SELF-PROPELLED MICRO-SWIMMERS IN A BRINKMAN FLUID

MARCO MORANDOTTI

Abstract

We extend the existence, uniqueness, and regularity result obtained in [4] for the case of a self-propelled swimmer in a viscous fluid to the case of a self-propelled swimmer immersed in a particulate medium, modeled as a Brinkman fluid.

Keywords: Brinkman equation, self-propelled motion, swimming, particulate media

Contents

1. Introduction 1
2. Brinkman equation - functional setting 2
3. Kinematics and the equations of motion 4
4. Extensions of boundary data and main result 10
5. Conclusions and future work 11
References 12

1. Introduction

Modeling the motion of living beings has stimulated scientists for many decades. The first attempts to study motion inside fluids date back to the pioneering works by Taylor [17] and Lighthill [14]. These papers and the 1977 paper by Purcell [15] point out that the description of motion in viscous fluids at low Reynolds number can involve some counterintuitive facts. The low Reynolds number flow approximation is particularly efficient for microorganisms, while lager bodies or animals exploit more the inertial forces rather than the viscous ones. The recent literature has been populated by new and more refined results, both theoretical and experimental, in the two limit regimes. Concerning the viscous one, on which we concentrate in this paper, we recall that approximated theories, such as slender body approximation [2, 10], resistive force theory [8], and also others [16, 13], have been developed, and a number of biological experiments has been run to understand swimming strategies.

In a recent paper by S. Jung [9], the motion of Caenorhabditis elegans is observed in different environments: this nematode usually swims in saturated soil, and its behavior was studied in different saturation conditions as well as in a viscous fluid without solid particles. It must be noticed that the locomotion strategy of C. elegans is not completely understood, as it is shown by the many studies on this nematode in different conditions; nevertheless it has been taken as a model system to approach the study of many biological problems [20]. A satisfactory attempt to understand its locomotion dates back to [19], where the experiment was conducted in an environment close to the one in which C. elegans usually lives, yet the wet phase in which the particles are usually immersed was neglected. Other and more recent experiments have been run on agar composites [12, 11], and they could give a hint on the swimming strategies of C. elegans, showing that it moves more efficiently in a particulate medium rather than in a viscous fluid without particles [9].

The aim of this paper is to provide a theoretical framework for the motion of a body in a particulate medium. Following the approach proposed in [9] III.C], we model the particulate medium surrounding the swimmer as a Brinkman fluid. We show that the framework we proposed in [4] also applies to the case of a Brinkman problem in an exterior domain.

We prove the existence, uniqueness, and regularity of the solution to the equations of motion for a body swimming in such an environment, thus generalizing the result previously obtained for the Stokes system.

2. BRINKMAN EQUATION - FUNCTIONAL SETTING

In this section we present some results about Brinkman equation. It was originally proposed in [3] to model a fluid flowing through a porous medium as a correction to Darcy's law by the addition of a diffusive term. A rigorous mathematical derivation from the NavierStokes equation via homogenization can be found in [1].

In a Lipschitz domain $\Omega \subset \mathbb{R}^{3}$, the Brinkman system reads

$$
\left\{\begin{align*}
\nu \Delta u-\alpha^{2} u & =\nabla p & & \text { in } \Omega, \tag{2.1}\\
\operatorname{div} u & =0 & & \text { in } \Omega, \\
u & =U & & \text { on } \partial \Omega, \\
u & =0 & & \text { at infinity. }
\end{align*}\right.
$$

The positive constant α takes into account the permeability properties of the porous matrix and the viscosity of the fluid, the constant ν is an effective viscosity of the fluid, while the third equation in the system is the no-slip boundary condition. The condition $u=0$ at infinity is significant, and necessary, only when the domain Ω is unbounded. From now on, we will get rid of the effective viscosity, upon a redefinition of α, by setting $\nu=1$. A brief discussion on the constant ν can be found in Brinkman's paper [3].

In order to cast equation (2.1) in the weak form, we introduce the function spaces in which we will look for the weak solution. Define

$$
\mathcal{X}(\Omega):=\left\{u \in H^{1}\left(\Omega ; \mathbb{R}^{3}\right): \operatorname{div} u=0 \text { in } \Omega\right\}, \quad \mathcal{X}_{0}(\Omega):=\left\{u \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{3}\right): \operatorname{div} u=0 \text { in } \Omega\right\}
$$

Both $\mathcal{X}(\Omega)$ and $\mathcal{X}_{0}(\Omega)$ are equipped with the standard H^{1} norm but we introduce this equivalent one

$$
\|u\|_{\mathcal{X}(\Omega)}^{2}:=\alpha^{2}\|u\|_{L^{2}\left(\Omega ; \mathbb{R}^{3}\right)}^{2}+2\|\mathrm{E} u\|_{L^{2}\left(\Omega ; \mathbb{M}_{\mathrm{sym}}^{3 \times 3}\right)}^{2},
$$

the equivalence being a consequence of Korn's inequality.
The weak formulation of equation (2.1) is now given by

$$
\begin{cases}\text { find } u \in \mathcal{X}(\Omega) \text { such that } & u=U \text { on } \partial \Omega \tag{2.2}\\ 2 \int_{\Omega} \mathrm{E} u: \mathrm{E} w \mathrm{~d} x+\alpha^{2} \int_{\Omega} u \cdot w \mathrm{~d} x=0, & \text { for every } w \in \mathcal{X}_{0}(\Omega)\end{cases}
$$

where the boundary velocity is a given function $U \in H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$, the solution being the unique minimum in $\mathcal{X}(\Omega)$ of the strictly convex energy functional

$$
\mathcal{E}(u):=2 \int_{\Omega}|\mathrm{E} u|^{2} \mathrm{~d} x+\alpha^{2} \int_{\Omega}|u|^{2} \mathrm{~d} x=\|u\|_{\mathcal{X}(\Omega)}^{2}
$$

Here and henceforth the symbol $\mathrm{E} u$ denotes the symmetric gradient of u, namely $\mathrm{E} u:=$ $\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right)$.

We call Ω an exterior domain with Lipschitz boundary if Ω is an unbounded, connected open set whose boundary $\partial \Omega$ is bounded and Lipschitz, see [4, Section 2]. If we consider the term $\alpha^{2} u$ as a forcing term f in system (2.1), we can invoke a classical existence and uniqueness result

Theorem 2.1. Let $U \in H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$. Then the following results hold:
(a) Let Ω be a bounded connected open subset of \mathbb{R}^{3} with Lipschitz boundary. If

$$
\begin{equation*}
\int_{\partial \Omega} U \cdot n \mathrm{~d} S=0 \tag{2.3}
\end{equation*}
$$

there exists a unique solution u to problem (2.2). Moreover, there exists $p \in L^{2}(\Omega)$ such that $\Delta u-\nabla p=f$ in $\mathcal{D}^{\prime}\left(\Omega ; \mathbb{R}^{3}\right)$.
(b) Let $\Omega \subset \mathbb{R}^{3}$ be an exterior domain with Lipschitz boundary. Then problem (2.2) has a solution. Moreover, there exists $p \in L_{\mathrm{loc}}^{2}(\Omega)$, with $p \in L^{2}\left(\Omega \cap \Sigma_{\rho}\right)$ for every $\rho>0$, such that $\Delta u-\nabla p=f$ in $\mathcal{D}^{\prime}\left(\Omega ; \mathbb{R}^{3}\right)$.

Proof. Part (a) is classical and can be found in [18, Lemma 2.1 and Theorem 2.4]. Part (b) follows from the density result stated in Theorem 2.2, the application of Lax-Milgram Lemma in the space $\mathcal{X}_{0}(\Omega)$, and Theorem 2.3 in [18] for finding the pressure p. We notice that to solve the exterior Brinkman problem we do not need condition (2.3).

Theorem 2.2 (Density [7]). Let $\Omega \subset \mathbb{R}^{3}$ be an exterior domain with Lipschitz boundary. Then, the space $\left\{u \in C_{\mathrm{c}}^{\infty}\left(\Omega ; \mathbb{R}^{3}\right)\right.$: $\operatorname{div} u=0$ in $\left.\Omega\right\}$ is dense in $\mathcal{X}(\Omega)$ for the H^{1} norm.

