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A B S T R A C T

Grapevine yellows (GY) are a significant threat to grapes due to the severe symptoms and lack of treatments.
Conventional diagnosis of the phytoplasmas associated to GYs relies on symptom identification, due to sensi-
tivity limits of diagnostic tools (e.g. real time PCR) in asymptomatic vines, where the low concentration of the
pathogen or its erratic distribution can lead to a high rate of false-negatives. GY’s primary symptoms are leaf
discoloration and irregular wood ripening, which can be easily confused for symptoms of other diseases making
recognition a difficult task. Herein, we present a novel system, utilizing convolutional neural networks, for end-
to-end detection of GY in red grape vine (cv. Sangiovese), using color images of leaf clippings. The diagnostic test
detailed in this work does not require the user to be an expert at identifying GY. Data augmentation strategies
make the system robust to alignment errors during data capture. When applied to the task of recognizing GY
from digital images of leaf clippings—amongst many other diseases and a healthy control—the system has a
sensitivity of 98.96% and a specificity of 99.40%. Deep learning has 35.97% and 9.88% better predictive value
(PPV) when recognizing GY from sight, than a baseline system without deep learning and trained humans
respectively. We evaluate six neural network architectures: AlexNet, GoogLeNet, Inception v3, ResNet-50,
ResNet-101 and SqueezeNet. We find ResNet-50 to be the best compromise of accuracy and training cost. The
trained neural networks, code to reproduce the experiments, and data of leaf clipping images are available on the
internet. This work will advance the frontier of GY detection by improving detection speed, enabling a more
effective response to the disease.

1. Introduction

Grapevine yellows (GY) are among the most important diseases
currently studied in grapevine. Among GYs, two causal phytoplasmas
are a major concern: Flavescence dorée (FD) and Bois noir (BN). FD
(Candidatus Phytoplasma vitis) is a member of the Elm Yellows group,
(Martini et al., 1999) and BN (Ca. Phytoplasma solani) is a member of
the Stolbur group (16SrXII) (Quaglino et al., 2013). These are con-
sidered the most dangerous phytoplasmas found in all major wine-
growing areas of Euro-Mediterranean countries, Chile and Asia
(Gajardo et al., 2009; Belli et al., 2010; Mirchenari et al., 2015). In
Europe and the Mediterranean basin, the causal agent of FD is classified
as quarantine pest. FD is vectored from vine to vine by Scaphoideus

titanus, a non-native ampelophagous leafhopper from North America
(Chuche and Thiéry, 2014). Conversely, the BN etiological agent is
transmitted by the polyphagous leafhopper, Hyalesthes obsoletus, en-
demic to Europe (Maixner, 1994). Current control strategies include
uprooting of infected plants and vector control with pesticides. La-
boratory-limited activities use antibiotics for cultivar recovery or
Meristem tip culture, that can be used to generate phytoplasma-free in
vitro material (Bertaccini, 2007), but they do not provide successful
phytoplasma disease control. A more efficient strategy to limit phyto-
plasma disease diffusion is needed.

Detection protocols based on molecular assay for phytoplasmas are
not completely reliable when applied to woody plants. This is due to the
low concentration of the pathogen and its erratic distribution in these
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hosts (Belli et al., 2010). Thus, diagnosis of phytoplasma diseases in
grapevines relies on symptom identification and visual symptom re-
cognition plays a strategic role in phytoplasma control. Further, effec-
tive sampling of plants reduces the risk of false negatives. BN and FD
differ in etiology and epidemiology but are indistinguishable by
symptoms: desiccation of inflorescences, reduction of growth, leaf dis-
coloration (showing typical sectorial reddening in red cultivars), berry
shrivel and irregular maturation of wood. The time at which sampling
occurs (late summer) makes it difficult to distinguish GY from other
grapevine disorders that may show similar symptoms. For example, GY
symptoms can be similar to leafroll or direct damage due to leafhopper
feeding (Belli et al., 2010). In particular, in red grapes, esca disease
(caused by fungi complex) and grapevine leafroll (caused by viruses)
can cause leaf discolorations which may be chromatically similar to GY.
The insect Stictocephala bisonia causes sectorial reddening of leaves
which are also quite similar to that observed in red grapes infected by
GY. Thus, symptoms of GY can be confused for symptoms of other
diseases, even by experts (see Fig. 1).

Supervised learning has the potential to distinguish GY from other
diseases (Ampatzidis et al., 2017; Cruz et al., 2017; Sharif et al., 2018;
Zhou et al., 2014). It is automatic without the need for prior expertise
or skill. It can support sampling procedures by reducing false positives
in large-scale vineyard monitoring. To the best of the authors’ knowl-
edge, we are the first to investigate end-to-end symptom identification
of GY with deep learning.

1.1. Related work and motivation

Accurate and timely diagnosis of the disease is the most important
tactic for plant disease control. But, when carried out by humans, it
requires continuous monitoring and manual observation. This is prone
to error, time-consuming, and costly (Ali et al., 2017). Automatic tools
that identify and detect plant diseases could be an effective solution in
monitoring real-time disease diffusion in crop fields (Abdulridha et al.,
2018; Ampatzidis et al., 2017; Zhou et al., 2014). In recent years,
various studies focused on the development of computer vision tech-
niques to detect disease from leaf clipping images. Kaur et al. (2018)
developed a system to detect disease in Glycine max with a k-means
based segmentation algorithm. The system detects downy mildew,
frog eye and Septoria leaf blight from images collected by the Plant-
Village project (https://plantvillage.psu.edu/). A combination of color
and texture features achieve an accuracy of 90.7%. Zhou et al. (2014)
presented a novel representation of a leaf clipping image—also known
as a feature representation, or feature—called orientation code
matching. The feature overcomes differences in light source, occlu-
sion, rotation and translation variations. The authors demonstrate
good precision, recall and F-measure results when the feature is paired

with a support vector machine (SVM). Sengar et al. (2018) proposed
an intensity thresholding method for measuring the progression of
powdery mildew in cherries. This study also used the PlantVillage
dataset. Sharif et al. (2018) presented a hybrid method detecting and
identifying diseases in citrus plants. The method segments citrus le-
sion spots with optimized weighted segmentation method uses color,
texture, and geometric features and carries out feature selection with
dimensionality reduction, entropy, and skewness-based covariance
vector; finally, it classifies the samples with a support vector machine.
The method is tested on the citrus disease image gallery dataset, plant
village and a local dataset, and is capable of detecting anthracnose,
black spot, canker, scab, greening, and melanose. Ali et al. (2017)
proposed a method based on color difference to segment diseased
parts of Kinnow mandarin leaves. Together with color histogram and
texture features, the authors achieve good accuracy and area under
the curve (AUC).

Recently in computer vision, there is a focus on deep learning al-
gorithms (LeCun et al., 2015, Szegedy et al., 2015). Deep learning, also
known as neural networks, are a type of supervised learning algorithm.
Supervised learning is a field of artificial intelligence (AI) and machine
learning (ML). In supervised learning, a system automates a domain-
specific task. Some examples are face recognition, speech recognition,
and object recognition. The algorithm develops a model of inference
and reasoning from a set of labelled training samples. The goal is for the
system to make correct decisions on a different set of test samples. It
carries out automatic deduction of the sample's membership to a spe-
cific population. Supervised learning can be an effective tool for diag-
nosing pests and diseases. AI and ML can provide expert analysis and
diagnosis of plant diseases. The end-user does not need to be an expert
at identifying the disease. Deep learning is capable of even better per-
formance than the mentioned related work (Cruz et al., 2017; Sharif
et al., 2018). In previous work, supervised learning detected diseases
with similar symptoms and pests, while reducing diagnosis time and
cost (Ampatzidis et al., 2017; Luvisi et al., 2016). For example, Cruz
et al. (2017) developed a vision-based program to detect symptoms of
Olive Quick Decline Syndrome (OQDS) on leaves of Olea europaea L.
infected by Xylella fastidiosa. This has great potential to distinguish
symptomatic and asymptomatic leaves for sample selection in large-
scale monitoring programs (Cardinale et al., 2018) and field.

