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ABSTRACT The term web-app defines the current dynamic pragmatics of the website, where the user has
control. Finding faults in such dynamic content is challenging, as to whether the fault is exposed or not
depends on its execution path. Moreover, the complexity and uniqueness of each web application make
fault assessment an extremely laborious and expensive task. Also, artificial fault injection models are
run in controlled and simulated environments, which may not be representative of the real-world fault
data. Classifying faults can intelligently enhance the quality of the web-apps by the assessment of
probable faults. In this paper, an empirical study is conducted to classify faults in bug reports of three
open-source web-apps (qaManager, bitWeaver, and WebCalendar) and reviews of two play store web-apps
(Dineout: Reserve a Table and Wynk Music). Five supervised learning algorithms (naïve Bayesian, decision
tree, support vector machines, K -nearest neighbor, and multi-layer perceptron) have been first evaluated
based on the conventional term frequency–inverse document frequency (tf-idf) feature extraction method,
and subsequently, a feature selection method to improve classifier performance is proposed using particle
swarm optimization (a nature-inspired, meta-heuristic algorithm). This paper is a preliminary exploratory
study to build an automated tool, which can optimally categorize faults. The empirical analysis validates
that the particle swarm optimization for feature selection in fault classification task outperforms the tf-idf
filter-based classifiers with an average accuracy gain of about 11% and nearly 26% average feature reduction.
The highest accuracy of 93.35% is shown by the decision tree after feature selection.

INDEX TERMS Classification, fault, feature selection, particle swarm, web-apps.

I. INTRODUCTION
With the increasing size of indexedWeb, superior technology,
and optimal browser performance, the development of Web
has seen significant transformation from being an anachronis-
tic static content repository to a turbulent, interactive, respon-
sive content space. The websites now rely on programmatic
user input and data processing. The term web-based appli-
cations or simply web-app [1] defines the current dynamic
pragmatics of the website where the user has control. Tech-
nologically, the current generation websites are more like
web-based software which store data/interact with a database
on the back end, and process business logic and information
in a more convoluted way. They have a web interface but

web development here is just not limited to developing an
alluring interface but creating web-based software. Thus, the
web-based software development primarily consists of three
ingredients, namely the development of websites, web appli-
cation development and development of web services [2].

‘‘Agile development practices’’, ‘‘big-data’’, ‘‘security’’,
‘‘open source’’ and ‘‘customer-first design’’ are some of the
key terms that characterize the latest technology trends in the
software development. A typical web application develop-
ment workflow is similar to the conventional software devel-
opment (Figure 1). It involves five phases, (i) brainstorm:
for requirement analysis (ii) design: design document &
prototype (iii) development: iterations, demo and feedback
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FIGURE 1. Web-app development workflow.

(iv) quality assurance: identify defects and resolve bugs
(v) deployment: production and technical support.

Web quality is defined as the degree to which the
web-based software meets the specified requirements,
is accessible, provides the reliable information and meets
the user needs & expectations [2]. Quality assurance (QA)
popularly known as QA testing is a systematic process of
determining whether a product or service meets specified
requirements and customer expectations. This process-driven
approach is the key to ensure the performance and reliability
of the product. QA’s primary goal is tracking and resolv-
ing deficiencies prior to product release, that too in a pro-
active way. That is, the purpose of QA is to prevent defects
from entering into the system. Thus, the quality assessment
models in this new development setting call for a set of
acceptance criteria which define accessibility and usability
of the web-apps, demonstrating its effectiveness in terms of
user-experience. The acceptance of websites/apps by the end-
user depends on a variety of factors. The most measurable
aspect of software quality is the number of faults, or bugs, that
are discovered in a software product. It is an absolute quan-
tifier of quality. Formally, a fault is defined as an ‘‘incorrect
step, process, or data definition in a computer program’’ [3].
For example, attributes such as dead-links or browser com-
patibility [2] are direct indicators of faults and a quality
compromise.