We now define some physically relevant quantities. The stress tensor associated with the velocity field u and the pressure p is given by

$$
\begin{equation*}
\sigma:=-p \mathrm{I}+2 \mathrm{E} u \tag{2.4}
\end{equation*}
$$

The drag force is the resultant of the viscous forces acting on the boundary $\partial \Omega$ and is given by

$$
\begin{equation*}
F:=\int_{\partial \Omega} \sigma(x) n(x) \mathrm{d} S(x) \tag{2.5}
\end{equation*}
$$

Analogously, the torque is defined by

$$
\begin{equation*}
M:=\int_{\partial \Omega} x \times \sigma(x) n(x) \mathrm{d} S(x) \tag{2.6}
\end{equation*}
$$

Definitions (2.5) and (2.6) are valid under the condition that σn has a trace in $L^{1}\left(\partial \Omega ; \mathbb{R}^{3}\right)$. Since, in general, this assumption is not fulfilled, we have to define the viscous drag force and torque in a different way, by introducing σn as an element of $H^{-1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$. This will lead to a consistent definition of the power of the drag force and torque. In order to do this, we introduce $\mathbb{M}_{\text {sym }}^{3 \times 3}$, the space of 3×3 symmetric matrices, and recall that every $\sigma \in \mathbb{M}_{\text {sym }}^{3 \times 3}$ can be orthogonally decomposed as

$$
\sigma=\frac{\operatorname{tr} \sigma}{3} \mathrm{I}+\sigma_{D}
$$

where the deviatoric part σ_{D} is traceless. We are now ready to give the following
Definition 2.3. Let $\Omega \subset \mathbb{R}^{3}$ be an exterior domain with Lipschitz boundary and let $\sigma \in$ $L_{\text {loc }}^{1}\left(\Omega ; \mathbb{R}^{3}\right)$ be such that $\sigma_{D} \in L^{2}\left(\Omega ; \mathbb{M}_{\mathrm{sym}}^{3 \times 3}\right)$ and $\operatorname{div} \sigma \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$. The trace of σn, still denoted by σn, is defined as the unique element of $H^{-1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$ satisfying the equality

$$
\begin{equation*}
\langle\sigma n, V\rangle_{\Omega}:=\int_{\Omega}(\operatorname{div} \sigma) \cdot v \mathrm{~d} x+\int_{\Omega} \sigma: \mathrm{E} v \mathrm{~d} x \tag{2.7}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle_{\Omega}$ denotes the duality pairing between $H^{-1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$ and $H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$, and v is any function in $\mathcal{X}(\Omega)$ such that $v=V$ on $\partial \Omega$.

If there is no risk of misunderstanding, the subscript Ω will be dropped whenever the domain of integration is clear. Notice that if σ is sufficiently smooth then integrating (2.7) by parts leads to the equality

$$
\langle\sigma n, V\rangle_{\Omega}=\int_{\partial \Omega} \sigma n \cdot V \mathrm{~d} S, \quad \text { for every } V \in H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)
$$

In the general case, the right-hand side of (2.7) is easily proved to be well defined, given the assumptions on σ. In fact, $\operatorname{div} \sigma \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ and $v \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ make the first integral well defined, while the second one is also good since $\sigma: \mathrm{E} v=\sigma_{D}$: Ev, because of the symmetry of $\mathrm{E} v$, and both σ_{D} and Ev belong to $L^{2}\left(\Omega ; \mathbb{M}_{\mathrm{sym}}^{3 \times 3}\right)$. Lastly, the definition is independent of the choice of $v \in \mathcal{X}(\Omega)$, since the right-hand side vanishes for every $v \in \mathcal{X}_{0}(\Omega)$: this follows from the very same computation for the more regular case, by the Density Theorem 2.2 It is easy to see that (2.7) defines a continuous linear functional on $H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$ by choosing $v \in \mathcal{X}(\Omega)$ an extension of V.

We now proceed in showing other useful properties of the duality pairing introduced in Definition 2.3. Let $U \in H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$ and let u be the solution to the Brinkman problem
(2.2) with boundary datum U and let σ be the corresponding stress tensor. Since all the assumptions of Definition 2.3 are fulfilled, for any given $V \in H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$ we have

$$
\begin{align*}
\langle\sigma n, V\rangle & =\int_{\Omega}(\operatorname{div} \sigma) \cdot v \mathrm{~d} x+\int_{\Omega} \sigma: \mathrm{E} v \mathrm{~d} x=\alpha^{2} \int_{\Omega} u \cdot v \mathrm{~d} x+\int_{\Omega}[-p \mathrm{I}: \mathrm{E} v+2 \mathrm{E} u: \mathrm{E} v] \mathrm{d} x \\
& =\alpha^{2} \int_{\Omega} u \cdot v \mathrm{~d} x-\int_{\Omega} p \operatorname{div} v \mathrm{~d} x+2 \int_{\Omega} \mathrm{E} u: \mathrm{E} v \mathrm{~d} x \tag{2.8}\\
& =\alpha^{2} \int_{\Omega} u \cdot v \mathrm{~d} x+2 \int_{\Omega} \mathrm{E} u: \mathrm{E} v \mathrm{~d} x
\end{align*}
$$

where v is an arbitrary element in $\mathcal{X}(\Omega)$ such that $v=V$ on $\partial \Omega$. If we take, in particular, v to be the solution to problem (2.2) with boundary datum V, we recover the well known reciprocity condition

$$
\langle\sigma n, V\rangle=\langle\tau n, U\rangle
$$

with τ being the stress tensor associated with v. Moreover, by taking $U=V$ in (2.8) we obtain

$$
\langle\sigma n, U\rangle=\alpha^{2}\|u\|_{L^{2}\left(\Omega ; \mathbb{R}^{3}\right)}^{2}+2\|\mathrm{E} u\|_{L^{2}\left(\Omega ; \mathbb{M}_{\mathrm{sym}}^{3 \times 3}\right)}^{2 \times 3}=\|u\|_{\mathcal{X}(\Omega)}^{2} .
$$

This equality allows us to show that the quadratic form $\langle\sigma n, U\rangle$ is positive definite: if $\langle\sigma n, U\rangle=0$, then it follows that $u=0$, and therefore $U=0$.

We are now in a position to define the viscous drag force and torque in a rigorous way, by means of the duality product introduced in Definition 2.3. This is
Definition 2.4. Let $\Omega \subset \mathbb{R}^{3}$ be an exterior domain with Lipschitz boundary, let $u \in \mathcal{X}(\Omega)$ be the solution to the Brinkman problem (2.2) with boundary datum $U \in H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$, let σ be the corresponding stress tensor defined by (2.4), and let $\sigma n \in H^{-1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$ be the trace on $\partial \Omega$ defined according to (2.7). The drag force exerted by the fluid on the boundary $\partial \Omega$ is defined as the unique vector $F \in \mathbb{R}^{3}$ such that

$$
\begin{equation*}
F \cdot V=\langle\sigma n, V\rangle \quad \text { for every } V \in \mathbb{R}^{3} \tag{2.9}
\end{equation*}
$$

The torque exerted by the fluid on the boundary $\partial \Omega$ is defined as the unique vector $M \in \mathbb{R}^{3}$ such that

$$
\begin{equation*}
M \cdot \omega=\left\langle\sigma n, W_{\omega}\right\rangle \quad \text { for every } \omega \in \mathbb{R}^{3} \tag{2.10}
\end{equation*}
$$

where $W_{\omega}(x):=\omega \times x$ is the velocity field generated by the angular velocity ω.

3. Kinematics and the equations of motion

In this section we describe the kinematics of the swimmer. The motion of a swimmer is described by a map $t \mapsto \varphi_{t}$, where, for every fixed t, the state φ_{t} is an orientation preserving bijective C^{2} map from the reference configuration $A \subset \mathbb{R}^{3}$ into the current configuration $A_{t} \subset \mathbb{R}^{3}$. Given a distinguished point $x_{0} \in A$, for every fixed t, we consider the following factorization

$$
\begin{equation*}
\varphi_{t}=r_{t} \circ s_{t} \tag{3.1}
\end{equation*}
$$

where the position function r_{t} is a rigid deformation and the shape function s_{t} is such that

$$
\begin{equation*}
s_{t}\left(x_{0}\right)=x_{0} \quad \text { and } \quad \nabla s_{t}\left(x_{0}\right) \text { is symmetric. } \tag{3.2}
\end{equation*}
$$

We allow the map $t \mapsto s_{t}$ to be chosen in a suitable class of admissible shape changes and use it as a control to achieve propulsion as a consequence of the viscous reaction of the fluid. By contrast, $t \mapsto r_{t}$ is a priori unknown and it must be determined by imposing that the resulting $\varphi_{t}=r_{t} \circ s_{t}$ satisfies the equations of motion.

