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The sampling-based motion planner is the mainstream method to solve the motion planning problem in high-dimensional space.
In the process of exploring robot configuration space, this type of algorithm needs to perform collision query on a large number
of samples, which greatly limits their planning efficiency. Therefore, this paper uses machine learning methods to establish a
probabilistic model of the obstacle region in configuration space by learning a large number of labeled samples. Based on this,
the high-dimensional samples’ rapid collision query is realized. The influence of number of Gaussian components on the fitting
accuracy is analyzed in detail, and a self-adaptive model training method based on Greedy expectation-maximization (EM)
algorithm is proposed. At the same time, this method has the capability of online updating and can eliminate model fitting errors
due to environmental changes. Finally, the model is combined with a variety of sampling-based motion planners and is validated in
multiple sets of simulations and real world experiments. The results show that, compared with traditional methods, the proposed
method has significantly improved the planning efficiency.

1. Introduction

In recent years, as robots play an increasingly important
role in industrial production and daily life, the issue of
motion planning has received extensive attention. Although
modern robots have significant differences in configuration,
size, perception, driving methods, and application scenes,
autonomous navigation and planning in complex environ-
ments are common problems faced by almost all robots
[1].

The motion planning problem refers to, given the related
description of robot and environment, initial state and goal
region, seeking a series of control inputs to drive the robot
to complete the movement from the initial state to the
goal region while satisfying the environmental constraints
(without colliding with the obstacles). However, for some
robots with high planning dimensions, their configuration
space’s obstacle region cannot be explicitly described. In
response to this problem, sampling-based motion planning
algorithms have developed rapidly and received widespread

attention [2–4]. This type of methods do not explicitly
describe obstacles. Instead, they rely on the collision query
module to provide feasibility information of the candidate
trajectories and connect a series of collision-free samples
to generate a feasible path from the initial state to the goal
region. The collision query module is generally implemented
by the robot kinematics calculation and the space bounding
box principle [5], which requires a large computational
overhead to make the module a major bottleneck for lim-
iting the efficiency of the sampling-based motion planning
algorithms [6]. Sampling-based motion planning algorithms
can generate a large number of labeled samples with spatial
collision information in planning instances, which provides
a necessary condition for the implementation of machine
learning methods. If the robots can learn from past planning
experience to guide the future planning tasks, more efficient
motion planning can be achieved. Therefore, how to use
machine learning methods to break the efficiency bottleneck
of motion planning algorithms has become a research focus
in this field in recent years.
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A large amount of research work is devoted to performing
adaptive sampling and guiding the planning algorithm to
explore certain areas in the configuration space with machine
learning methods. Dalibard et al. [7] use the principal
component analysis (PCA) method for online analysis of
samples to estimate the direction and position of the local
narrow passage in collision-free space and increase the
sampling density in the direction of the passage axis. Similar
methods include bridge test [8] and retraction strategy [9, 10].
These methods can significantly improve the efficiency of
the planning algorithm at the local narrow passage. Brock
and Burns [11] propose an exploration strategy based on
entropy guidance, which can guide the planning algorithm to
sample the areas that maximize information gain. However,
because of the high computational cost of this method, it
is more suitable for the off-line path graph construction of
multiqueue query algorithms like PRM. Arslan and Tsiotras
[12] use the kernel function to learn the feasibility and
heuristics of samples generated in the previous planning
instances and increase the sampling density of the areas
that may make current path cost lower. This method can
improve the convergence rate of asymptotically optimum
motion planning algorithms RRT# [13]. Bialkowski et al. [14]
propose to store empirically observed estimates of collision-
free space in a point proximity data structure and then use
kd-tree algorithm to generate future valid samples.