1.2. Objectives

Herein, we demonstrate the potential for deep learning to detect
grapevine yellows (GY) in Vitis vinifera L. cv Sangiovese, a red globe
cultivar sensitive to this disease (Pierro et al., 2018a,b). An overview of
the proposed system is given in Fig. 2. To the best of the authors’
knowledge, we are the first to approach this problem with deep

(A)
Healthy 

(B)
Grapevine yellows (GY)

(C)
Grapevine leafroll 

(D)
Stictocephala biosonia

Fig. 1. Grapevine yellows (GY) caused by Flavescence dorée (FD) or Bois noir (BN) are characterized by discoloration of the leaf blade. However, some GY symptoms
are common to other diseases. This figure includes examples of leaf clippings from Vitis vinifera L. cv. Sangiovese that illustrate how visual recognition is a challenging
task: (A) a healthy control for reference, (B) GY, (C) grapevine leafroll and (D) Stictocephala bisonia.

A. Cruz et al. Computers and Electronics in Agriculture 157 (2019) 63–76

64



learning. This work addresses the following research questions:

(1) Is it possible to automatically detect GY from leaf clipping images?
And, can it be distinguished from other, similar looking diseases?

(2) Among the many deep learning architectures available, which al-
gorithm is best?

(3) How does the proposed system compare to related work that does
not use deep learning?

(4) How do human recognition rates compare to the machine re-
cognition rates?

Surprisingly, few AI and ML studies compare human performance.
Previous researchers were content to study AI and ML for the sake of
advancing the frontier of research. Or, it was assumed that machine
would be better. One study (Russakovsky et al., 2015) applied ML to
predict 1000 different object categories and found that human re-
cognition rate was roughly the same or slightly worse than AI re-
cognition rates (1.7% better to 6.1% worse). Another study (Dodge and
Karam, 2017), that also used 1000 different object categories, found
that human performance is roughly the same as AI performance.
However, these studies are for many different object categories. There
are no studies of AI vs. human performance for plant disease diagnosis,
and no studies for our specific problem (grapes and grapevine yellows).

2. Materials and methods

2.1. Data methods

Two sets of data are aggregated for this study. Section 2.1.1 dis-
cusses the first of the two data sets. Plants were surveyed, sampled,
photographed and then diagnosed for GY with DNA analysis of the
pathogen. With supervised learning, the ML algorithm learns from ex-
ample (datasets). In training, the algorithm is fed a digital image with a
correct diagnosis and learns to recognize visual cues associated with
that diagnosis. The membership of a sample to a disease population
must be correct or the ML algorithm will learn the wrong cues. Visual
inspection is not enough to verify GY, thus samples are lab verified to
have the phytoplasmas BN and FD with DNA extraction followed by
real time PCR test. Section 2.1.3 discusses the second of the two data-
sets, PlantVillage (https://plantvillage.psu.edu/). The machine learning
algorithms used in the work require on a very large data set—more than
we collected in the first dataset. We use PlantVillage data to fulfill this
requirement. This is called data augmentation. PlantVilllage data comes
with labels so there is no verification. Section 2.1.5 discusses how we
further augment the data by generating multiple samples from a single
sample with image processing.

2.1.1. Sampled data
Field surveys were conducted in Tuscany (Central Italy) from July to

October 2017 in vineyards of cv. Sangiovese localized in several dis-
tricts. Healthy control (HC) samples of cv. Sangiovese were collected
from the greenhouse of the Department of Agriculture, Food and
Environment (DAFE, University of Pisa, Italy). Infected control (IC)
leaves were collected from V. vinifera plants that were previously as-
sessed by molecular tools and found to be infected by ‘Ca. P. solani’
(subgroup 16SrXII-A) and Flavescence dorée phytoplasmas (subgroups
16SrV-C and -D).

To further stress the system, we also collected non-GY leaves from
grapevines that showed other diseases: downy mildew, esca disease,
grapevine leafroll, powdery mildew and Stictocephala bisonia.
Recognition of non-GY diseases was carried out visually, evaluating
symptoms. Images of downy mildew, grapevine leafroll, powdery
mildew and S. bisonia were combined into a single population because
there were insufficient samples to form separate populations. We refer
to this population as other (OD). In total, we collected 134 healthy
controls, 134 GY and 104 samples of other diseases.

2.1.2. DNA verification of sampled data
The following describes how we verify GY for collected data with DNA

extraction and real time PCR tests. For each grapevine, 10–12 leaves were
collected, and their fresh central midribs were dissected and stored at
−20 °C until DNA extraction. DNA was extracted with 2% cetyl-
trimethylammonium bromide (CTAB) based buffer from leaf veins ac-
cording to the protocol described by Li et al. (2008), with the modifica-
tions that follow. Briefly, 1 g of leaf veins were smoothed in plastic bags
(Bioreba, Switzerland) with 5 ml of 2% CTAB buffer using Homex 6
(Bioreba, Switzerland). The homogenate was incubated at 65 °C for 15
min. DNA was extracted by one volume of chloroform: iso-amylalcohol
(24:1) and precipitated with one volume of isopropanol. Pellets were
washed with 70% ethanol, air-dried, suspended in 100 µl of deionized
water and stored at −20 °C until use. Concentrations of the nucleic acids
were determined by measuring the absorbance at 260 nm with a spec-
trophotometer. Purity was assessed by calculating the ratio of the absor-
bance at 260 nm over the absorbance at 280 nm. Specific detection of
phytoplasmas associated with BN and FD was carried out by amplification
of 16S ribosomal DNA through TaqMan assay using the Rotor-Gene Q
(Qiagen, Germany) following reaction conditions as described by Angelini
et al. (2007). The template used in the assay was a 1:10 dilution of the
DNA extracted from the samples. The grapevine chloroplast chaperonin 21
gene was used as endogenous control, while DNA extracted from HC
plants and ICs were used as negative and positive controls, respectively.
The DNA samples, which gave no positive signal to endogenous gene,
were further cleaned up and tested with real-time PCR until they yielded
the specific control amplicon. Threshold cycle (Ct) < 37 was associated
with the presence of GY phytoplasmas (Mori et al., 2015).

2.1.3. Transfer learning
The machine learning algorithms used in the work require on a very

large data set. This helps the algorithm learn discriminative features of
the disease of interest and reduces the false negatives by providing the
system with knowledge of cues that are irrelevant to GY. However,
sourcing the required number of images can pose a challenge. As a rule-
of-thumb, thousands to hundreds of thousands of images are normally
expected. It would be too costly and time-consuming to collect such an
order of magnitude of images, particularly for leaf clippings of speci-
mens infected with a quarantine pathogen. Thus, we use a concept
called transfer learning (Schmidhuber, 2015; Yosinski et al., 2014),
described as follows:

(1) The algorithm is trained some other dataset that has a sufficient
number of data samples. For example, in Karpathy et al. (2014)
images from the ImageNet grand challenge are used. ImageNet has
150,000 data samples and 1000 different populations (object ca-
tegories).

(1) Imaging

•Off-the-shelf video devices
•Mobile devices
•Scanned pictures

(2) Deep Learning Algorithms

•No pre-processing
•Robust to imaging errors
•Effective detection

(3) Diagnosis

•Detection of GY symptoms
•Prediction of other diseases

Fig. 2. A high-level description of the
overall system. (1) Off-the-shelf consumer
grade cameras, mobile devices and scanners
can be used to take a photo of a leaf clip-
ping image. (2) Deep learning, a machine
learning (ML) and artificial intelligence (AI)
algorithm, (3) provides end-to-end diag-
nosis of GY symptoms and other diseases.

A. Cruz et al. Computers and Electronics in Agriculture 157 (2019) 63–76

65



(2) The algorithm is then retrained with the data at hand.

The idea is that with a large, somewhat related dataset, the ML
method can learn relevant patterns that are generally applicable for all
problem domains. It is then re-trained on the data, and doing this is
better than attempting to train the ML algorithm from scratch (Cruz
et al., 2017; Schmidhuber, 2015; Yosinski et al., 2014). The ML algo-
rithms in this work are publicly obtainable with step (1) completed, and
this is also known as a pre-trained network. The reader is referred to
those works for details of the training procedure (Krizhevsky et al.,
2012; He et al., 2015; Szegedy et al., 2015; Iandola et al., 2016; Szegedy
et al., 2016).

2.1.4. Data augmentation from publicly available sources
Even with transfer learning, we still need to add more data to our

dataset for the ML algorithm to work. We add grapevine leaf clipping
images from the publicly available PlantVillage dataset (https://plant-
village.psu.edu/). Specifically, we use the subset that is publicly
available from Mohanty et al. (2016). The subset we use contains the
following grapevine diseases: black rot, esca and leaf blight. This da-
taset does not contain any GY samples because GY is a nascent problem.
Even so, we add it to our data to meet the minimum sample require-
ment for training a deep ML algorithm. We used all of the grapevine
images provided by the dataset: 1180 images of grapevine with black
rot; 1383 esca (black measles); 1076 leaf blight (Isariopsis leaf spot).
The collected esca samples were merged into the augmented esca
samples population. The reader is referred to the Mohanty et al. (2016)
for methodology of health assessment for other diseases.