The source code and bug reports for the open-source
projects are readily available but are awfully structured and
unlabeled. Similarly, the Google and Apple play store allow
users to give feedback in the form of reviews. An app review
typically includes star rating followed by a comment. Nega-
tive opinion polarity within these reviews is strong indicator
of a fault/drawback/short-coming. For example, the com-
ment ‘‘The link for few songs are dead. . . play now and
download both not working for them!!! The text is not
readable as the font is too small. Moreover, the premium
version is a waste of money as compared to. . . .’’, clearly
conveys the opinion of the reviewer(negative in this case)
and the aspects of negative opinion. These reviews possess

a vital source of information that can be used by the
app developers and the vendors for de-bugging and ver-
sion control. But here too, most of the reviews are in an
unstructured form and mining useful analytical informa-
tion from them requires a great effort. Pro-actively find-
ing categories of faults in such open-source projects and
real-time data that too manually is arduous and expensive.
Researchers have recognized the limits of manual fault clas-
sification and have investigated automation solutions. Empir-
ical fault detection is one such promising research direction
which is based on fault classification as an imperative pre-
requisite task [4]. An automated tool to classify faults into
pre-defined categories can assist in fault-based testing of
web-apps. The primary purpose of any such tool is to pre-
vent faults and find as many faults as possible, as early as
possible.

The vital sub-task of the fault classification pro-
cess is feature extraction, which converts the input data
(unstructured textual data indicative of faults), into an array
of representative features. Commonly, the feature extraction
task is done using intrinsic ‘filtering’ methods which are fast,
classifier-independent methods that rank features according
to predetermined numerical functions based on the measure
of the ‘‘importance’’ of the terms. A variety of scoring
functions such as, tf-idf, chi-square, mutual information,
information gain, cross-entropy etc., have been used as sta-
tistical measures to pick features with the highest scores [5].
Further, past literature conforms that an optimal feature
selection [6] improves the classifier performance (in terms
of speed, predictive power and simplicity of the model),
reduces dimensionality, removes noise and helps visualizing
the data for model selection. In feature selection the features
are kept intact and n best features are chosen among them,
removing the redundant and co-linear features. This sub-task
of selecting the relevant subset of features and discarding
the non-essential ones is computationally challenging and
expensive task. Population-based meta-heuristics, especially
the ones inspired by nature have been proposed for feature
selection in relevant and prominent literature work as wrapper
methods to select the best possible subset of features for a
given model.
Swarm intelligence algorithms (SI) are contemporary com-

putational and behavioral metaphors for solving search and
optimization problems which take collective biological pat-
terns provided by social insects (ants, termites, bees, wasps,
moths etc.) and other animal societies (fish, birds, grey
wolves etc.) as stimulus to model algorithmic solutions. Sev-
eral algorithms inspired by natural phenomena have been
proposed in the past years and among them, some meta-
heuristic search algorithms with population-based framework
have shown satisfactory capabilities to handle high dimension
optimization problems. The work presented in this paper is an
insight to this research trend which comprehends the adap-
tive learning and collective intelligence behavioral models of
swarm-based algorithms. Swarm-based feature optimization
using particle swarm optimization (PSO) is demonstrated to
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cater to the dimensionality; complexity and fuzziness in the
unstructured data.

The research presented in this paper, is an empirical study
to put forward an optimized learning model to reduce the
feature dimensionality in order to optimize fault prediction in
real-time web-apps. Bug reports of three open-source web-
app projects (qaManager1, bitWeaver,2 WebCalendar)3 and
reviews from two play store applications (Dineout: Reserve
a Table,4 Wynk Music)5 have been considered to intelligently
mine faults which are annotated based on seven categories as
given by Sampath et al. [7]. A comparative analysis using five
supervised learning algorithms, namely naïve Bayesian (NB),
decision tree (DT), support vector machine (SVM), K-nearest
neighbor (K-NN) and multi-layer perceptron (MLP) is done
to find the best predictive classifier. Thus the contribution of
this research is to build an optimal fault prediction model as
follows:
• Implement five supervised learning algorithms to pre-
dict faults using tf-idf feature extraction: NB, DT, SVM,
K-NN, MLP

• Implement five supervised learning algorithms using
feature selection method: tf-idf +PSO

• Performance analysis on the basis of accuracy
The predictive model will give insights to the testing prac-

titioners to seed similar types of faults for comprehending
fault-based testing of Web-Apps. This study does not com-
pare various feature selection algorithms, but it demonstrates
the benefit of adding the feature selection optimization pro-
cess together with the fault classification task to enhance the
accuracy of classifier.