Since the kinematics of the swimmer does not depend on the fluid the swimmer is surrounded by, we can adopt the same setting as in [4]. For the reader's convenience, we recall the results proved there, and refer the reader to the above mentioned paper and the references therein for a more detailed exposition.

The reference configuration of the swimmer $A \subset \mathbb{R}^{3}$ is a bounded connected open set of class C^{2}. The time-dependent deformation of A from the point of view of an external observer is described by a function $\varphi_{t}: \bar{A} \rightarrow \mathbb{R}^{3}$ with the following properties:

$$
\begin{equation*}
\varphi_{t} \in C^{2}\left(\bar{A} ; \mathbb{R}^{3}\right), \quad \varphi_{t} \quad \text { is injective }, \quad \operatorname{det} \nabla \varphi_{t}(x)>0 \quad \text { for all } x \in \bar{A} \tag{3.3}
\end{equation*}
$$

for every t; here and henceforth ∇ denotes the gradient with respect to the space variable. Under these hypotheses, $A_{t}:=\varphi_{t}(A)$ is a bounded connected open set of class C^{2} and

$$
\text { the inverse } \quad \varphi_{t}^{-1}: \bar{A}_{t} \rightarrow \bar{A} \quad \text { belongs to } C^{2}\left(\bar{A}_{t} ; \mathbb{R}^{3}\right)
$$

We also assume that

$$
\begin{equation*}
\text { the sets } \mathbb{R}^{3} \backslash \bar{A}_{t} \text { are connected for all } t \in[0, T] \tag{3.4}
\end{equation*}
$$

Concerning the regularity in time,

$$
\begin{equation*}
\text { the map } t \mapsto \varphi_{t} \text { belongs to } \operatorname{Lip}\left([0, T] ; C^{1}\left(\bar{A} ; \mathbb{R}^{3}\right)\right) \cap L^{\infty}\left([0, T] ; C^{2}\left(\bar{A} ; \mathbb{R}^{3}\right)\right) \tag{3.5}
\end{equation*}
$$

Condition (3.5) implies that for almost every t there exists $\dot{\varphi}_{t} \in \operatorname{Lip}\left(\bar{A} ; \mathbb{R}^{3}\right)$ such that

$$
\frac{\varphi_{t+h}-\varphi_{t}}{h} \rightarrow \dot{\varphi}_{t}, \quad \text { uniformly on } \bar{A} \text { as } h \rightarrow 0
$$

From this, the Eulerian velocity on the boundary ∂A_{t}, defined by

$$
U_{t}:=\dot{\varphi}_{t} \circ \varphi_{t}^{-1}
$$

belongs to $\operatorname{Lip}\left(\partial A_{t} ; \mathbb{R}^{3}\right)$ with Lipschitz constant independent of t.
We now introduce the description of the kinematics from the point of view of the swimmer. Let $x_{0} \in A$ be a distinguished point and let us look for a factorization of φ_{t} of the form (3.1). The function $s_{t}: A \rightarrow \mathbb{R}^{3}$ satisfies properties (3.2), in view of which can be interpreted as a pure shape change from the point of view of an observer inertial with x_{0}, and the rigid motion $r_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is written in the form

$$
\begin{equation*}
r_{t}(z)=y_{t}+R_{t} z \tag{3.6}
\end{equation*}
$$

with $y_{t} \in \mathbb{R}^{3}$ and $R_{t} \in \mathrm{SO}(3)$, the set of orthogonal matrices with positive determinant. This allows us to say that the deformation φ_{t}, from the point of view of an external observer, is decomposed into a shape change followed by a rigid motion.

From (3.1), (3.3), and (3.6), the following properties of s_{t} can be inferred: for every t,

$$
\begin{gather*}
s_{t} \in C^{2}\left(\bar{A} ; \mathbb{R}^{3}\right), \quad s_{t} \quad \text { is injective, } \quad \operatorname{det} \nabla s_{t}(x)>0 \quad \text { for all } x \in \bar{A}, \tag{3.7a}\\
\text { the inverse } \quad s_{t}^{-1}: \bar{B}_{t} \rightarrow \bar{A} \quad \text { belongs to } C^{2}\left(\bar{B}_{t} ; \mathbb{R}^{3}\right), \tag{3.7b}
\end{gather*}
$$

where $B_{t}:=s_{t}(A)$, see Fig. 1 . Note that (3.7b) is a consequence of (3.7a). Note also that

Figure 1. Notation for the kinematics.
B_{t} is a bounded connected open set of class C^{2} and that $s_{t}\left(B_{t}\right)=A_{t}$ and $s_{t}\left(\partial B_{t}\right)=\partial A_{t}$. Moreover, since A is bounded and s_{t} is continuous, there exists a ball Σ_{ρ} centered at 0 with radius ρ such that

$$
A \subset \subset \Sigma_{\rho-1} \quad \text { and } \quad B_{t} \subset \subset \Sigma_{\rho-1}
$$

Lastly, (3.4) implies that
the sets $\Sigma_{\rho} \backslash \bar{B}_{t}$ are connected for all $t \in[0, T]$.

By means of the Polar Decomposition Theorem and the factorization (3.1), it is possible to give explicit formulae for R_{t} and y_{t} that clearly show that the maps $t \mapsto R_{t}$ and $t \mapsto y_{t}$ are Lipschitz continuous. Since $s_{t}=r_{t}^{-1} \circ \varphi_{t}$,

$$
\begin{equation*}
\text { the map } t \mapsto s_{t} \text { belongs to } \operatorname{Lip}\left([0, T] ; C^{1}\left(\bar{A} ; \mathbb{R}^{3}\right)\right) \cap L^{\infty}\left([0, T] ; C^{2}\left(\bar{A} ; \mathbb{R}^{3}\right)\right) \tag{3.9}
\end{equation*}
$$

The third property in (3.7a) and (3.9) imply that $\left\|s_{t}^{-1}\right\|_{C^{2}\left(\bar{B}_{t} ; \mathbb{R}^{3}\right)} \leqslant C<+\infty$, with C independent of t. Moreover, condition (3.9) yields the existence of $\dot{s}_{t} \in \operatorname{Lip}\left(\bar{A} ; \mathbb{R}^{3}\right)$ such that

$$
\frac{s_{t+h}-s_{t}}{h} \rightarrow \dot{s}_{t}, \quad \text { uniformly on } \bar{A}, \text { as } h \rightarrow 0
$$

Other properties of s_{t} that are worth mentioning, and whose full derivation can be found in [4, Section 3] are:

$$
\begin{aligned}
& \text { the map } t \mapsto \dot{s}_{t} \text { belongs to } L^{\infty}\left([0, T] ; H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)\right) \text {, } \\
& \operatorname{Lip}\left(\dot{s}_{t}\right) \leqslant L, \text { with } L \text { independent of } t, \\
& \text { for any fixed } x \in \bar{A} \text {, the map } t \mapsto \dot{s}_{t}(x) \text { is measurable. }
\end{aligned}
$$

To conclude the description of the kinematics of the swimmer, we give the form of the boundary velocity on the intermediate configuration B_{t}. It turns out that, if we define $V_{t}(z):=R_{t}^{T} U_{t}\left(r_{t}(z)\right)$ and $W_{t}(z):=\dot{s}_{t}\left(s_{t}^{-1}(z)\right)$, for every $z \in \partial B_{t}$, an elementary computation shows that for almost every $t \in[0, T]$

$$
V_{t}(z)=R_{t}^{T} \dot{y}_{t}+R_{t}^{T} \dot{R}_{t} z+W_{t}(z) \quad \text { for every } z \in \partial B_{t}
$$