2.1.5. Data augmentation from image preprocessing
Before the images are processed by the neural network, we apply

image processing techniques to center the leaf in the image. This pro-
cedure also removes unnecessary background information. In this step,
data is further augmented with translation and rotation of original
samples. First, the image is segmented from the background and noise.
This automatically centers the leaf and removes the background from
the canvas of the image. Second, the image is randomly flipped along
the horizontal axis with a rate of 0.5. Third, the image is rotated

randomly ° °[ 30 , 30 ] about the center of the image and translated in-
dependently along the vertical and horizontal axes randomly by
[ 30, 30] pixels. Steps two and three generate many samples from an
original image (Fig. 3). Perturbing the original images prevents the
machine learning algorithm from overfitting to spatial image artifacts
and allows a certain amount of tolerance when orienting the leaf during
acquisition. As a result, the system does not need the leaves to be
perfectly aligned, though the apex must be on the top and the petiole on
the bottom. The pre-trained neural networks used in this work require
an image of a specific size. We resize all leaf clipping image to

×227 227, the input image size required by the AlexNet neural network
architecture. For images of uneven aspect ratio, the horizontal axis is
resized to match the required size. The data used in this study is
available publicly on GitHub.1

In the following, we explain the segmentation procedure in detail.
First, we obtain the leaf mask. The leaf mask is a black and white image
where the white pixels correspond to the leaf. The leaf mask is obtained
by:

1. Converting the original RGB image to grayscale with a YIQ trans-
formation;

2. Blurring the grayscale image with a ×3 3 Gaussian filter to remove
noise;

3. Obtaining a rough leaf mask by thresholding with Otsu’s algorithm
(Baxi and Vala, 2013);

4. Convolving the leaf mask with a morphological close operation with
the goal of removing the petiole from the final image—the close
operation uses a ×15 15 disc;

5. Finally, median filtering with a ×11 11 filter to remove small objects
due to noise.

The original image is cropped to the minimum bounding box en-
closing the leaf mask. Note that classification in later stages uses RGB
and that grayscale is only used for calculating the leaf mask. This
procedure is automatic. An overview of the segmentation procedure is

A - Original B - Augmented C - Augmented

D - Augmented E - Augmented F - Augmented

Fig. 3. The computer methods in this work re-
quire thousands to tens of thousands of data
samples. Such an order of magnitude of samples
would be too difficult collect and too costly to lab
verify. One measure to address this is data aug-
mentation with image processing. This figure
demonstrates how a single sample can generate
many samples by randomly translating, rotating
and flipping the images. (A) Original. (B–F)
Augmented images generated from A.

1 https://github.com/DrAlbertCruz/Salento-Grapevine-Yellows-Dataset.
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given in Fig. 4.

2.2. Experimental methods and parameters

2.2.1. Background of deep learning
Deep learning was demonstrated to have high accuracy in other

fields and has been successfully applied to the detection of a variety of
crops and diseases (Mohanty et al., 2016; Cruz et al., 2017). Deep
learning is a collection of methods that improve optimization and
generalization of neural networks and allow neurons to share para-
meters (convolutional neural networks). Deep learning has gained po-
pularity over the past few years, though it is not a new concept. It may
have been used to describe neural networks as early as the 1980s
(Dechter, 1986). Backpropagation, the training mechanism of a deep
learning algorithm, has long been used to train neural networks (LeCun
et al., 1989). A neural network consists of many ordered layers. In a
feed-forward neural network, signals are propagated sequentially from
the front layer to the end layer of the network. A layer consists of a set
of neurons that receive input stimulus = …x x x x{ , , , }n1 2 . xi is a real
number that is the output of some other neuron, or—with image data
and for the first layer only—an image pixel. x is the ordered output of
all the neurons in the previous layer. The number of neurons, layers,
and structure of the layers are an experimental parameter, and com-
monly used structures are given later in Section 2.2.2. The input is
linearly weighted by the weight vector = …w w w w{ , , , }n1 2 . An overview
of a single neuron is given in Fig. 5.

The result is the scalar charge X . If the charge is enough the neuron
fires and sends stimulus to each neuron in the next layer of the network.
The activation function defines the nature of how neurons fire. The
neural networks in this work use a rectified linear activation function
(ReLU), described as follows (Nair and Hinton, 2010):

=y X X( ) max(0, ) (1)

where max(.) is the maximum value of its input arguments. It is cur-
rently the most popular activation function (Krizhevsky et al., 2012; He
et al., 2015; Szegedy et al., 2015; Iandola et al., 2016; Szegedy et al.,
2016) because it addresses the problem of the vanishing gradient. The
neural network is a generally feed forward structure, where information
propagates layer by layer through the network. At the front end of the
network, the whole image is given as input. The end of the network
reports the confidence of the membership of a sample to a particular
population. Unlike the other layers, the end layer uses a softmax acti-
vation function to generate pseudo-probabilities. Let the layer be the
set of neurons in the output layer, and yi be the prediction for class i.

=y X e
e

( )i

X

j
X

i

j (2)

Eq. (2) forces the set of outputs of to sum to 1, resembling a
probability. The proper weights w are obtained by minimizing the
following loss function (Girosi et al., 1995; Bishop, 1995; Nielsen,
2015):

= +L w y X w( ) log ( ) 1
2d

Cost
w w i

Regularization

2
i

(3)

The first term is the cross-entropy cost function, where yd is the
pseudo-probability for the correct class. The second term is a regular-
ization term. It prevents overfitting the training data. is the regular-
ization parameter. It can be shown that to minimize the loss Eq. (3)
weights can be updated as follows:

=+w w L w w( )t t t

Gradient

t

Momentum

1 1
(4)

This equation is referred to as stochastic gradient descent with mo-
mentum, also known as the generalized delta rule. +wt 1 is the updated
weight. wt is the current weight. In the gradient term, is the learning
rate, a small non-zero value. is small so that a single sample cannot
alter the model too much; it is useful for outliers that are not consistent
with the current model. decreases over time to allow the model to
converge. L w( )t is the error gradient. The second term is called mo-
mentum. It can help the model overcome local minima by allowing the
model to continue along the gradient. Otherwise, the model might find
a suboptimal solution to Eq. (3) in a local minima. is the momentum
weight, typically much larger than . wt 1 are the weight updates
from the previous step. A more common weight update rule is mini-
batch stochastic gradient descent with momentum. It has a more stable
descent of the error gradient by splitting the training data into mini-
batches. It calculates updates to the model on the set of samples in the
mini-batch as a whole, then carries out the update to +wt 1:

=+
=

w w
m

L w w( ) ( )t t
i

m

i t t1
1

1
(5)

C - Morphological Ops D - Segmented Image

A - Original Image B - YIQ Grayscale

Fig. 4. The system proposed by this work is end-to-end. When presenting a leaf
for inspection the user does not need to pre-segment the image or align it. The
algorithm detailed in Section 2.1.5 automatically segments the leaf from the
background, centers it in the frame, and crops the background. This figure in-
cludes step-by-step results of the process. (A) Original images are color JPEG
images. An outline of the leaf blade is necessary to segment the leaf from the
background. To accomplish this, (B) the original image is converted to grays-
cale with a YIQ transformation then (C) thresholded to obtain the final outline
(also known as the leaf mask). (D) The original image’s canvas is reduced to the
minimum bounding box of the leaf mask.

Fig. 5. A neural network consists of many layers and in each layer are neurons.
This is an overview of a single neuron. A neuron receives input stimulus

= …x x x x{ , , , }n1 2 and holds weights = …w w w w{ , , , }n1 2 . is the bias term. The
resulting charge X is the dot product of x and w plus the bias term. It is
thresholded by the activation function to produce the output y.
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where m is the number of samples in a mini-batch. Neural networks
have thousands of weights, and the above equation must be carried out
for each mini-batch.