The organization of the paper is as follows: Section 2 dis-
cusses the related work in the domain of research. Section 3
describes the system architecture along with the details of
the proposed optimal predictive learning model using parti-
cle swarm optimization. Section 4 discusses the results and
finally, section 5 presents the conclusion of the empirical
study.

II. RELATED WORK
Few pertinent studies have been conducted in the area of
fault classification in web applications. Sampath et al. [7]
conducted experiments for fault detection and by seeding
realistic faults and classified them into five categories namely
data store faults, logic faults, form faults, appearance faults
and link faults. Guo and Sampath [4] have carried out an
exploratory study on web application fault classification
using the induction method wherein they state the classifi-
cation dimension and used the work in [7] as the baseline.
They used the actual location of the fault as a dimension

1qaManager: https://sourceforge.net/projects/qamanager/
2bitWeaver: https://sourceforge.net/projects/bitweaver/
3WebCalendar: https://sourceforge.net/projects/webcalendar/
4Dineout App: https:// play.google.com/ store/ apps/ details?id=com.

dineout.book&hl=en_IN
5Wynk Music App: https://itunes.apple.com/lk/app/wynk-music/

id845083955?mt=8

for classification taking into consideration presentation, logic
and data store faults. They defined a new fault type known as
compatibility fault and fine grained the classification of logic
faults into browser interaction faults, session faults, paging
faults, server side faults, encoding-decoding faults, locale
faults and others and calculated the frequency of faults on
Roller Weblogger and qaManager.

Elbaum et al. [8] seeded the three types of faults namely
scripting, forms and database query faults to evaluate the
performance of web testing techniques. Li and Tian [9]
adapted an orthogonal defect classification approach (ODC)
like problems related to timing, interface or algorithms.
Kumar et al. [10] have used supervised machine learning
techniques on three open source web applications. They used
area under ROC curve to analyze and compare the perfor-
mance of various machine learning techniques and reached
the conclusion that multinomial naïve Bayesian gave the
best results. A review on the application of computational
evolutionary method, the genetic algorithm to automatically
search software errors was given byMantere andAlander [11]

III. SYSTEM ARCHITECTURE
The longer the fault goes without detection, the more expen-
sive the fault is to repair. Fault classification intends to offer
feedback about the web development process. Based on this,
this research puts forward a fault prediction model using
optimal feature selection. A variety of supervised learning
algorithms are evaluated to find the best model for fault
classification. The goal of using classification schemes is to
devise a preventive strategy for finding as many faults as
possible and that too as early as possible.

The preliminary step is to gather the required data, which
are: bug-reports of open source web-apps and reviews of
play store apps. Pre-processing is then done for cleaning
the dataset from noise. Noise here basically connotes the
language irregularities often present in text, as this noisy and
unstructured data affects the quality of the fault classification
task. Thus, after pre-processing, the representative features
are extracted using the tf-idf filter. Particle swarm optimiza-
tion (PSO) is then applied on this resulting matrix to generate
an optimal feature matrix. These optimal features are then
used to train the classifier. The figure 2 shows the systematic
flow of the model.

The following sub-sections expound the details:

A. DATASET ACQUISITION
To evaluate the system two types of datasets have been con-
sidered. Firstly, three open source web-app projects, namely
qaManager, bitWeaver and WebCalendarhave been consid-
ered. The bug reports for the same have been acquired from
sourceforge.net. A bug is an evidence of fault in the program.
And so considering the bug report is an obvious choice for
fault diagnosis. We deliberately consider Java/PHP based
applications as both these languages are the most popular
and widely used ones for web development. The applications
with larger number of closed bugs were considered since
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FIGURE 2. System Architecture.

comments given in the closed bug section facilitated easy bug
identification. The number of total bugs was also a significant
selection criterion.

Secondly, reviews of two play store (1 Google and 1Apple)
apps, namely,Dineout: Reserve a TableandWynk Musicwere
acquired. The Dineout app had 1135 reviews whereas the
Wynk Music app has 8470 reviews. The reviews typically
include star rating followed by a comment. Negative opin-
ion polarity within these reviews is strong indicator of a

fault/drawback/short-coming. These reviews possess a vital
source of information that can be used by the app developers
and the vendors for de-bugging and version control. Thus,
these reviews are analyzed for negative opinion polarity using
AFINN-111 sentiment lexicon, which is a list of 2477 English
words labeled with sentiment strength [12]. Sentiment refers
to the use of polarities (positive and/or negative) in written
text [13]–[16]. Each word is assigned with an integer in a
range of polarity from −5 up to +5, negative to positive.
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It includes a number of words frequently used on the Internet
such as LOL (Laughing Out Loud), which are indicative of
emotions of the user, especially on social media portals. The
negative reviews were then analyzed for faults.