We proceed now to the description of the motion of the swimmer. The motion $t \mapsto \varphi_{t}$ determines for almost every $t \in[0, T]$ the Eulerian velocity U_{t} through the formula

$$
U_{t}(y):=\dot{\varphi}_{t}\left(\varphi_{t}^{-1}(y)\right) \quad \text { for almost every } y \in \partial A_{t}
$$

Notice that $U_{t} \in \mathcal{H}^{1 / 2}\left(\partial A_{t} ; \mathbb{R}^{3}\right)$ for almost every $t \in[0, T]$. By applying Theorem[2.1](b) with $\Omega=A_{t}^{\text {ext }}:=\mathbb{R}^{3} \backslash \bar{A}_{t}$ and, for almost every $t \in[0, T]$, we obtain a unique solution u_{t} to the problem

$$
\begin{cases}\text { find } u_{t} \in \mathcal{X}\left(A_{t}^{\text {ext }}\right) \text { such that } & u_{t}=U_{t} \text { on } \partial A_{t} \tag{3.10}\\ 2 \int_{A_{t}^{\text {ext }}} \mathrm{E} u_{t}: \mathrm{E} w \mathrm{~d} y+\alpha^{2} \int_{A_{t}^{\text {ext }}} u_{t} \cdot w \mathrm{~d} y=0 & \text { for every } w \in \mathcal{X}_{0}\left(A_{t}^{\text {ext }}\right)\end{cases}
$$

Let $F_{A_{t}, U_{t}}$ and $M_{A_{t}, U_{t}}$ be the drag force and torque determined by the velocity field U_{t} according to (2.9) and (2.10). By neglecting inertia and imposing the self-propulsion constraint, the equations of motion reduce to the vanishing of the viscous force and torque, i.e.,

$$
\begin{equation*}
F_{A_{t}, U_{t}}=0 \quad \text { and } \quad M_{A_{t}, U_{t}}=0 \quad \text { for almost every } t \in[0, T] \tag{3.11}
\end{equation*}
$$

By assuming that φ_{t} is factorized as $\varphi_{t}=r_{t} \circ s_{t}$, where r_{t} is a rigid motion as in (3.6) and $t \mapsto s_{t}$ is a prescribed shape function, our aim is to find $t \mapsto r_{t}$ so that the equations of motion (3.11) are satisfied. To this extent, we present Theorem 3.1 below, whose result is that (3.11) is equivalent to a system of ordinary differential equations where the unknown functions are the translation $t \mapsto y_{t}$ and the rotation $t \mapsto R_{t}$ of the map $t \mapsto r_{t}$.

The coefficients of these differential equations are defined starting from the intermediate configuration described by the sets $B_{t}=s_{t}(A)$ introduced before and the 3×3 matrices K_{t}, C_{t}, J_{t}, depending only on the geometry of B_{t}, whose entries are defined by

$$
\begin{align*}
\left(K_{t}\right)_{i j} & :=\left\langle\sigma\left[e_{j}\right] n, e_{i}\right\rangle_{B_{t}^{\mathrm{ext}}} \tag{3.12a}\\
\left(C_{t}\right)_{i j} & :=\left\langle\sigma\left[e_{j}\right] n, e_{i} \times z\right\rangle_{B_{t}^{\mathrm{ext}}} \tag{3.12b}\\
\left(J_{t}\right)_{i j} & :=\left\langle\sigma\left[e_{j} \times z\right] n, e_{i} \times z\right\rangle_{B_{t}^{\mathrm{ext}}} \tag{3.12c}
\end{align*}
$$

where $B_{t}^{\text {ext }}:=\mathbb{R}^{3} \backslash \bar{B}_{t}$, the duality product is given in Definition 2.3 by formula (2.7), and $\sigma[W]$ denotes the stress tensor associated with the outer Brinkman problem in $B_{t}^{\text {ext }}$ with boundary datum W. The notation $\sigma[W]$ is chosen to emphasize the linear dependence of σ on W. Formula (2.8) shows that K_{t} and J_{t} are symmetric. The matrix

$$
\left[\begin{array}{cc}
K_{t} & C_{t}^{T} \\
C_{t} & J_{t}
\end{array}\right]
$$

is often called in the literature grand resistance matrix, and is symmetric and invertible. It originally arises in the case of a Stokes system [6], but the adaptation to the Brinkman system is straightforward: it only share the structure with the original one, while the values of the entries are computed with a different formula, namely (2.8). Let

$$
\left[\begin{array}{cc}
H_{t} & D_{t}^{T} \tag{3.13}\\
D_{t} & L_{t}
\end{array}\right]:=\left[\begin{array}{cc}
K_{t} & C_{t}^{T} \\
C_{t} & J_{t}
\end{array}\right]^{-1}
$$

be its inverse. For almost every $t \in[0, T]$, we defined $W_{t}=\dot{s}_{t} \circ s_{t}^{-1}$, and let F_{t}^{sh} and $M_{t}^{\text {sh }}$ be the drag force and torque on ∂B_{t} determined by the boundary velocity field W_{t}. The components of F_{t}^{sh} and $M_{t}^{\text {sh }}$ are given, according to (2.9) and (2.10), by

$$
\begin{align*}
\left(F_{t}^{\mathrm{sh}}\right)_{i} & =\left\langle\sigma\left[W_{t}\right] n, e_{i}\right\rangle_{B_{t}^{\mathrm{ext}}} \tag{3.14a}\\
\left(M_{t}^{\mathrm{sh}}\right)_{i} & =\left\langle\sigma\left[W_{t}\right] n, e_{i} \times z\right\rangle_{B_{t}^{\mathrm{ext}}} \tag{3.14b}
\end{align*}
$$

Consider now the linear operator $\mathcal{A}: \mathbb{R}^{3} \rightarrow \mathbb{M}^{3 \times 3}$ that associates to every $\omega \in \mathbb{R}^{3}$ the only skew-symmetric matrix $\mathcal{A}(\omega)$ such that $\mathcal{A}(\omega) z=\omega \times z$; therefore, ω is the axial vector of $\mathcal{A}(\omega)$. Finally, we define a vector b_{t} and a matrix Ω_{t} according to

$$
\begin{equation*}
b_{t}:=H_{t} F_{t}^{\mathrm{sh}}+D_{t}^{T} M_{t}^{\mathrm{sh}}, \quad \Omega_{t}:=\mathcal{A}\left(D_{t} F_{t}^{\mathrm{sh}}+L_{t} M_{t}^{\mathrm{sh}}\right) \tag{3.15}
\end{equation*}
$$

which depend on s_{t} and, most importantly on \dot{s}_{t}, via (3.14) and the definition of W_{t}.
Theorem 3.1. Assume that the shape function $t \mapsto s_{t}$ satisfies (3.7) and (3.9), and that the position function $t \mapsto r_{t}$ satisfies (3.6) and is Lipschitz continuous with respect to time. Then the following conditions are equivalent:
(i) the deformation function $t \mapsto \varphi_{t}:=r_{t} \circ s_{t}$ satisfies the equations of motion (3.11);
(ii) the functions $t \mapsto y_{t}$ and $t \mapsto R_{t}$ satisfy the system

$$
\begin{equation*}
\dot{y}_{t}=R_{t} b_{t}, \quad \dot{R}_{t}=R_{t} \Omega_{t}, \quad \text { for almost every } t \in[0, T] \tag{3.16}
\end{equation*}
$$

where b_{t} and Ω_{t} are defined in (3.15).
The proof was given in [4] and need not be modified, so we skip it. It is developed by setting the problem in the intermediate configuration B_{t}, assuming the point of view of the coordinate system of the shape functions. Changing the variables according to $y=r_{t}(z)$, $z \in B_{t}^{\text {ext }}$, the velocity field $v_{t}(z):=R_{t}^{T} u_{t}\left(r_{t}(z)\right)$ is the solution to the problem

$$
\begin{cases}\text { find } v_{t} \in \mathcal{X}\left(B_{t}^{\text {ext }}\right) \text { such that } & v_{t}=V_{t} \text { on } \partial B_{t} \tag{3.17}\\ 2 \int_{B_{t}^{\text {ext }}} \operatorname{Ev} v_{t}: \mathrm{E} w \mathrm{~d} z+\alpha^{2} \int_{B_{t}^{\text {ext }}} v_{t} \cdot w \mathrm{~d} z=0, & \text { for every } w \in \mathcal{X}_{0}\left(B_{t}^{\text {ext }}\right)\end{cases}
$$

where $V_{t}(z)=R_{t}^{T} U_{t}\left(r_{t}(z)\right)$, see Fig. 2,

Figure 2. Notation for the boundary velocities (we neglect here the surrounding particulate medium).