To further reduce training time, computation of neural network
weight updates is often carried out with GPU computing. Recent ad-
vances in computing power and the outstanding performance in the
ImageNet object recognition challenge (Krizhevsky et al., 2012) have
renewed the scientific community’s interest in neural networks (LeCun
et al., 2015). We focus on convolutional neural networks, a type of
neural network that can complete recognition tasks previously thought
to be too challenging. Generally, a convolutional neural network trains
itself to filter an input to detect cues in an image. A convolutional layer
accomplishes this by learning a bank of filters that are convolved with
the input:

= + +
=

h k x k j h j x( )
j

m n

0,0

( 1, 1)

(6)

where h is the input image, k is a filter learned by the network.

Convolution layers are followed by pooling layers which downsample
the input stimulus. Though there is still much to be understood about
the human visual system, convolutional neural networks resemble the
process of image filtering with the human receptive field. An example
of the output of convolutional layers are given in Fig. 6. These images
provide examples of the cues used by the neural network.

2.2.2. Deep learning architectures
Six pre-trained convolutional neural networks are used in this work.

The first is AlexNet (Krizhevsky et al., 2012), a feed-forward Con-
volutional Neural Network. AlexNet is trained to detect one thousand
different objects from roughly one million images (Russakovsky et al.,
2015). The second neural network architecture in this work is Goo-
gLeNet, an improvement on deep convolutional neural networks de-
veloped by Google (He et al., 2015). It was the first departure from
traditional convolutional neural networks that stacked many layers of
convolution operations. GoogLeNet layers form a directed acyclic
graph. It introduced a concept called inception modules which combine
a set of convolution and pooling carried out in parallel. The operations
are of varying sizes enabling it to detect cues of varying sizes. The third

Fig. 6. Convolutional neural networks detect visual cues in an image. It does this by processing a given image with many filters. Each subfigure is the output of a
single filter and highlights cues that the neural network determined to be important. The deep learning architecture AlexNet (Krizhevsky et al., 2012) was used to
generate this figure.
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neural network is an optimization of GoogLeNet, called Inception v3
(Szegedy et al., 2016). The fourth and fifth neural networks are ResNet-
50 and ResNet-101 (Szegedy et al., 2015). Unlike other networks, Re-
sNet-50 has residual components. The networks convolution-pooling
operations are organized into sets. A set of convolution-pooling op-
erations supplements its normal output with stimulus supplied to the
beginning of the set bypassing the sets filters. ResNet-101 is a more
complex improvement upon ResNet-50. The last neural network ar-
chitecture is SqueezeNet (Iandola et al., 2016), a residual network
without inception components. Like Inception v3, SqueezeNet is an
optimization. However, it is applied to the ImageNet challenge with the
goal of increasing overall accuracy while minimizing the costliness of
training a network. For transfer learning, we reuse the parameters of
the pre-trained network except for the last classification layers. They
are replaced with a fully connected layer and a softmax layer. For a
complete explanation of neural network architectures, the reader is
referred to Krizhevsky et al. (2012), He et al. (2015) and Szegedy et al.
(2015), Iandola et al. (2016) and Szegedy et al. (2016). Layer opera-
tions can be used to approximate the relative complexity of the net-
work, though Table 1 does not consider the layer inter-connections.

2.2.3. Parameters and cross-validation
Experiment 1: For the first set of experiments, six pre-trained

neural networks are obtained. The reader is referred to the respective
literature for the training procedures for those networks (Krizhevsky
et al., 2012; He et al., 2015; Szegedy et al., 2015; Iandola et al., 2016;
Szegedy et al., 2016). After obtaining the networks, they are retrained
on the augmented dataset of images we collected. We use fine-tuning
(Li and Hoiem, 2017). That is, all network layers are frozen except for
the final fully connected layer. Retraining parameters are as follows:
minibatch size is 25, initial learning rate is 0.001, L2 regularization
is 0.0001. We use mini-batch stochastic gradient descent for the opti-
mizer. The weight learning rate and bias learning rate factor is in-
creased by a factor 20. Retraining is limited to 5 epochs for all archi-
tectures. We use fivefold random cross validation. The size of each
population, after data augmentation and image processing is given in
Table 2.

For a single fold, 2680 images are selected randomly from each
population, resulting in a data subset of 16,800 images. By ensuring
that all populations have an equal number of samples, we avoid an
apriori bias. With each fold, 70% of the images are used for training and
the remaining 30% of the images are for testing. This is repeated five
times to obtain the testing results given in the ‘Results and Discussion’
section. Experiments were coded in MATLAB 2018A and executed on a
Dell Precision Rack 7910 with the following specifications: Intel Xeon
E5-2630 v3 microprocessor operating at 2.40 GHz, 128 GB of DDR3
memory operating at 2133 MHz, Ubuntu 16.04 operating system, and a

Nvidia Quadro K6000. Code is publicly available on GitHub.2

Experiment 2: With the second set of experiments, we compare a
deep learning setup to one without deep learning. The convolutional
neural network (deep learning) setup is described as follows: (1) the
image is processed by a pre-trained convolutional neural network,
AlexNet trained on ImageNet (Krizhevsky et al., 2012). (2) However,
the image is not fully processed by AlexNet, as we harvest the activa-
tions of the convolutional part of the network. (3) The harvested acti-
vations are classified by a support vector machine (SVM) (Chang and
Lin, 2011) for final prediction.

The system without deep learning, the baseline, is described as
follows: (1) Local binary patterns (Ojala et al., 1994) and color histo-
gram features are extracted from the image. (2) The local binary pat-
terns and color histogram features are classified with a SVM for final
prediction.

For both systems, the SVM has the following parameters: a C-SVM is
used; C is set to 1; a radial basis function kernel is used; and gamma is
set to the inverse of the number of pixels in the image. The baseline
system we compare our work to performs so poorly on the dataset used
in Experiment 1, that we had to reduce the complexity of the problem.
We reduce the complexity by reducing the problem to a binary classi-
fication problem (GY or non-GY); not including data from publicly
available sources that would introduce more disease populations; and
augmenting the data with image processing that would perturb the data
with misalignment. GY is considered positive (P) and non-GY is con-
sidered negative (N). Only GY and non-GY leaf clipping images that we
collected are used for this experiment (from Section 2.1.1).

Experiment 3: While the overall goal of our work is to develop a
ML system, we would also like to know how well a human compares to
the performance of our diagnostic test. We conduct a test where human
participants are presented with at least 100 images of grape leaves,
presented one at a time. For each leaf, the participants guess if the leaf
is positive for grapevine yellows (GY), or negative for GY. There were 7
trained novices and 5 experts for this study. Participants processed
149.08 ± 45.67 images. For this purpose a web-based software were
developed to collect participants responces (Fig. 7).

Prior to beginning any data collection, informed consent was ob-
tained from each volunteer participant.3 Participants received training
to detect GY from sight. First, the participants spent 30 min reading
about GY and identification guide. Second, participants received an
additional 30 min of training where they were presented with trial
images. Participants diagnosed image-by-image at their own pace and
received immediate feedback about their decisions. Their guesses were
not logged at this point.

After 60 min of training, the participants were given a set of testing
images. Participants made a single guess for each image, at their own
pace. They received no feedback on their responses. The responses to
the testing images were collected. This experiment used the same da-
taset as experiment 2. Participants who were already experts in plant
science were not required to receive training.

2.3. Evaluation metrics

In the following, we explain the metrics to assess overall perfor-
mance. In general, metrics are a rate and higher is better. Sensitivity,
also known as true positive rate, is calculated as follows:

=
P

TPR TP
(7)

where TP is the number of true positives and P is the number of positive
samples. Specificity, also known as true negative rate is calculated as
follows:

Table 1
This table compares the different deep learning architectures used in this work
according to the number of layer operations. Layer operations include cross
channel normalization, pooling, concatenation, activation, dropout, etc. They
approximate the complexity of the architecture. An architecture with more
layer operations will take longer to train. It will also have more weights, re-
quiring increasingly non-trivial hardware. AlexNet (Krizhevsky et al., 2012)
and SqueezeNet (Iandola et al., 2016) represent the most “light weight” ar-
chitectures considered in this work. Inception v3 (Szegedy et al., 2016) and
ResNet-101(Szegedy et al., 2015) represent the most complex architectures.

