidence point;

(v) T and B have a coincidence point.

Further, if A and S as well as B and T are weakly compatible, then A, B, S, and T have a
unique common fixed point.
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Proof. Fix x0 ∈ X and let (yn) be the sequence defined in Lemma 2.1. Assume that TX is
complete and let u, v, and w be as in Lemma 2.2. If A and S are weakly compatible, then

Au = ASw = SAw = Su, (2.21)

therefore u is a coincidence point of A and S. To prove that d(Au, u) = 0. Suppose that
d(Au, u)/= 0. We have

M(u, v) = max
{
d(Su, u), d(Au, Su), d(u, u),

[
d(Su, u) + d(Au, u)

]
2

}
= d(Au, u)

F
(
d(Au,Bv)

)
= F

(
d(Au, u)

) ≤ ψ(F(M(u, v)
))

= ψ
(
F
(
d(Au, u)

))
< F

(
d(Au, u)

)
.

(2.22)

This is a contradiction, and thus Au = u. Since Au = Su = u, we obtain that u is a common
fixed point for A and S.

Similarly, if B and T are weakly compatible, we deduce that u is a common fixed point
for B and T . Now if A and S as well as B and T are weakly compatible, then u is a common
fixed point for A, B, S, and T . If z ∈ X is also a common fixed point for A, B, S, and T with
u/= z, then

F
(
d(Au,Bz)

) ≤ ψ(F(M(u, z)
))

= ψ
(
F
(
d(Au,Bv)

))
< F

(
d(Au,Bv)

)
, (2.23)

which gives u = z.

Let ϕ : [0,+∞[→ [0,+∞[ be a Lebesgue integrable function which is nonnegative and
such that

∫ ε

0
ϕ(t)dt > 0, for every ε > 0. (2.24)

The function F : [0,+∞[→ [0,+∞[, with F(s) =
∫s
0ϕ(t)dt satisfies condition (i) of Lemma 2.1

and from Theorem 2.3 we deduce the following theorem.

Theorem 2.4 (see [2, Theorem 2.1]). Let A, B, S, and T be self-mappings of a metric space (X, d)
such that AX ⊂ TX, BX ⊂ SX. Assume that there exists a nondecreasing right continuous function
ψ : [0,+∞[→ [0,+∞[, with ψ(t) < t for all t > 0, such that

∫d(Ax,By)

0
ϕ(t)dt ≤ ψ

(∫M(x,y)

0
ϕ(t)dt

)
, (2.25)

where ϕ : [0,+∞[→ [0,+∞[ is a Lebesgue integrable function which is nonnegative and such that

∫ ε

0
ϕ(t)dt > 0, for every ε > 0. (2.26)
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If one of AX, TX, BX, and SX is a complete subspace of X, then the following hold:

(i) A and S have a coincidence point;

(ii) T and B have a coincidence point.

Further, if A and S as well as B and T are weakly compatible, then A, B, S, and T have a
unique common fixed point.

Remark 2.5. Theorem 2.4 is a generalization of the main theorem in [3], of [4, Theorem 2], and
of [5, Theorem 2].

If in Theorem 2.3, we assume S = T = IX , where IX is the identity map onX, we obtain
the following theorem.

Theorem 2.6. Let A and B be self-mappings of a metric space (X, d). Assume that there exist F, ψ :
[0,+∞[→ [0,+∞[ such that

(i) F is nondecreasing, continuous, and F(0) = 0 < F(t) for every t > 0;

(ii) ψ is nondecreasing, right continuous, and ψ(t) < t for every t > 0;

(iii) F(d(Ax,By)) ≤ ψ(F(m(x, y))) for all x, y ∈ X,

where

m(x, y) = max
{
d(x, y), d(Ax, y), d(By, y),

[
d(Ax, y) + d(x, By)

]
2

}
. (2.27)

If one of AX and BX is a complete subspace of X, then A and S have a unique common fixed point.
Moreover, for each x0 ∈ X, the iterated sequence (xn) with x2n+1 = Ax2n and x2n+2 = Bx2n+1
converges to the common fixed point of A and B.

Theorem 2.6 includes [7, Theorem 1].
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