Denote by $F_{B_{t}, V_{t}}$ and $M_{B_{t}, V_{t}}$ the drag force and torque on ∂B_{t} determined by the velocity field v_{t} according to (2.9) and (2.10), with $\Omega=B_{t}^{\text {ext }}$. A straightforward computation yields $F_{B_{t}, V_{t}}=R_{t}^{T} F_{A_{t}, U_{t}}$ and $M_{B_{t}, V_{t}}=R_{t}^{T} M_{A_{t}, U_{t}}$, so that the equations of motion (3.11) reduce to

$$
F_{B_{t}, V_{t}}=0 \quad \text { and } \quad M_{B_{t}, V_{t}}=0 \quad \text { for almost every } t \in[0, T]
$$

Again by a simple manipulation we obtain the following form of the equations of motion

$$
\left[\begin{array}{c}
\dot{y}_{t} \\
\omega_{t}
\end{array}\right]=\left[\begin{array}{cc}
R_{t} & 0 \\
0 & R_{t}
\end{array}\right]\left[\begin{array}{cc}
H_{t} & D_{t}^{T} \\
D_{t} & L_{t}
\end{array}\right]\left[\begin{array}{c}
F_{t}^{\mathrm{sh}} \\
M_{t}^{\mathrm{sh}}
\end{array}\right] \quad \text { for almost every } t \in[0, T]
$$

which read, by means of (3.15), as (3.16).
Now, the standard theory of ordinary differential equations with possibly discontinuous coefficients [5] ensures that the Cauchy problem for (3.16) has one and only one Lipschitz solution $t \mapsto R_{t}, t \mapsto y_{t}$, provided that the functions $t \mapsto \Omega_{t}$ and $t \mapsto b_{t}$ are measurable and bounded. By (3.13) and (3.15), this happens when the functions

$$
\begin{equation*}
t \mapsto K_{t}, \quad t \mapsto C_{t}, \quad t \mapsto J_{t}, \quad t \mapsto F_{t}^{\mathrm{sh}}, \quad t \mapsto M_{t}^{\mathrm{sh}} \tag{3.18}
\end{equation*}
$$

are measurable and bounded. The continuity of the first three functions will be proved in the last part of this section. The proof of the measurability and boundedness of the last two functions in (3.18) requires some technical tools that will be developed in Section 4.

We need the notion of set convergence that we have already introduced in [4], and that we report here for convenience. Given a sequence of sets $\left(S_{k}\right)_{k}$, we say that S_{k} converge to $S_{\infty}, S_{k} \rightarrow S_{\infty}$, if for every $\varepsilon>0$ there exists m such that for every $k \geqslant m$

$$
\begin{equation*}
S_{\infty}^{-\varepsilon} \subset S_{k} \subset S_{\infty}^{+\varepsilon} \tag{3.19}
\end{equation*}
$$

where $S_{\infty}^{-\varepsilon}=\left\{y \in \mathbb{R}^{3}: \operatorname{dist}\left(y, \mathbb{R}^{3} \backslash S_{\infty}\right) \geqslant \varepsilon\right\}$ and $S_{\infty}^{+\varepsilon}=\left\{y \in \mathbb{R}^{3}: \operatorname{dist}\left(y, S_{\infty}\right) \leqslant \varepsilon\right\}$. The next lemma states a continuity property of the set-valued function $t \mapsto B_{t}$.

Lemma 3.2 ([4]). Let s_{t} satisfy (3.9). Then if $t \rightarrow t_{\infty}$ the sets B_{t} converge to the set $B_{t_{\infty}}$ in the sense of (3.19).

Theorem 3.3. Let w_{t} be the solution to the exterior Brinkman problem (2.2) on $B_{t}^{\text {ext }}$ with boundary datum W on ∂B_{t}, where W can be either a constant vector $a \in \mathbb{R}^{3}$ or the rotation $W_{\omega}:=\omega \times z$, with $\omega \in \mathbb{R}^{3}$. Define \widetilde{w}_{t} to be the extension

$$
\widetilde{w}_{t}:= \begin{cases}W & \text { on } B_{t} \tag{3.20}\\ w_{t} & \text { on } B_{t}^{\mathrm{ext}}\end{cases}
$$

Assume that $t \mapsto s_{t}$ satisfies (3.9). Then the map $t \mapsto \widetilde{w}_{t}$ is continuous from $[0, T]$ into $\mathcal{X}\left(\mathbb{R}^{3}\right)$.
Proof. Let $\left(t_{k}\right)_{k} \subset[0, T]$ be a sequence that converges to $t_{\infty} \in[0, T]$. Lemma 3.2 ensures the convergence of the sets $B_{t_{k}}$ to $B_{t_{\infty}}$ in the sense of (3.19).

Since $w_{t_{k}}$ are solutions to Brinkman problems, we have the bound $2 \int_{B_{t_{k}}^{\text {ext }}}\left|\mathrm{E} w_{t_{k}}\right|^{2} \mathrm{~d} z+$ $\alpha^{2} \int_{B_{t_{k}}^{\text {ext }}}\left|w_{t_{k}}\right|^{2} \mathrm{~d} z \leqslant C$, which, in turn, implies that

$$
2 \int_{\mathbb{R}^{3}}\left|\mathrm{E} \widetilde{w}_{t_{k}}\right|^{2} \mathrm{~d} z+\alpha^{2} \int_{\mathbb{R}^{3}}\left|\widetilde{w}_{t_{k}}\right|^{2} \mathrm{~d} z \leqslant C
$$

Therefore, \widetilde{w}_{t} admits a subsequence that converges weakly to a function $w^{*} \in \mathcal{X}\left(\mathbb{R}^{3}\right)$. By the convergence of the $B_{t_{k}}$, it is easy to see that $w^{*}=W$ on $B_{t_{\infty}}$. We now prove that $\left.w^{*}\right|_{B_{t \infty}^{\text {ext }}}$ solves the exterior Brinkman problem on $B_{t_{\infty}}$. Too see it, consider a test function $\varphi \in C_{\mathrm{c}}^{\infty}\left(B_{t_{\infty}}^{\text {ext }} ; \mathbb{R}^{3}\right)$. For k large enough, $\varphi \in C_{\mathrm{c}}^{\infty}\left(B_{t_{k}}^{\text {ext }} ; \mathbb{R}^{3}\right)$, so that

$$
2 \int_{\operatorname{spt} \varphi} \mathrm{E} w_{t_{k}}: \mathrm{E} \varphi \mathrm{~d} z+\alpha^{2} \int_{\operatorname{spt} \varphi} w_{t_{k}} \cdot \varphi \mathrm{~d} z=0
$$

This equality passes to the limit as $k \rightarrow \infty$, showing that $\left.w^{*}\right|_{B_{t+\infty}} ^{\text {ext }}$ is a solution to the Brinkman problem at t_{∞}. Therefore, $w^{*}=\widetilde{w}_{t_{\infty}}$, and we have proved that $t \mapsto w_{t}$ is strongly continuous from $[0, T]$ into $\mathcal{X}\left(\mathbb{R}^{3}\right)$.

We can now prove the following continuity result for the elements of the grand resistance matrix by means of Theorem 3.3.