Name Reference Type Layer operations

AlexNet Krizhevsky et al. (2012) CNN 23
GoogLeNet He et al. (2015) Inception CNN 142
Inception v3 Szegedy et al. (2016) Inception CNN 314
ResNet-50 Szegedy et al. (2015) Residual CNN 175
ResNet-101 Szegedy et al. (2015) Residual CNN 345
SqueezeNet Iandola et al. (2016) Residual CNN 66

2 https://github.com/DrAlbertCruz/MATLAB-Deep-Learning.
3 Human subject testing authorized (CSUB IRB #19-75).
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=TNR TN
N (8)

where TN is the number of true negatives and N is the number of ne-
gative samples. Precision, also known as positive predictive value (PPV)
is calculated as follows:

=
+

PPV TP
TP FP (9)

where FP is the number of false positives. Negative predictive value
(NPV) is calculated as follows:

=
+

NPV TN
TN FN (10)

where FN is the number of false negatives. False negative rate (FNR)
and false positive rate (FPR) are calculated as follows:

=FNR FN
P (11)

=FPR FP
N (12)

Accuracy is calculated as follows:

= +
+

ACC TP TN
P N (13)

It is often used as a measure of overall performance. Another metric
for performance is the F1 score:

= ×
+

F1 2 PPV TPR
PPV TPR (14)

It is the harmonic mean of the precision and sensitivity. It provides
an alternative to accuracy, which does not account for false positives.

Fig. 7. Human diagnostic test; web-based software to collect human participant responces and to evaluate their performance on detecting GY disease, based on leaf
symptoms.

Table 2
Number of samples for each population after data augmentation. On each fold, 2680 samples are randomly selected from each population.

Black Rot (BR) Healthy Control (HC) Esca Disease (ED) Grapevine Yellow (GY) Leaf Blight (LB) Other (OD)

9440 8924 11,444 2680 8576 4250
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Though, it does not account for false negatives. A further alternative is
the Matthew’s Correlation Coefficient (MCC):

= × ×
+ + + +

MCC TP TN FP FN
(TP FP)(TP FN)(TN FP)(TN FN) (15)

It accounts for both false positives and false negatives. It is like the
chi-square statistic for the confusion matrix. MCC is the only metric that
is not a rate; MCC [ 1, 1] and higher is better. Some results are
presented in terms of a confusion matrix, also known as a contingency
table. Cells of a confusion matrix are calculated as:

= = =
=

C
n

k i k j1 [Prediction( ) Label( ) ]ij
i k

n

0

1i

(16)

where i is the row (a population label), j is the column (also a popu-
lation label), k is an iterator (an index of the current test sample), ni is
the number of test samples belonging to population i, kPrediction( )
references the k-th prediction, kLabel( ) references the true label of the
k-th test sample. [.] is an Iverson bracket that evaluates to the number 1
if the premise of the argument is true:

= {X X[ ] 1 is true,
0 otherwise. (17)

For this work we enumerate the population labels as follows: black
rot (BR) is 0, healthy control (HC) is 1, Esca disease (ED) is 2, grapevine
yellows (GY) is 3, leaf blight (LB) is 4, all other diseases and pests (OD)
are 5. The rows of the confusion matrix represent the samples of a
population. The columns represent how each sample was predicted. An
ideal system would have an identity matrix as a confusion matrix, that
is, the non-diagonal elements should be zero. The diagonal elements of
a confusion matrix correspond to the sensitivity for recognition of a
certain population. Confusion matrix elements are a ratio.

For all experiments, many trials are carried out. We present the
results of each experiment with the performance metrics in Eqs.
(7)–(16), given as the average and variance across all trials. Variance is
defined as follows:

=m E m E mVar( ) ( )
2 2

(18)

where m is a vector of the metric values and E (.) is the expectation, or
average of the metric values.

To discuss performance, we consider two more metrics:

(1) Sigma levels, to determine if an architecture is sufficient. Sigma
levels are often used in manufacturing to gauge the performance of
a process. We use the 68-95-99.7 rule of a normal distribution to
establish one, two and three sigma levels of performance without
error. That is, one sigma corresponds to an expectation success
without error 68% of the time; two sigma, 95%; and three sigma,
99.7%. Generally, a process less than two sigma performance is not
desirable and should not be used in production.

(2) Unpaired t-tests to determine if there are significant differences
between two architectures. Because there are few samples for each
population (from five validation folds) we use pooled variance.
Unpaired t-tests to determine P value and statistical significance, a
P value of less than 0.05 is generally considered statistically sig-
nificant.

3. Results and discussion

3.1. Experiment 1 – Feasibility of GY detection by computers

The first set of experiments answer the questions: can GY be pre-
dicted from leaf clipping images? And, among the many deep learning ar-
chitectures available, which is best? We answer these questions by pro-
viding recognition results for six different network architectures. They
detect the following diseases from a leaf clipping images of grapes:
healthy control (HC), GY, black rot (BR), esca (ED), leaf blight (LB), and
other grapevine diseases (OD). These experiments demonstrate state-of-
the-art performance when attempting to automatically detect GY. In
this experiment, recognizing the symptoms of GY is a complex problem
because detection must occur in spite of other diseases that are similar
in appearance. As a further challenge, the alignment of the images
(where the leaf is placed on the image canvas) was perturbed during
data augmentation with image processing. Finally, the images have
varying background conditions. Despite this, the system achieves out-
standing performance. Some architectures begin to meet expectations
for a production level system (two sigma levels of performance). A
summary of results for GY detection is given in Table 3 and a full
presentation of results for all populations is given in Table 4.

The best sensitivity, also known as true positive rate (TPR), is given
by ResNet-101 with a TPR of 98.96% and the worst sensitivity is given
by SqueezeNet with a TPR of 71.34%. All but two architectures have at
least two sigma TPR and those are GoogLeNet and SqueezeNet. When
considering a diagnostic test, one should consider sensitivity, specificity
and predictive value, so it would be premature to dismiss GoogLeNet

Table 3
A summary of results for automatic prediction of grapevine yellows (GY) from leaf clipping images of Vitis vinifera L. cv. Sangiovese with six different deep learning
architectures. Higher is better for all metrics except FNR and FPR. Results are presented as average across five trials with variance, given in parenthesis in terms of
10 3. A summary of the best and worst methods for each metric are given in the bottom two rows. ResNet-101 is the clear best performer across all deep learning
architectures and has the least variance of results. The worst performers are AlexNet and SqueezeNet. TPR: true positive rate. TNR: true negative rate. PPV: positive
predictive value. NPV: negative predictive value. FNR: false negative rate. FPR: false positive rate. ACC: accuracy. F1: F1-score. MCC: Matthew’s correlation coef-
ficient.

TPR TNR PPV NPV FNR FPR ACC F1 MCC

AlexNet 0.9754 (0.6725) 0.9765
(0.1952)

0.8962
(2.9528)

0.9951
(0.0267)

0.0246 (0.6725) 0.0235
(0.1952)

0.9763
(0.0732)

0.9328 (0.4632) 0.9207 (0.5934)

GoogLe
Net

0.8512 (4.5200) 0.9861
(0.0893)

0.9280
(1.5836)

0.9709
(0.1636)

0.1488 (4.5200) 0.0139
(0.0893)

0.9636
(0.0287)

0.8855 (0.4590) 0.8668 (0.5173)

Inception v3 0.9363 (3.3712) 0.9939
(0.0142)

0.9692
(0.2981)

0.9875
(0.1263)

0.0637 (3.3712) 0.0061
(0.0142)

0.9843
(0.0601)

0.9514 (0.6831) 0.9430 (0.8486)

ResNet-50 0.9851 (0.2406) 0.9932
(0.0071)

0.9668
(0.1541)

0.9970
(0.0096)

0.0149 (0.2406) 0.0068
(0.0071)

0.9918
(0.0035)

0.9757 (0.0318) 0.9710 (0.0461)

ResNet-101 0.9896 (0.0616) 0.9940
(0.0050)

0.9709
(0.1078)

0.9979
(0.0025)

0.0104 (0.0616) 0.0060
(0.0050)

0.9933
(0.0014)

0.9801 (0.0121) 0.9761 (0.0170)

Squeeze
Net

0.7134
(52.0459)

0.9825
(0.1769)

0.9082
(3.7837)

0.9466
(1.4966)

0.2866
(52.0459)

0.0175
(0.1769)

0.9377
(0.8328)

0.7723
(26.4523)

0.7603
(16.9321)

Best method ResNet-101 ResNet-101 ResNet-101 ResNet-101 ResNet-101 ResNet-101 ResNet-101 ResNet-101 ResNet-101
Worst method Squeeze