Five different web-apps were especially considered to
determine the robustness of the learning model. To analyze
the faults within the application’s bug report and negative
reviews, the bugs were scraped using Google Web Scraper6

and the reports was annotated for faults from seven categories
as given by Sampath et al. [7]. The categorization was based
on physical location of fault as data store, form, logic, link,
appearance, compatibility and others. (Figure 3).

FIGURE 3. Fault categories.

The following table 1 depicts the number of faults for the
five web-apps.

TABLE 1. No. of faults in Web-Apps.

B. PRE-PROCESSING
To extract the structured text for analytics from the unstruc-
tured bug reports/reviews, pre-processing is done [17].

6Google Web Scraper: https://chrome.google.com/webstore/detail
/webscraper.

The bag-of-words model [18] is used to transform and rep-
resent the text. The method takes into account the words
and their frequency of occurrence in the sentence or the
document. The data is firstly tokenized to identify tokens
and then cleaned by removing punctuations, numbers, special
characters, stop words. Stemming is carried out too, to reduce
words to their root word. University of Glasgow stop word
list7and the Porter stemming algorithm [19] are used for
stop-word removal and stemming respectively.

C. FEATURE EXTRACTION AND SELECTION
In this work, tf-idf is used a filter method whereas, the PSO
is used for optimal feature subset selection. These are briefly
described as follows:

The conventional term frequency - inverse document fre-
quency (tf-idf) method is used for calculating the weights
and extracting the features. ‘‘Term frequency - inverse doc-
ument frequency is a conventional statistical weight which
measures how important a word is to a document’’ [20].
Moreover, it checks how relevant the keyword is throughout
the corpus [21], [22].

The term frequency, tf (t,d) is the raw count of a term in a
document and is calculated using equation (1)

tf (t, d) =
No. of times term t appears in a document d

Total no. of terms in the document
(1)

The inverse document frequency, idf (t, D) is the measure of
howmuch information is provided by a specific word or term,
i.e. whether the word is rare or common across the corpus. idf
is calculated using equation (2)

idf (t,D) = log
(

Total no. of documents
No. of documents with term t in it

)
(2)

Thus, tf-idf is calculated as given in equation (3)

tf− idf (t, d,D) = tf (t, d) ∗ idf (t,D) (3)

where t denotes the terms; d denotes each document and
D denotes the collection of documents.

Feature selection is done to reduce the size of problem
for learning algorithms which may improve classification
accuracy due to reduction in computation requirement. This
also increases the speed of classification task as the size of
data to train the classifier is reduced [23], [24]. Many feature
selection algorithms are available across pertinent literature.
Swarm intelligence (SI) algorithms have proven capabilities
of computational intelligence for dealing with the complex
real world problems [6]. They often utilize the guidance of
nature to search for the optimal solution. They are a class
of nature inspired meta-heuristics and are population based
algorithms. They are based on the hunting, breeding, etc.
behaviors of birds, insects and the like. Ant colony opti-
mization, cuckoo search, particle swarm optimization are
examples of some popular swarm intelligence algorithms.

7University of Glasgow stop-word list: http://ir.dcs.gla.ac.uk/resources/
linguistic_utils/
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Motivated by the adaptive learning and collective intel-
ligence behaviors of SI algorithms, in this work, the use
of particle swarm optimization (PSO) for enhancing fault
classification accuracy is demonstrated. PSO is an evolu-
tionary computation algorithm which aims to find a globally
optimized solution. It was developed in 1995 by Kennedy and
Eberhart [25], [26] based on the imitating social behaviors
and random movements similar to that of a flock of birds or a
school of fish. The original version of PSO was proposed
by modifying these initial imitations. Later, inertia weight
was introduced by Shi and Eberhart [27] to illustrate the
standard PSO algorithm. Initially, the algorithm is flooded
with a population of random solutions. These random solu-
tions are called ‘particles’. Each particle is a point in an
S-dimensional search space. The ith particle is represented as
Xi = (Xi1,Xi2,Xi3, . . . ..,XiS). Every particle has a memory
to store its own best position denoted by ‘‘pbest’’ (personal
best). The best experience of any particle i at a particular
time t is denoted by Pi (t). The best previous position (pbest,
the position giving the best fitness value) of any particle is
represented as Pi = (Pi1,Pi2,Pi3, . . . . . .PiS) and is recorded
by the particles in their memory. The index of particle with
the best position among all the particles in the population
is represented by the symbol ‘gbest’ (global best). At any
moment t the global best experience of swarm is denoted by
g(t). So, at any point of time, we have pbest for every particle
and gbest for complete swarm of particles. The concept of a
flying particle is illustrated in figure 4.