Proposition 3.4. Assume that s_{t} satisfies (3.7) and (3.9). Then the functions

$$
\begin{equation*}
t \mapsto K_{t}, \quad t \mapsto C_{t}, \quad t \mapsto J_{t}, \tag{3.21}
\end{equation*}
$$

and consequently $t \mapsto H_{t}, t \mapsto D_{t}, t \mapsto L_{t}$, are continuous.
Proof. Formulae (3.12) and (2.8) provide us with an explicit form for the elements of the grand resistance matrix

$$
\begin{align*}
& \left(K_{t}\right)_{i j}=2 \int_{B_{t}^{\text {ext }}} \mathrm{E} v_{t}^{j}: \mathrm{E} v_{t}^{i} \mathrm{~d} z+\alpha^{2} \int_{B_{t}^{\text {ext }}} v_{t}^{j} \cdot v_{t}^{i} \mathrm{~d} z, \tag{3.22a}\\
& \left(C_{t}\right)_{i j}=2 \int_{B_{t}^{\text {ext }}} \mathrm{E} v_{t}^{j}: \mathrm{E} \hat{v}_{t}^{i} \mathrm{~d} z+\alpha^{2} \int_{B_{t}^{\text {ext }}} v_{t}^{j} \cdot \hat{v}_{t}^{i} \mathrm{~d} z, \tag{3.22b}\\
& \left(J_{t}\right)_{i j}=2 \int_{B_{t}^{\text {ext }}}^{\mathrm{E}} \hat{v}_{t}^{j}: \mathrm{E} \hat{\mathrm{v}}_{t}^{i} \mathrm{~d} z+\alpha^{2} \int_{B_{t}^{\text {ext }}} \hat{v}_{t}^{j} \cdot \hat{v}_{t}^{i} \mathrm{~d} z, \tag{3.22c}
\end{align*}
$$

where v_{t}^{i} and \hat{v}_{t}^{i} are the functions defined in (3.20) with $W=e_{i}$ and $W=e_{i} \times z$, respectively. We prove the result for K_{t} only, since the others are similar. We write

$$
\left(K_{t}\right)_{i j}=2 \int_{\mathbb{R}^{3}} \mathrm{E} \widetilde{v}_{t}^{j}: \mathrm{E} \widetilde{v}_{t}^{i} \mathrm{~d} z+\alpha^{2} \int_{\mathbb{R}^{3}} \widetilde{v}_{t}^{j} \cdot \widetilde{v}_{t}^{i} \mathrm{~d} z-\alpha^{2} \int_{B_{t}} e_{j} \cdot e_{i} \mathrm{~d} z,
$$

where \widetilde{v}_{t}^{i} and \widetilde{v}_{t}^{j} are the extensions considered in (3.20). By Theorem 3.3, the first two integrals are continuous with respect to t. The continuity of the last integral is guaranteed by Lemma 3.2 ,

The proof of the measurability and boundedness of $t \mapsto F_{t}^{\text {sh }}$ and $t \mapsto M_{t}^{\text {sh }}$ is a delicate issue. The difficulty arises from the fact that both the domains B_{t} and the boundary data $W_{t}=\dot{s}_{t} \circ s_{t}^{-1}$ depend on time. Moreover, since it is meaningful and interesting to consider boundary values W_{t} that might be discontinuous with respect to t, we cannot expect the functions $t \mapsto F_{t}^{\text {sh }}$ and $t \mapsto M_{t}^{\text {sh }}$ to be continuous.

To prove the measurability we start from an integral representation of $F_{t}^{\text {sh }}$ and $M_{t}^{\text {sh }}$, similar to (3.22). As $\int_{\partial B_{t}} W_{t} \cdot n \mathrm{~d} S$ is not necessarily zero, we will not be able to compute integrals over the whole space \mathbb{R}^{3}, so we will have to work in the complement of an open ball $\Sigma_{\varepsilon}^{0} \subset \subset B_{t}$. Since, in general, this inclusion holds only locally in time, we first fix $t_{0} \in[0, T]$ and $z^{0} \in B_{t_{0}}$ and select $\delta>0$ and $\varepsilon>0$ so that the open ball $\Sigma_{\varepsilon}^{0}:=\Sigma_{\varepsilon}\left(z^{0}\right)$ of radius ε centered at z^{0} satisfies

$$
\begin{equation*}
\Sigma_{\varepsilon}^{0} \subset \subset B_{t}, \quad \text { for all } t \in I_{\delta}\left(t_{0}\right):=[0, T] \cap\left(t_{0}-\delta, t_{0}+\delta\right) . \tag{3.23}
\end{equation*}
$$

This is possible thanks to the continuity properties of $t \mapsto s_{t}$ listed in the first part of this section.

Next we consider the solution w_{t} to the problem

$$
\min \left\{\|w\|_{\mathcal{X}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)}^{2}: w \in \mathcal{X}\left(\Sigma_{\varepsilon}^{0, \mathrm{ext}}\right), w=W_{t} \text { on } \partial B_{t}, \text { and } w=\lambda_{t}\left(z-z^{0}\right) / \varepsilon^{3} \text { on } \partial \Sigma_{\varepsilon}^{0}\right\}
$$

In order for the flux condition (2.3) to be fulfilled on $\partial B_{t} \cup \partial \Sigma_{\varepsilon}^{0}$ by w_{t}, we choose

$$
\lambda_{t}:=-\frac{1}{4 \pi} \int_{\partial B_{t}} W_{t} \cdot n \mathrm{~d} S .
$$

Finally, putting together (3.14) and (2.8), we obtain the following explicit integral representation of $F_{t}^{\text {sh }}$ and $M_{t}^{\text {sh }}$

$$
\begin{aligned}
& \left(F_{t}^{\mathrm{sh}}\right)_{i}=2 \int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}} \mathrm{E} w_{t}: \mathrm{E} v_{t}^{i} \mathrm{~d} z+\alpha^{2} \int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}} w_{t} \cdot v_{t}^{i} \mathrm{~d} z-\alpha^{2} \int_{Q_{\varepsilon, t}} w_{t} \cdot v_{t}^{i} \mathrm{~d} z \\
& \left(M_{t}^{\mathrm{sh}}\right)_{i}=2 \int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}} \mathrm{E} w_{t}: \mathrm{E} \hat{v}_{t}^{i} \mathrm{~d} z+\alpha^{2} \int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}} w_{t} \cdot \hat{v}_{t}^{i} \mathrm{~d} z-\alpha^{2} \int_{Q_{\varepsilon, t}} w_{t} \cdot \hat{v}_{t}^{i} \mathrm{~d} z
\end{aligned}
$$

where v_{t}^{i} and \hat{v}_{t}^{i} have been defined in the proof of Proposition 3.4 and $Q_{\varepsilon, t}:=B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}$. We deduce from Theorem 3.3 and Lemma 3.2 that the functions $t \mapsto v_{t}^{i}$ and $t \mapsto \hat{v}_{t}^{i}$ are continuous from $I_{\delta}\left(t_{0}\right)$ into $\mathcal{X}\left(\Sigma_{\varepsilon}^{0, \mathrm{ext}}\right)$. Therefore, the measurability and boundedness of $t \mapsto F_{t}^{\text {sh }}$ and $t \mapsto M_{t}^{\text {sh }}$ will be proved once $t \mapsto w_{t}$ is proved to be measurable. We first show that $t \mapsto w_{t}$ is measurable and bounded from $I_{\delta}\left(t_{0}\right)$ into $\mathcal{X}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ and eventually we will
prove that the function $t \mapsto \int_{Q_{\varepsilon, t}} w_{t} \mathrm{~d} z$ is continuous with respect to time. These two results are proved in the next Section.

4. EXTENSIONS OF BOUNDARY DATA AND MAIN RESULT

The following results have been proved in [4] and still hold in our setting.
Proposition 4.1 (Solenoidal extension operators). Assume that s_{t} satisfies (3.7) and (3.9), and let $t_{0} \in[0, T]$ and $z^{0} \in B_{t_{0}}$. Let $\delta>0$ and $\varepsilon>0$ be such that (3.23) holds true. Then there exists a uniformly bounded family $\left(\mathcal{T}_{t}\right)_{t \in I_{\delta}\left(t_{0}\right)}$ of continuous linear operators

$$
\mathcal{T}_{t}: H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right) \rightarrow \mathcal{X}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0}\right)
$$

such that
(i) for all $t \in I_{\delta}\left(t_{0}\right)$ and for all $\Phi \in H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)$,

$$
\begin{aligned}
& \mathcal{T}_{t}(\Phi)=\Phi \circ s_{t}^{-1} \quad \text { on } \partial B_{t}, \\
& \mathcal{T}_{t}(\Phi)=\lambda_{t} \frac{z}{|z|^{3}} \quad \text { on } \partial \Sigma_{\rho}
\end{aligned}
$$