In addition, by learning the past experience of motion
planning, the prediction of the new samples’ feasibility can
be achieved. Burns et al. [15] present a model-based motion
planning method. This method utilizes the local weighted
regression to incrementally learn the approximate model of
the configuration space, and the classification of new samples
is implemented. Compared with the traditional collision
query module, the method has a smaller computational
complexity. Yang et al. [16] propose a neural networks
framework to achieve robot automatic collision avoidance. By
exploiting the joint space redundancy, the human operator
would be able to only concentrate on motion of robots end
effector without concern over possible collision. Pan et al. [17]
report that the collision query results produced in previous
motion planning tasks are stored in a data set. When the new
sample is generated, the KNN algorithm is used to search
the 𝑘 nearest neighbors of the sample in the data set, and
the probability of its feasibility is estimated according to the
neighbors’ collision information. Yang et al. [18] combine the
flexibility of the Gauss process (GP) with the efficiency of
the RRT algorithm and establish a motion model to predict
the movement of obstacles, so that the robot can find a safe
path in the dynamic environment constraints. Huh et al.
[19] propose that the Gaussian mixture model can be used
to fit the probability distribution of the high-dimensional
space obstacle region, so as to quickly predict the feasibility
of the new samples. However, the influence of the number
of Gaussian components on the model prediction accuracy
has not been analyzed and considered. Besides, some other
learning methods like conditional variational autoencoder
(CVAE) [20], neural learning [21], experience graphs (E-
Graphs) [22], and dynamic movement primitives (DMPs)
[23] are also used in robot motion planning problem.

The above methods improve the efficiency of motion
planning to some extent, but there are the following prob-
lems:

(1) Some lazy learning methods such as kd-tree and
KNN require data sets with large sample size. In the motion
planning problem of high-dimensional space, this will lead to
great spatial complexity which is hard to realize.

(2) Models like PCA, CVAE, E-Graphs, and local
weighted regression have poor flexibility. Even if the environ-
ment or the base of robot changes slightly, the model needs
to be retrained, which greatly increases the computational
overhead.

Therefore, in this article, we propose to use Gaussian
mixture model (GMM) as a prior model of robot config-
uration space to improve the efficiency of robot motion
planning. GMM can represent the unknown model by the
linear combination of Gaussian probability density functions.
It has the ability to fit the continuous probability density
distribution in any dimensional space with small spatial
complexity. On the other hand, the Greedy EM algorithm
utilized in this paper can realize incremental training of
GMM, so that the model can be updated according to the
environment changes without retraining.

In general, the main contributions of this paper include
the following: (1) The influence of number of components
on the prediction accuracy is analyzed, and a method for
adaptively training GMM of collision region in robot high-
dimensional configuration space based on the convergence
of log-likelihood function is proposed. (2) The Greedy EM
algorithm is used to update the GMM online with real-
time 3D map to adapt to environmental changes. (3) The
above method is applied to a variety of sampling-based
motion planning algorithms, and the planning efficiency is
significantly improved.

Thepaper is organized as follows: Section 2 introduces the
main motivation of the research work; Section 3 introduces
the incremental training process of GMM using Greedy
EM clustering algorithm, and the integration with motion
planning algorithms; Section 4 shows the simulations and
the real world experiments’ results; Section 5 summarizes the
results and provides directions for future work.

2. Motivations and Problem Statement

The Gaussian mixture model [24] is a mixture probabilistic
model that can fit the probability density distribution of
arbitrary dimensions and arbitrary shapes by weighting the
probability density functions of multiple Gaussian distribu-
tions.

𝑃 (𝑥 | 𝜃) =
𝐾

∑
𝑘=1

𝜋𝑘𝜙 (𝑥 | 𝜃𝑘) (1)

where𝜋𝑘 is the component weights and satisfied 𝜋1+𝜋2+⋅ ⋅ ⋅+𝜋𝐾 = 1, 𝜋𝑘 ≥ 0. 𝜙(𝑥 | 𝜃𝑘) is the probability density function of
the 𝑘th Gaussian distribution, and 𝜃𝑘 is the parameter vector
of the distribution:
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Figure 1: The Gaussian mixture model with different number of components is used to fit the probability distribution of the obstacle regions
in the two-dimensional map (a), and the GMM-based collision query method is used to guide the RRT∗ algorithm to plan the path from the
starting point to the end point. The white lines represent the feasible edges that RRT∗ algorithm explores, the green points are the starting
point and the end point of the planning problem, and the red line represents the final path.