FIGURE 4. The concept of flying particle.

Some considerations are necessary to fulfill the equations
for the standard PSO model. These are as follows:
• r1 and r2 are uniformly distributed random functions,
and r1 and r2ε [0, 1].

• d = 1, 2, 3, . . . . . . , S is the dimension.
• The term w.Vid (t) is the inertia term, and the coeffi-
cient w is the inertia coefficient or the inertia weight.
This term provides the particles a memory capability
for the exploration of new positions in the search space
while flying. The original version of PSO proposed
in 1995 [25], [26] did not have any inertia term. How-
ever, in 1998 Shi and Eberhart [27] added this term to
formulate the standard PSO model.

• c1 and c2 are the acceleration coefficients.

• The term r1.c1. (Pid (t)− Xid (t)) is called cognitive
component and it represents private thinking of an indi-
vidual particle.

• The term r2.c2. (gd (t)− Xid (t)) is called social com-
ponent and it represents the collaboration among the
particles.

• The two components, cognitive component and social
component pull each particle towards pbest and gbest
positions respectively.

• The three components, inertia term, cognitive compo-
nent, and social component are combined to create a new
velocity vector Vid (t+ 1).

• This new velocity vector translates a particle position to
a new updated position in the search space Xid (t+ 1)
which is probably a better location for the particle i.

This way all particles are cooperating to find out the
best solution for an optimization problem. These rules are
guaranteed to be obeyed by all the particles of the swarm.
After a particle flies toward a new position, the performance
of particle is measured according to a pre-defined fitness
function. A maximum velocity, denoted by Vmax is use to
limit particle’s velocity on each dimension. The length of
steps taken by particle through the solution space in each
iteration is determined by Vmax. Small value of Vmax may
lead to less exploration beyond locally good regions causing
the algorithm to move towards the target slowly and particles
could become trapped in local optima, whereas, if greater
value has been taken for Vmax particles in the swarm will
move faster towards the global optimum as they are able to
move with bigger step in each iteration. Under such circum-
stances particles might fly past good solutions. The pseudo
code for standard PSO is given in the following figure 5.

D. SUPERVISED LEARNING ALGORITHMS
Five supervised learning algorithms, namely, naïve Bayesian,
decision tree, support vector machine, K-nearest neighbors
andmulti-layer perceptron (neural network) have been imple-
mented and analyzed to find the best predictive learning
model for fault classification. The objective is to analyze the
bug report data and negative reviews and classify it into seven
pre-defined categories as given by Sampath et al. [7]. The
following table 2 gives the description of these fault types in
application code.
A total of 4577 bugs were scrutinized from the five

web-apps as given in table 1. The description of the classifica-
tion algorithms used in this work is available across pertinent
literature on machine learning [28], [29]. The training: test
data split was 80:20 with a 10-fold cross validation.
Python 2.7 was used for implementation of the work. The

experimentation used open source Python library, Natural
Language Toolkit (NLTK)8 for the natural language process-
ing tasks. Open source libraries Tensorflow and Keras were
used to build the neural network classifier. Other classifiers
were implemented through Scikit-Learn library.

8Natural Language Toolkit: https://www.nltk.org
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FIGURE 5. Pseudo code for PSO.

TABLE 2. Faults types in application codes.

IV. RESULTS AND DISCUSSION
The empirical analysis has been divided into four parts;
(i) parameter setting for PSO (ii) feature selection results
(iii) comparison of accuracy with and without feature selec-
tion (iv) reduction in time for training the classifier and
building the model

A. PARAMETER SETTING FOR PSO
All the parameters were set to the best values as claimed &
demonstrated by Aghdam and Heidari [30]. These values are
as given in table 3.