(ii) for every $\Phi \in H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)$ the map $t \mapsto \mathcal{T}_{t}(\Phi)$ is continuous from $I_{\delta}\left(t_{0}\right)$ into $\mathcal{X}\left(\Sigma_{\rho} \backslash\right.$ $\left.\bar{\Sigma}_{\varepsilon}^{0}\right)$.
In particular, the following estimate holds

$$
\begin{equation*}
\left\|\mathcal{T}_{t}(\Phi)\right\|_{H^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)} \leqslant C\|\Phi\|_{H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)}, \tag{4.1}
\end{equation*}
$$

where the constant C is independent of t and Φ.
Proposition 4.2. Assume that s_{t} satisfies (3.7), (3.8), and (3.9). Let $t_{0} \in[0, T]$ and $z^{0} \in$ $B_{t_{0}}$, and let Σ_{ε}^{0} and $I_{\delta}\left(t_{0}\right)$ be as in (3.23). Suppose, in addition, that for every $t \in I_{\delta}\left(t_{0}\right)$ there exists a C^{2} diffeomorphism $\Psi_{t}^{t_{0}}: \Sigma_{\rho} \rightarrow \Sigma_{\rho}$ coinciding with the identity on $\Sigma_{\rho} \backslash \Sigma_{\rho-1}$, such that $\Psi_{t}^{t_{0}}=s_{t_{0}} \circ s_{t}^{-1}$ on B_{t}. Let the map $t \mapsto \Phi_{t}$ belong to $C^{0}\left(I_{\delta}\left(t_{0}\right) ; H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)\right) \cap$ $L^{\infty}\left(I_{\delta}\left(t_{0}\right) ; \operatorname{Lip}\left(\partial A ; \mathbb{R}^{3}\right)\right)$. Let w_{t} be the solution to the problem
(4.2) $\min \left\{\|w\|_{\mathcal{X}\left(\Sigma_{\varepsilon}^{0, \mathrm{ext}}\right)}^{2}: \mathcal{X}\left(\Sigma_{\varepsilon}^{0, \mathrm{ext}}\right), w=\Phi_{t} \circ s_{t}^{-1}\right.$ on ∂B_{t} and $w=\lambda_{t}\left(z-z^{0}\right) / \varepsilon^{3}$ on $\left.\partial \Sigma_{\varepsilon}^{0}\right\}$,
where $\lambda_{t}:=-\frac{1}{4 \pi} \int_{\partial B_{t}}\left(\Phi_{t} \circ s_{t}^{-1}\right) \cdot n \mathrm{~d} S$. Then $t \mapsto w_{t}$ belongs to $C^{0}\left(I_{\delta}\left(t_{0}\right) ; \mathcal{X}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)\right)$.
Proof. The proof can be easily adapted from that of [4, Proposition 6.1]; the following important estimate provides a uniform bound for the norms of the w_{t} 's in $\mathcal{X}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ that will also be useful in the proof of Proposition 4.3

$$
\begin{align*}
2 \int_{\Sigma_{\varepsilon}^{0, \text { ext }}}\left|\mathrm{E} w_{t_{k}}\right|^{2} \mathrm{~d} z & +\alpha^{2} \int_{\Sigma_{\varepsilon}^{0, \text { ext }}}\left|w_{t_{k}}\right|^{2} \mathrm{~d} z \leqslant 2 \int_{\Sigma_{\varepsilon}^{0, \text { ext }}}\left|\mathrm{E} \psi_{t_{k}}\right|^{2} \mathrm{~d} z+\alpha^{2} \int_{\Sigma_{\varepsilon}^{0, \text { ext }}}\left|\psi_{t_{k}}\right|^{2} \mathrm{~d} z \tag{4.3}\\
& \leqslant\left\|\psi_{t_{k}}\right\|_{H^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)}^{2} \leqslant C^{2}\left(\operatorname{Lip}\left(\Phi_{t_{k}}\right)+\max \left|\Phi_{t_{k}}\right|\right)^{2} \leqslant(C M)^{2}
\end{align*}
$$

where $\psi_{t} \in \mathcal{X}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ is defined by

$$
\psi_{t}:= \begin{cases}\mathcal{T}_{t}\left(\Phi_{t}\right) & \text { in } \Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} \\ \lambda_{t} \frac{z}{|z|^{3}} & \text { in } \Sigma_{\rho}^{\text {ext }}\end{cases}
$$

and is the function provided by Proposition 4.1 and extended on $\Sigma_{\rho}^{\mathrm{ext}}, C$ is the constant in (4.1), and $M>0$ is a uniform upper bound of $\operatorname{Lip}\left(\Phi_{t_{k}}\right)+\max \left|\Phi_{t_{k}}\right|$, whose existence is guaranteed by the fact that $t \mapsto \Phi_{t}$ belongs to $L^{\infty}\left(I_{\delta}\left(t_{0}\right) ; \operatorname{Lip}\left(\partial A ; \mathbb{R}^{3}\right)\right)$.

Proposition 4.3. Under the hypotheses of Proposition 4.2 recalling that $Q_{\varepsilon, t}=B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}$, the maps

$$
\begin{equation*}
t \mapsto \int_{Q_{\varepsilon, t}} w_{t} \mathrm{~d} z, \quad t \mapsto \int_{Q_{\varepsilon, t}} z \times w_{t} \mathrm{~d} z \tag{4.4}
\end{equation*}
$$

where $t \mapsto w_{t} \in \mathcal{X}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ is the solution to the minimum problem (4.2) as in Proposition 4.2 are continuous with respect to time in $I_{\delta}\left(t_{0}\right)$.

Proof. We check the continuity with the definition

$$
\begin{aligned}
\mid \int_{Q_{t+h}} w_{t+h} \mathrm{~d} z & -\int_{Q_{t}} w_{t} \mathrm{~d} z\left|=\left|\int_{Q_{t+h}}\left(w_{t+h}-w_{t}\right) \mathrm{d} z+\int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}} w_{t}\left(\chi_{Q_{t+h}}(z)-\chi_{Q_{t}}(z)\right) \mathrm{d} z\right|\right. \\
& \leqslant\left(\int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}}\left|w_{t+h}-w_{t}\right|^{2} \mathrm{~d} z\right)^{\frac{1}{2}}\left|Q_{t+h}\right|^{\frac{1}{2}}+\left(\int_{\Sigma_{e}^{0, \mathrm{ext}}}\left|w_{t}\right|^{2} \mathrm{~d} z\right)^{\frac{1}{2}}\left|Q_{t+h} \triangle Q_{t}\right|^{\frac{1}{2}} \\
& \leqslant\left\|w_{t+h}-w_{t}\right\|_{\mathcal{X}\left(\Sigma_{\varepsilon}^{0, \mathrm{ext})}\right.}\left|Q_{t+h}\right|^{\frac{1}{2}}+\left\|w_{t}\right\|_{\mathcal{X}\left(\Sigma_{\varepsilon}^{0, \mathrm{ext}}\right)}\left|Q_{t+h} \triangle Q_{t}\right|^{\frac{1}{2}} \\
& \leqslant\left|\Sigma_{\rho}\right|^{\frac{1}{2}}\left\|w_{t+h}-w_{t}\right\|_{\mathcal{X}\left(\Sigma_{\varepsilon}^{0, \mathrm{ext}}\right)}+C M\left|Q_{t+h} \triangle Q_{t}\right|^{\frac{1}{2}} \xrightarrow{h \rightarrow 0} 0 .
\end{aligned}
$$

Here, χ_{Q} denotes the characteristic function of the set Q, \triangle is the symmetric difference operator, and $C M$ is the uniform (with respect to t) upper bound coming from (4.3). The continuity for the second map is achieved in the same way.

Proposition 4.2 and Proposition 4.3 combined together give the continuity of $t \mapsto F_{t}^{\text {sh }}$ and $t \mapsto M_{t}^{\text {sh }}$ with respect to time, in the case of regular boundary data $\Phi_{t} \circ s_{t}^{-1}$ on ∂B_{t}, where the map $t \mapsto \Phi_{t}$ belongs to $C^{0}\left(I_{\delta}\left(t_{0}\right) ; H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)\right) \cap L^{\infty}\left(I_{\delta}\left(t_{0}\right) ; \operatorname{Lip}\left(\partial A ; \mathbb{R}^{3}\right)\right)$. The next results will prove that when the boundary data on ∂B_{t} are given by $\dot{s}_{t} \circ s_{t}^{-1}$, then the maps $t \mapsto F_{t}^{\text {sh }}$ and $t \mapsto M_{t}^{\text {sh }}$ are measurable and bounded.