Net
AlexNet AlexNet Squeeze

Net
Squeeze
Net

AlexNet Squeeze
Net

Squeeze
Net

Squeeze
Net
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and SqueezeNet just from poor TPR performance. Comparing the best
and second-best performers (ResNet-50) in terms of TPR, an unpaired t-
test of the results yields a =t 40.51 with a P-value of less than 0.0001.
Thus, ResNet-101 alone has the best sensitivity. Comparing the best and
worst performers in terms of TPR, an unpaired t-test of the results yields
a =t 11.87 with a P-value of less than 0.0001. Tests that find a statistical
significance between the best and worst performers support the idea
that there is a difference between architectures, and that it is important

to consider which neural network to use.
The best specificity, also known as true negative rate (TNR), is given

by ResNet-101 with a TNR of 99.40% and the worst specificity is given
by AlexNet with a TNR of 97.65%. All architectures have at least two
sigma TNR, so all architectures have sufficient specificity. Comparing
the best and second-best performers (Inception V3) in terms of TNR, an
unpaired t-test of the results yields a =t 14.85 with a P-value of less
than 0.0001. Thus, ResNet-101 has the best specificity. Comparing the

Table 4
In-depth results for automatic prediction of GY in Vitis vinifera L. cv. Sangiovese by various deep learning algorithms. The results are given in terms of confusion
matrixes measuring performance for prediction of non-GY control (HC), GY, black rot, esca, leaf blight, and other diseases/pests. Results are presented as average
across five trials with variance, given in parenthesis in terms of < = = >10 Queryid Q desc PleasecheckthelayoutofTable andcorrectifnecessary3 ! ” 7” ” 4, .”/ .

(A) AlexNet

BR HC ED GY LB OD

Black Rot (BR) 0.9192 (0.6459) 0.0010 (0.0026) 0.0699 (0.7746) 0.0000 (0.0000) 0.0095 (0.0616) 0.0005 (0.0005)
Healthy Control (HC) 0.0025 (0.0023) 0.9363 (0.0351) 0.0002 (0.0003) 0.0493 (0.1784) 0.0000 (0.0000) 0.0117 (0.0917)
Esca Disease (ED) 0.0816 (2.4060) 0.0000 (0.0000) 0.9010 (2.6876) 0.0042 (0.0299) 0.0070 (0.0090) 0.0062 (0.0232)
Grape. Yellow (GY) 0.0000 (0.0000) 0.0032 (0.0152) 0.0000 (0.0000) 0.9754 (0.6725) 0.0000 (0.0000) 0.0214 (0.6091)
Leaf Blight (LB) 0.0124 (0.0812) 0.0017 (0.0067) 0.0097 (0.0560) 0.0000 (0.0000) 0.9759 (0.2882) 0.0002 (0.0003)
Other (OD) 0.0002 (0.0003) 0.0077 (0.0846) 0.0020 (0.0028) 0.0639 (3.1501) 0.0000 (0.0000) 0.9261 (3.5678)

(B) GoogLeNet

BR HC ED GY LB OD

Black Rot (BR) 0.9035 (2.0843) 0.0015 (0.0026) 0.0930 (2.1460) 0.0000 (0.0000) 0.0015 (0.0026) 0.0005 (0.0012)
Healthy Control (HC) 0.0015 (0.0026) 0.9241 (2.4953) 0.0007 (0.0028) 0.0303 (0.3485) 0.0035 (0.0142) 0.0398 (1.0357)
Esca Disease (ED) 0.0716 (2.9591) 0.0007 (0.0012) 0.9139 (3.7239) 0.0015 (0.0073) 0.0067 (0.0067) 0.0055 (0.0469)
Grape. Yellow (GY) 0.0002 (0.0003) 0.0363 (1.3470) 0.0060 (0.0243) 0.8512 (4.5200) 0.0002 (0.0003) 0.1060 (5.5091)
Leaf Blight (LB) 0.0012 (0.0015) 0.0010 (0.0026) 0.0052 (0.0212) 0.0000 (0.0000) 0.9925 (0.0410) 0.0000 (0.0000)
Other (OD) 0.0017 (0.0074) 0.0157 (0.4236) 0.0087 (0.0843) 0.0378 (1.5699) 0.0007 (0.0005) 0.9353 (3.1102)

(C) Inception v3

BR HC ED GY LB OD

Black Rot (BR) 0.9607 (0.6061) 0.0010 (0.0026) 0.0366 (0.5481) 0.0002 (0.0003) 0.0015 (0.0019) 0.0000 (0.0000)
Healthy Control (HC) 0.0000 (0.0000) 0.9560 (0.6633) 0.0007 (0.0012) 0.0194 (0.0840) 0.0002 (0.0003) 0.0236 (0.6644)
Esca Disease (ED) 0.0114 (0.1233) 0.0002 (0.0003) 0.9826 (0.1400) 0.0000 (0.0000) 0.0020 (0.0020) 0.0037 (0.0147)
Grape. Yellow (GY) 0.0000 (0.0000) 0.0104 (0.0670) 0.0002 (0.0003) 0.9363 (3.3712) 0.0000 (0.0000) 0.0530 (3.7952)
Leaf Blight (LB) 0.0002 (0.0003) 0.0005 (0.0005) 0.0030 (0.0360) 0.0002 (0.0003) 0.9960 (0.0382) 0.0000 (0.0000)
Other (OD) 0.0000 (0.0000) 0.0042 (0.0654) 0.0030 (0.0446) 0.0107 (0.3168) 0.0007 (0.0028) 0.9813 (1.0365)

(D) ResNet-50

BR HC ED GY LB OD

Black Rot (BR) 0.9779 (0.4435) 0.0007 (0.0012) 0.0192 (0.4607) 0.0002 (0.0003) 0.0020 (0.0105) 0.0000 (0.0000)
Healthy Control (HC) 0.0000 (0.0000) 0.9784 (0.0886) 0.0000 (0.0000) 0.0209 (0.0846) 0.0000 (0.0000) 0.0007 (0.0012)
Esca Disease (ED) 0.0214 (0.5967) 0.0007 (0.0028) 0.9716 (1.2333) 0.0007 (0.0012) 0.0055 (0.1180) 0.0000 (0.0000)
Grape. Yellow (GY) 0.0000 (0.0000) 0.0082 (0.0979) 0.0002 (0.0003) 0.9851 (0.2406) 0.0000 (0.0000) 0.0065 (0.0854)
Leaf Blight (LB) 0.0002 (0.0003) 0.0010 (0.0003) 0.0005 (0.0012) 0.0002 (0.0003) 0.9980 (0.0028) 0.0000 (0.0000)
Other (OD) 0.0000 (0.0000) 0.0045 (0.0538) 0.0005 (0.0005) 0.0119 (0.2000) 0.0000 (0.0000) 0.9831 (0.4615)

(E) ResNet-101

BR GY ED GY LB OD

Black Rot (BR) 0.9861 (0.1071) 0.0007 (0.0012) 0.0122 (0.0738) 0.0000 (0.0000) 0.0010 (0.0026) 0.0000 (0.0000)
Healthy Control (HC) 0.0000 (0.0000) 0.9741 (0.3136) 0.0000 (0.0000) 0.0192 (0.2008) 0.0002 (0.0003) 0.0065 (0.0320)
Esca Disease (ED) 0.0182 (0.1474) 0.0000 (0.0000) 0.9786 (0.1821) 0.0010 (0.0011) 0.0015 (0.0019) 0.0007 (0.0012)
Grape. Yellow (GY) 0.0000 (0.0000) 0.0182 (0.7608) 0.0005 (0.0012) 0.9704 (0.5828) 0.0000 (0.00000) 0.0109 (0.0483)
Leaf Blight (LB) 0.0000 (0.0000) 0.0007 (0.0012) 0.0002 (0.0003) 0.0000 (0.0000) 0.9990 (0.0019) 0.0000 (0.0000)
Other (OD) 0.0000 (0.0000) 0.0025 (0.0240) 0.0000 (0.0000) 0.0022 (0.0034) 0.0002 (0.0003) 0.9950 (0.0317)

(F) SqueezeNet

BR GY ED GY LB OD

Black Rot (BR) 0.8731 (11.2776) 0.0037 (0.0248) 0.1010 (6.9943) 0.0000 (0.0000) 0.0206 (0.6502) 0.0015 (0.0073)
Healthy Control (HC) 0.0030 (0.0221) 0.9112 (2.6636) 0.0017 (0.0074) 0.0266 (0.4166) 0.0065 (0.0459) 0.0510 (2.1449)
Esca Disease (ED) 0.1734 (92.793) 0.0020 (0.0198) 0.7910 (96.831) 0.0020 (0.0043) 0.0177 (0.1651) 0.0139 (0.1728)
Grape. Yellow (GY) 0.0017 (0.0105) 0.0562 (2.4778) 0.0117 (0.5179) 0.7134 (52.045) 0.0045 (0.0376) 0.2124 (62.669)
Leaf Blight (LB) 0.0114 (0.1202) 0.0072 (0.0312) 0.0092 (0.1753) 0.0000 (0.0000) 0.9687 (0.9927) 0.0035 (0.0606)
Other (OD) 0.0065 (0.1279) 0.0527 (4.8704) 0.0199 (1.6298) 0.0587 (2.8762) 0.0102 (0.1171) 0.8520 (18.589)
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best and worst performers in terms of TNR, an unpaired t-test of the
results yields a =t 740.50 with a P-value of less than 0.0001.