𝜙 (𝑥 | 𝜃𝑘) = (2𝜋)−𝑑/2 󵄨󵄨󵄨󵄨𝑆𝑘󵄨󵄨󵄨󵄨−1/2

⋅ exp [(−0.5) (𝑥 − 𝑚𝑘)T 𝑆−1𝑘 (𝑥 − 𝑚𝑘)]
(2)

where 𝑑 is the dimension. 𝑚𝑘 and 𝑆𝑘 are the mean and
covariance matrix of the Gaussian component, respectively.

By using the sample set {𝑥1, 𝑥2, . . . , 𝑥𝑁} with sample size
𝑁, the parameters of the Gaussian mixture model can be
estimated by the basic EM algorithm.The basic EM algorithm
process is as follows:

Set the number of components 𝐾 and the parameters’
initial value 𝜃(0) properly, and start iterating.

Step E. According to the current model parameters, calculate
the expected probability 𝑃(𝑘 | 𝑥𝑗) of each Gaussian
component to each observation data 𝑥𝑗.

𝑃 (𝑘 | 𝑥𝑗) =
𝜋𝑘𝜙 (𝑥𝑗 | 𝜃𝑘)

∑𝐾𝑘=1 𝜋𝑘𝜙 (𝑥𝑗 | 𝜃𝑘)
, 𝑗 = 1, 2, . . . ,𝑁 (3)

StepM.Theweight of eachGaussian component 𝜋𝑘, themean
𝑚𝑘, and the covariance matrix 𝑆𝑘 are adjusted by maximum
likelihood estimate method.

𝜋𝑘 = 1𝑁
𝑁

∑
𝑗=1

𝑃 (𝑘 | 𝑥𝑗)

𝑚𝑘 =
∑𝑁𝑗=1 𝑃 (𝑘 | 𝑥𝑗) 𝑥𝑗
∑𝑁𝑗=1 𝑃 (𝑘 | 𝑥𝑗)

𝑆𝑘 =
∑𝑁𝑗=1 𝑃 (𝑘 | 𝑥𝑗) (𝑥𝑗 − 𝑚𝑘) (𝑥𝑗 − 𝑚𝑘)

T

∑𝑁𝑗=1 𝑃 (𝑘 | 𝑥𝑗)

(4)

The E step and the M step are repeated to maximize the
log-likelihood functionL𝐾 and improve the fitting ability of
GMM to the sample set.

L𝐾 =
𝑁

∑
𝑗=1

log𝑃 (𝑥𝑗 | 𝜃) (5)

For simplicity, first, the above basic EM clustering algo-
rithm is used to train the GMMs with different number
of components to fit the obstacle area in two-dimensional
map (Figure 1(a)). This process will naturally extend later to
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(b) The average calculation time required for GMMs to perform
probabilistic calculations

Figure 2: Comparison of the GMMs’ performance under different
numbers of components.

multiple dimensions. The trained GMM is used to calculate
the collision probability of the new samples, so as to guide
the RRT∗ [1] (a RRT-like motion planning algorithm with
asymptotically optimal) search for the feasible path from the
starting point to the end point.

Figures 1(b)–1(f) show the influence of number of Gaus-
sian components on the model fitting effect and the motion
planning result. When 𝐾 = 7, the fitting accuracy of
the GMM is low, resulting in a large number of feasible
regions in the two-dimensional map being blocked, and the
planned path repeatedly passes through the obstacle region.
Obviously, this kind of GMM cannot meet the needs of
motion planning problems. With the increasing number of
model components, the fitting accuracy of the GMM to the
obstacle region is continuously improved. When 𝐾 = 15,
the contour of the high collision probability area is basically
consistent with the obstacles in the map, which indicates that
the GMM has the ability to perform collision query on new
samples. If the number of Gaussian components continues
to increase, the GMM’s fitting accuracy is not significantly
improved.