Theorem 4.4. Assume that s_{t} satisfies (3.7), (3.8), and (3.9). Let $t_{0} \in[0, T]$ and $z^{0} \in B_{t_{0}}$, and let Σ_{ε}^{0} and $I_{\delta}\left(t_{0}\right)$ be as in (3.23). Suppose, in addition, that for every $t \in I_{\delta}\left(t_{0}\right)$ there exists a C^{2} diffeomorphism $\Psi_{t}^{t_{0}}: \Sigma_{\rho} \rightarrow \Sigma_{\rho}$ coinciding with the identity on $\Sigma_{\rho} \backslash \Sigma_{\rho-1}$, such that $\Psi_{t}^{t_{0}}=s_{t_{0}} \circ s_{t}^{-1}$ on B_{t}. Let w_{t} be the solution to the problem

$$
\min \left\{\|w\|_{\mathcal{X}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)}^{2}: w \in \mathcal{X}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right), w=\dot{s}_{t} \circ s_{t}^{-1} \text { on } \partial B_{t} \text {, and } w=\lambda_{t}\left(z-z^{0}\right) / \varepsilon^{3} \text { on } \partial \Sigma_{\varepsilon}^{0}\right\} .
$$

Then the function $t \mapsto w_{t}$ is measurable and bounded from $I_{\delta}\left(t_{0}\right)$ into $\mathcal{X}\left(\Sigma_{\varepsilon}^{0, \mathrm{ext}}\right)$. Moreover, also the functions (4.4) considered in Proposition 4.3 are measurable and bounded in $I_{\delta}\left(t_{0}\right)$.

Proof. It suffices to convolve the boundary datum with a suitable regularizing kernel and to apply Propositions 4.2 and 4.3 . By passing to the limit, the continuity is lost but the functions turn out to be measurable and bounded.

Proposition 3.4 and Theorem 4.4 give the regularity result for b_{t} and Ω_{t} in (3.15), as stated in the following result.
Theorem 4.5. Assume that $t \mapsto s_{t}$ satisfies (3.7), (3.8), and (3.9). Then the vector b_{t} and the matrix Ω_{t} in (3.15) are bounded and measurable with respect to t. If, in addition, the function $t \mapsto s_{t}$ belongs to $C^{1}\left([0, T] ; C^{1}\left(\bar{A} ; \mathbb{R}^{3}\right)\right)$, then $t \mapsto\left(b_{t}, \Omega_{t}\right)$ belongs to $C^{0}\left([0, T] ; \mathbb{R}^{3} \times \mathbb{M}^{3 \times 3}\right)$.

We are now in a position to state the existence, uniqueness, and regularity result for the equations of motion (3.16), whose proof can be found in [4].

Theorem 4.6. Assume that $t \mapsto s_{t}$ satisfies (3.7), (3.8), and (3.9). Let $y^{*} \in \mathbb{R}^{3}$ and $R^{*} \in$ $\mathrm{SO}(3)$. Then (3.16) has a unique absolutely continuous solution $t \mapsto\left(y_{t}, R_{t}\right)$ defined in $[0, T]$ with values in $\mathbb{R}^{3} \times \mathrm{SO}(3)$ such that $y_{0}=y^{*}$ and $R_{0}=R^{*}$. In other words, there exists a unique rigid motion $t \mapsto r_{t}(z)=y_{t}+R_{t} z$ such that the deformation function $t \mapsto \varphi_{t}=r_{t} \circ s_{t}$ satisfies the equations of motion (3.11).

Moreover this solution is Lipschitz continuous with respect to t. If, in addition, the function $t \mapsto s_{t}$ belongs to $C^{1}\left([0, T] ; C^{1}\left(\bar{A} ; \mathbb{R}^{3}\right)\right)$, then the solution $t \mapsto\left(y_{t}, R_{t}\right)$ belongs to $C^{1}\left([0, T] ; \mathbb{R}^{3} \times \mathrm{SO}(3)\right)$.

5. Conclusions and future work

We have shown that the framework for modeling the motion of a deformable body in a viscous fluid that we presented in [4] also fits in the case of a particulare system for which the Brinkman equation is assumed to model the fluid phase of the surrounding medium. In our model, we neglected the interactions between the solid particles and the swimmer, considering only the body-fluid phase viscous interaction. We think this is a reasonable
approximation for using a simple model such as the Brinkman equation. Also, the mathematical model to describe the experiments in [9] is the same, and in that case the elastic and adhesive interactions between the nematode and the surrounding particles are neglected as well. Nevertheless, we think it can be interesting to develop more complex models to take into account also that kind of contact forces, and that could be the object of a future study.

Even though it has not been addressed in this work, we also expect our model to be able to predict, on the basis of an energy comparison, whether swimming in a particulate medium is more efficient than swimming in a plain viscous fluid; that would be an interesting theoretical check of the thesis advanced by Jung on the basis of his experimental results that C. elegans swims more efficiently in a particulate medium.

References

[1] G. Allaire: Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Rational Mech. Anal., 113 (1990), 209-259. Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Rational Mech. Anal., 113 (1990), 261-298.
[2] G. K. Batchelor: Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44, (1970), 419-440.
[3] H. C. Brinkman: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., Sect. A 1 (1949), 27-34.
[4] G. Dal Maso, A. DeSimone, M. Morandotti: An existence and uniqueness result for the motion of self-propelled micro-swimmers. Preprint SISSA 44/2010/M (2010), submitted.
[5] J. K. Hale: Ordinary Differential Equations, second edition. Robert E. Krieger Publishing Co., Huntington, N.Y., 1980.
[6] J. Happel and H. Brenner: Low Reynolds Number Hydrodynamics with special applications to particulate media. Martinus Nijhoff Publishers, The Hague, 1983.
[7] J. G. Heywood: On uniqueness questions in the theory of viscous flow. Acta Math. 136 (1976), 61-102.
[8] R. E. Johnson and C. J. Brokaw: Flagellar Hydrodynamics - Comparison between Resistive-Force Theory and Slender-Body Theory. Biophys. J. 25 (1979), 113-127.
[9] S. Jung: Caenorhabditis elegans swimming in a saturated particulate system. Phys. Fluids 22 (2010).
[10] J. B. Keller and S. I. Rubinow: Slender body theory for viscous flows. J. Fluid Mech. 75 (1976), 705-714.
[11] J. Korta, D. A. Clark, C. V. Gabel, L. Mahadevan, and A. D. T. Samuel: Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans. J. Exp. Biol. 210 (2007), 2383-2389.
[12] J. Karbowski, C. J. Cronin, A. Seah, J. E. Medel, D. Cleary, and P. W. Sternberg: Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. J. Theor. Biol. 242 (2006), 652-669.
[13] E. Lauga, T. R. Powers: The hydrodynamics of swimming microorganisms. Rep. Progr. Phys. 72 (2009), no. 9.
[14] M. J. Lighthill: On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Comm. Pure Appl. Math. 5 (1952), 109-118.
[15] E. M. Purcell: Life at low Reynolds number. American Journal of Physics 45 (1977), 3-11.
[16] A. Shapere, F. Wilczek: Geometry of self-propulsion at low Reynolds number. J. Fluid Mech. 198 (1989), 557-585.
[17] G. I. Taylor: Analysis of the swimming of microscopic organisms. Proc. Roy. Soc. London, Ser. A. 209 (1951), 447-461.
[18] R. Temam: Navier-Stokes Equations. Theory and numerical analysis. AMS Chelsea Publishing, Providence, RI, 2001, Reprint of the 1984 edition.
[19] H. R. Wallace: The dynamics of nematode movement. Annu. Rev. Phytopathol. 6 (1968), 91-114.
[20] W. B. Wood: The nematode Caenorhabditis elegans. Cold Spring Harbor Monograph Series 17, New York, 1988.

SISSA - International School for Advanced Studies, Via Bonomea, 265, I-34136 Trieste, Italy
E-mail address: marco.morandotti@sissa.it