The best positive predictive value (PPV) is given by ResNet-101
with a PPV of 97.09% and the worst PPV is given by AlexNet with
89.62%. Only three architectures achieve at least two sigma PPV, the
two variations of ResNet and Inception v3. PPV is better than TPR or
TNR when indicating the ability of the system to detect a disease. Thus,
the two variations of ResNet and Inception v3 are the best contenders
thus far. ResNet-101 has only slightly higher PPV than the other two
and there would appear to be no difference. But, an unpaired t-test of
the of the best and second-best architectures according to PPV results
yields a =t 11.99 with a P-value of less than 0.0001, indicating a sig-
nificant difference. ResNet-101 has the best predictive value.
Comparing the best and worst performers in terms of PPV, an unpaired
t-test of the results yields a =t 56.53 with a P-value of less than 0.0001.

Negative predictive value (NPV) is the ability of a diagnostic test
to determine that a sample does not have GY. The best NPV is given
by ResNet-101 with a NPV of 99.79% and the worst NPV is given by
SqueezeNet with a NPV of 94.66%. SqueezeNet is the only archi-
tecture that does not achieve at least two sigma NPV, and both
versions of ResNet achieve three sigma NPV. Considering previous
discussion of TPR, and PPV, it is easier for a deep learning algorithm
to reject a GY diagnosis than it is to conclude that a sample has GY.
Considering the two different ResNet variations, an unpaired t-test of
the results yields =t 0 and a P-value of greater than 0.99999, thus
there is no significant difference between the two architectures.
Surprisingly, AlexNet has third-best NPV. The t-test conclusion is the
same when comparing ResNet-101 to AlexNet, with a P-value of
greater than 0.99999. This is surprising because AlexNet was one of
the seminal methods that demonstrated the potential of convolu-
tional neural networks in 2012. One would assume that more recent
architectures would perform better, yet for NPV AlexNet performs
better than GoogLeNet and Inception v3. Comparing the best and
worst performers in terms of NPV, an unpaired t-test of the results
yields a =t 73.73 with a P-value of less than 0.0001.

False negative rate (FNR) can be calculated as: 1 – TPR. False po-
sitive rate (FPR) can be calculated: as 1 – TNR. We do not include a
discussion on these metrics because they are linear functions of other
metrics and would not entail conclusions different from analysis of TPR
and TNR.

The best overall accuracy (ACC) is 99.33%, obtained by using
ResNet-101 followed by ResNet-50, Inception v3, AlexNet, GoogLeNet
and SqueezeNet in that order. ResNet-50 is a close contender, with an
accuracy of 99.18%. An unpaired t-test of the two results yields =t 0
and a P value of greater than greater than 0.99999, so there is no sig-
nificant difference. The next-best architecture to be statistically dif-
ferent from ResNet-50 is AlexNet, with an accuracy of 97.63%,

=t 268.79 and a P value of less than 0.00001. AlexNet continues to
surprise as a strong contender despite its lack of contemporary layer
structures (residual and inception). All architectures achieve two sigma
levels of accuracy except for SqueezeNet, and none are greater than two
sigma performance. A comparison of best and worst (SqueezeNet) ar-
chitectures according to accuracy with an unpaired t-test yields

=t 146.52 and a P value of less than 0.00001.
The best F1-score is 98.01% obtained by ResNet-101, followed by

ResNet-50, Inception v3, AlexNet, GoogLeNet and SqueezeNet. The
next-best architecture to be statistically different from ResNet-101 is
Inception v3 with an F1-score of 95.14%, =t 90.75 and a P value of less
than 0.00001. Only ResNet-50, ResNet-100 and Inception v3 archi-
tectures achieve two sigma levels of F1-score. Comparing best and
worst performer (SqueezeNet) with an unpaired t-test yields =t 17.57
and a P value of less than 0.0001. There is a significant gap between the
best and worst performer. MCC is a similar metric to F1 in that it tries to
balance false positives and false negatives. Because of the similarity, the
conclusions would be like analysis of F1 results. MCC is not a rate so
sigma levels are not applicable.

The most surprising conclusion of Table 3 is that AlexNet has
competitive performance. Also, it was surprising that SqueezeNet did
not do well, and it was often the worst architecture. Further, Squee-
zeNet has the worst variance among the various metrics. SqueezeNet
was an optimization of a residual convolutional neural network with
the goal of achieving the highest overall accuracy on the ImageNet
grand challenge while minimizing the complexity of the network. This
may explain why it does not do as well for leaf clipping images. The
ResNet architectures are the only networks to achieve at least two
sigma performance for all relevant metrics, and the only networks we
can recommend for production-grade systems for automatic detection
of GY.

Considering GY performance only, ResNet-101 is the best archi-
tecture for automatic detection. However, for NPV, accuracy and F1-

Fig. 8. Results for automatic prediction of GY in Vitis vinifera L. cv. Sangiovese by various deep learning algorithms, in terms of accuracy and training time. The blue
column represents the average time to fine-tune the model across five folds. The orange column represents the average accuracy over five folds. AlexNet and
SqueezeNet take the least amount of time to train, though only AlexNet has competitive accuracy. ResNet-50 and ResNet-101 have comparable accuracies. But,
considering the training time, ResNet-50 may be the best option.
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score, there is no significant difference between ResNet-50 and ResNet-
101. A comparison of training time and accuracy for detecting GY is
given in Fig. 8. ResNet-101 and Inception v3 take the longest time to
train. Their performance may be a diminishing return considering that
ResNet-50 takes half as long to train. Considering this, ResNet-50 is a
good alternative to ResNet-101. It is notable that AlexNet and Squee-
zeNet have a similar training time. A t-test yields a P value of 0.05, so it
is not quite statistically significant. However, during the training pro-
cedure, all but the final fully connected layer is frozen. It is possible that
SqueezeNet may be faster if the networks were not frozen.

Table 3 contains results for only GY detection, whereas Table 4
contains confusion matrixes that describe the performance across all six
populations. Considering the confusion matrixes, AlexNet has the best
sensitivity when predicting leaf blight, GY, healthy controls, other
diseases, black rot then esca in that order. The greatest variance is given
by the other diseases population and this is not surprising; the other
disease population consists of many diseases with varying symptoms.
AlexNet achieves two sigma level sensitivity for leaf blight and GY. It
achieves one sigma level of sensitivity for all other populations.

GoogLeNet has best sensitivity when predicting leaf blight, other
diseases, healthy controls, esca disease, black rot and GY in that order.
In general, GoogLeNet has a high variance of sensitivity for all popu-
lations, and leaf blight is the only population with two sigma levels of
sensitivity. GoogLeNet is not as versatile and reliable as AlexNet when
identifying diseases from leaf clipping images.

Inception v3 has best sensitivity when detecting of leaf blight, esca
disease, other diseases, black rot, healthy controls, GY in that order.
Comparing Inception v3 to GoogLeNet, variance of sensitivity is greatly
reduced. GoogLeNet achieves two sigma levels of sensitivity on all
populations, except for the GY population—the primary focus of our
work.

ResNet-50 has best sensitivity when detecting leaf blight, GY, other
diseases, healthy controls, black rot, and esca disease in that order.
Generally, ResNet-50 has low variance except for esca disease, its worst
performing population. ResNet-50 achieves two sigma levels of per-
formance for all populations, and three sigma levels for leaf blight.

ResNet-101 has best sensitivity for detecting leaf blight, other dis-
eases, black rot, esca disease, healthy controls and GY in that order. It
achieves two sigma levels of sensitivity for all populations except for
leaf blight where it achieves three sigma levels of sensitivity. The var-
iance is generally low for all populations.