The maximum iteration and fitness function were set to
100 and 0.95 respectively. The cognitive coefficient (c1) and
the social coefficient (c2) were set between 0.3 and 0.4 since

TABLE 3. Parameters for PSO.

these two values (c1 + c2) are normally limited to 4 as given
by Aghdam and Heidari [30].

B. FEATURE SELECTION RESULTS
In the proposed work, initially 956 features were extracted
using tf-idf. Feature selection was carried out using
PSO to obtain the reduced feature subset. The following
Table 4 depicts the number of features selected using tf-idf
and tf-idf + PSO.

TABLE 4. Feature selection vs feature extraction.

The basic feature extraction based on tf-idf filter used
the same number of features, i.e., 956 for all classification
algorithms. Applying PSO, the minimum number of features
selected were 442 for K-NN, which is 53.77 % reduction
in features. The maximum was 883 features for both SVM
and NN which show only 7.64% reduction in features. The
figure 6 depicts the average of feature selection.

FIGURE 6. Feature reduction using PSO.

C. EFFECT OF FEATURE SELECTION ON
CLASSIFICATION ACCURACY
This sub-section gives a comparison of the classifica-
tion algorithms used, based on performance accuracy
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(misclassification-error). It also demonstrates the advantage
of using PSO based feature selection technique over the
conventional tf-idf technique. Table 5 depicts the accuracy
results.

TABLE 5. Accuracy obtained using before and after optimization.

The results indicate the maximum accuracy without opti-
mization is achieved by SVM, i.e., 90.038%. The maximum
accuracy gain was obtained by decision tree (25.633%).
It can be clearly observed the classification performance
is improved with the feature subset using PSO. The aver-
age improvement of 10.74% has been observed using PSO.
Figure 7 shows the accuracy comparison graphically.

FIGURE 7. Comparison of accuracy with and without optimization.

The gain is accuracy is graphically depicted by figure 8.

FIGURE 8. Accuracy Gain.

The performance of the training models is further eval-
uated using sensitivity (true positive recognition rate) and

FIGURE 9. Sensitivity and Specificity of training models.

specificity (the true negative recognition rate). The following
figure 9 depicts the result. DT has the highest true positive
recognition rate of 98.9%.

D. REDUCTION IN TIME
The aim of feature selection and optimization methods is
to reduce the computational time and complexity of the
prediction model. After feature selection, the five baseline
classifiers are trained with the reduced feature subset and
comparative analysis of the time for building the models has
been done in order to evaluate reduction in time and to evalu-
ate the effectiveness of the feature selection approach. The
following figure 10 gives comparative results of the time
for building various classification models thus evaluating the
reduction in time.

FIGURE 10. Reduction in model building time.

Maximum reduction in time is observed in building SVM
with the value of 0.02 seconds whereas in all other classifica-
tion models a reduction of 0.01 seconds is observed.

V. CONCLUSION
The effectiveness of fault-based testing depends on the qual-
ity of the fault model and analyzing faults in previous designs,
to predict and avert similar faults in future product designs.
This research proposed a predictive learningmodel to classify
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faults which assists assessment of probable faults thus
enhancing the quality of the web-apps. An empirical study
to classify faults in bug reports of three open-source web
applications and reviews of two play store applications using
five baseline classifiers was conducted. These baselines were
initially trained using conventional tf-idf feature extraction
method and subsequently using an optimal feature selec-
tion method, particle swarm optimization algorithm. A total
of 4577 bugs were analyzed based on accuracy as the perfor-
mance metric of the classifier. The average accuracy gain is
of about 11% was observed with nearly 74% features were
selected on average. The empirical analysis validates that
the PSO algorithm for feature selection optimization in fault
classification task outperforms the elementary classification
task based on feature extraction.

The results demonstrate and motivate to explore the use
of other meta-heuristic algorithms, such as elephant search,
bacterial foraging, cuckoo search, firefly algorithm and wolf
search algorithms etc. The results can also be analyzed
by using other intrinsic filters such as, information gain,
chi-square and their hybrids with swarm-based wrapper algo-
rithms. Fuzzy-logic and evolutionary algorithms can also be
investigated to built optimal and robust predictive learning
models for fault classification in web-apps.
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