SqueezeNet has best sensitivity with leaf blight, healthy controls,
black rot, other diseases, esca disease and GY in that order. SqueezeNet
has the worst performance of all the networks when applied to our task.
For GY, esca, other diseases and black rot, it has a variance that is a
whole order of magnitude greater than the variances of other networks.
SqueezeNet achieves two sigma levels of performance for only the leaf
blight population.

Considering the confusion matrixes, leaf blight appears to be the
easiest disease to detect for deep learning architectures. SqueezeNet,
the worst performing architecture in our experiments, does not perform
well in general, except for leaf blight recognition where it still achieves
two sigma levels of sensitivity. Some architectures (such as AlexNet,
ResNet-50 and ResNet-101) show promising results for a variety of
diseases. Further, the highly complex architectures (Inception v3,
ResNet-50, ResNet-101) do well for the other diseases population that
contains many diseases with different symptoms. Considering that
AlexNet is the least complex of all the architectures discussed in this
work, it is possible that complexity increases the ability of a network to
account for varying cues within a population. These results conclusively
demonstrate that a neural network can detect GY from leaf clipping
images. While the accuracy of traditional detection methods, such as
PCR, is not disputed, a system using one of these neural network ar-
chitectures can offer an early screen method that is used in parallel with
traditional lab testing. This will accelerate responses and mitigate crop
loses.

3.2. Experiment 2 – Is deep learning necessary?

For the second set of experiments, we address the question, how does
the proposed deep learning system compare to related work that does not use
deep learning? Occam’s razor suggests that the best solution is the sim-
plest one. Neural networks are difficult to implement because they are
time consuming to train and they introduce the complications of data
augmentation and transfer learning. Deep learning algorithms require
expensive GPUs to train and there is no benefit to using deep learning if
a more conventional system would suffice. We investigate if color and
texture features with a support vector machine are enough to detect GY
from grapevine leaf clipping images.

The baseline is similar to the approach in Kaur et al. (2018) and
Sharif et al. (2018). Poor performance of the baseline system demon-
strates the need for a more complex classification scheme, such as deep
learning. For this experiment, the deep learning-based system takes the
activations from the convolutional layer of the AlexNet architecture and
pipes the activations to a support vector machine for final prediction.
This also demonstrates the need for convolutional neural networks,
over non-convolutional neural networks. Deep learning obtains a
92.06% overall accuracy and a Matthew’s correlation coefficient of
0.832. The baseline system with local binary patterns (LBP) and color
histogram with a SVM obtains only 26.79% overall accuracy and
−0.1244 respectively (Table 5). The gap in performance is so great that
there is no need for statistical analysis. Results indicates that the pro-
blem is indeed complex enough to outweigh the drawbacks of deep
learning.

3.3. Experiment 3 – Comparison to human experts

Experiment 3 addressees the question, among human recognition,
deep learning and a baseline system without deep learning, which is better?
Results are given in Table 5. The results in this table use the data subset
from experiment 2, but not the same data set from experiment 1. Ex-
periments 2 and 3 can be compared, but they both cannot be compared
to experiment 1. Deep learning is better than humans for all metrics.
There is a such a large gap in performance between humans, the
baseline system and deep learning that an in-depth statistical analysis is
not needed. It is obvious that there is a significant difference. Human
recognition does not meet the minimum expectations for a production
level system (two sigma levels of performance) and supports that adage
that it is hard to recognize GY from sight. Human results are in line with
ML results in that specificity (TNR) and NPV are higher than sensitivity
(TPR) and PPV, indicating that it is easier to reject a hypothesis of
membership to GY than it is to confirm a hypothesis of membership to
GY.

3.4. General discussion

GY is a serious threat due to severe symptoms and lack of healing
treatments. Methods for effective detection of Grapevine Yellow dis-
eases are of worldwide interest. Bois noir (BN) is endemic to some re-
gions but still dangerous. Both pathogens cause similar symptoms and
health monitoring programs are carried out worldwide. Diagnosis relies
on effective symptom identification. Yet, a low concentration of the
pathogen and its erratic distribution in the host leads to infected but
asymptomatic grapes. This leads to high rates of false-negatives in de-
tection. Further, GY symptoms such as leaf discoloration, bunch drying,
and irregular wood ripening are typical among other diseases and
outstanding in the late summer. This makes recognition of GY a difficult
task (Belli et al., 2010). The aim of this work is to develop a tool for
supporting sampling procedures.

The accuracy of lab testing is unparalleled. Yet, this tool can ac-
celerate a response to GY when used in parallel with traditional de-
tection methods (e.g. polymerase chain reaction (PCR), fluorescence in-
situ hybridization (FISH), immunofluorescence (IF), enzyme-linked
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immunosorbent assay (ELISA), flow cytometry (FCM), gas chromato-
graphy-mass spectrometry (GC–MS) etc. (Mehle et al., 2017)). The
benefits of the proposed system are as follows:

• The end-user does not need to be an expert at detecting GY.
Prior skill of the use is not required as well. There is no manual
segmentation, initialization, or initial guesses. The user submits a
cropped leaf clipping image to the system and receives diagnosis.

• Expensive sensing equipment is not required. The system accepts
images of roughly 300 pixel resolution. Thus, consumer-grade video
cameras, camcorders and scanners are enough. Expensive sensor
equipment (thermal, multi-spectral) is not required.

• The system does not need pre-processing of images. Deep
learning is end-to-end. We merely expect the user to center the leaf
in the image. Further, the system can tolerate poor alignment during
data collection.

• The system is very accurate. With ResNet-50, we obtain a sensi-
tivity of 98.96% and a specificity of 99.40%.

• It reports the chance of other diseases. Black rot, downy mildew,
esca disease, leaf blight, grapevine leafroll, powdery mildew and
Stictocephala bisonia.

There is great potential to revolutionize the detection of GY. The
system provides a template for swift detection of other crops and dis-
eases. One major drawback to the system is the complexity of deep
learning algorithms. However, training the system is a one-time pro-
cedure carried out on a server and not the end-user. Transfer learning
and data augmentation mitigate the data requirements of deep learning.
The results of experiments 2 and 3 show the need for deep learning
despite this drawback. Systems without neural networks (deep
learning) and human experts do not achieve the same level of perfor-
mance as the proposed system.

A drawback of our work is that the leaf images are not taken in field
conditions where there are other leaves, occlusion and varying illumi-
nation. Systems that operate in the field, under very unconstrained
scenarios, are still an open challenge. Detection in very constrained
scenarios is still very challenging, particularly for diseases that can be
easily confused for others. The purpose of our study is to show that
automatic detection is now possible with deep learning, which can be
applied to other pests and diseases via transfer learning. When diag-
nosing a plant, growers collect various plant parts for conventional
testing (such as PCR). Leaf blades would be collected through this
process, so it is reasonable to require growers to clip the leaf blade
before imaging.

4. Conclusion

In the field, true-positive rate detection of GY was frequently
overestimated (due to similar symptoms) or underestimated (due to
variability in symptom expression) (Rizzo et al., 2018). Thus, the au-
tomatic tools that can help the sampler in pathogen recognition are
crucial to avoid missing GY-positive plants, in particular the FD-positive
ones. We demonstrate that it possible to detect GY from leaf clipping
images, and that certain systems exceed expectations. ResNet-101 is the
clear best performer for this application. However, ResNet-50 is often
second best and both systems are at least two sigma performance for all
metrics. An in-depth statistical analysis revealed that, for NPV, accu-
racy and F1-score, there is no significant difference between ResNet-50
and ResNet-101. We recommend ResNet-50 for leaf diagnosis systems
because the increased complexity of ResNet-101 maybe a diminishing
return. It was notable that AlexNet has competitive performance be-
cause of its lack of sophistication compared to the other architectures in
this work. Consistently, there is a statistically significant gap between
the best and worst performer, indicating the importance of selecting an
appropriate neural network for this application. Deep learning has
35.97% and 22.88% better predictive value (PPV) for recognizing GYTa
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from sight, than a baseline system without deep learning and trained
humans respectively. Future work in this research will focus on the
development of tools that can be used in the field where there are other
leaves, occlusion and varying illumination. We anticipate the need for
better segmentation algorithms to facilitate this. We will also consider
implementing the methods on a Nvidia Jetson so that predictions can be
made without need for a remote connection to a server.
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