Subsequently, the generalization error of GMM under
different number of components is further calculated and

analyzed. As shown in Figure 2(a), with the increasing num-
ber ofGaussian components, the probability of generalization
error on new samples is reduced. After𝐾 = 15, if the number
of components continues to increase, the performance of the
GMM is not significantly improved, which is basically in
accordance with the result shown in Figure 1.

On the other hand, the time to calculate collision
probability of new samples under different number of
components is calculated. As shown in Figure 2(b), the
average calculation time is linearly positively correlated
with the number of Gaussian components. This indicates
that the increasing number of components will lead to
greater computational overhead when performing proba-
bilistic calculations on new samples and limit the effi-
ciency of motion planning algorithms. Therefore, select-
ing the appropriate number of components 𝐾 according
to the actual environment can maximize the performance
of GMM in the sampling-based motion planning algo-
rithm.

Therefore, using the basic EM algorithm to train the
GMM of the collision region has the following problems:

(1) The environment in which the robots are located is
very different and requires different number of components,
so it is impossible to artificially specify 𝐾 to suit the needs of
all environments.

(2) When the robot’s environment changes, the GMM
trained with the basic EM algorithm will fail and need to be
retrained, which indicates that it does not have the ability to
update online according to the environment.

3. Algorithms

To solve the above problems, the Greedy EM algorithm
is used to perform incremental training on the GMM,
and the 𝐾 value is adaptively selected according to the
convergence of the log-likelihood function. The model has
the online learning ability to adapt to the environment
changes. The GMM is used to perform collision query
routine in a variety of sampling-based motion planning
frameworks. The algorithm framework is shown in Fig-
ure 3.

3.1.�e TrainingMethod of the Probabilistic Model. As shown
in Algorithm 1, 𝑋𝑐𝑜𝑙 is the sample set of collision region
in robot configuration space; 𝐺𝑐𝑜𝑙 is the GMM to describe
the distribution of the collision region; 𝑘 is the number
of components of the current GMM; a,m, S is an array
of weights, mean values, and covariance matrices for all
components of the current GMM; andL𝑘 is the value of the
overall log-likelihood function under the current number of
Gaussian components 𝑘.

The incremental training process of GMM is divided into
two parts: global EM iteration and binary EM iteration. The
global EM iteration process is exactly the same as the basic
EM algorithm. The maximum likelihood estimation is used
to adjust theweights, mean values, and covariancematrices of
all Gaussian components in the current GMM to improve fit-
ting ability to the sample set𝑋𝑐𝑜𝑙, as shown in (3), (4), and (5).
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Figure 3: Algorithm framework: the main contributions are highlighted in red.

Binary EM iteration is the key step in incremental
training. Add a new component 𝜙(𝑥 | 𝜃) to the GMM 𝑓𝑘(𝑥)
with 𝑘 components.

𝑓𝑘+1 (𝑥) = (1 − 𝑎𝑛𝑒𝑤) 𝑓𝑘 (𝑥) + 𝑎𝑛𝑒𝑤𝜙 (𝑥 | 𝜃) ,
𝑎𝑛𝑒𝑤 ∈ (0, 1)

(6)

The new component’s weight 𝑎𝑛𝑒𝑤 is initialized by the
following equation.

𝑎𝑛𝑒𝑤 =
{{
{{
{

0.5, if 𝑘 = 1
2
𝑘 + 1 , if 𝑘 ≥ 2 (7)

The mean 𝑚𝑛𝑒𝑤 is set to a randomly selected sample, and
the covariance matrix 𝑆𝑛𝑒𝑤 is initialized to 𝜎2𝐼. According to
[24], 𝜎 depends on the dimension of the planning problem 𝑑,
sample size𝑁, and a fixed number 𝛽which is set to half of the
maximum singular value of samples’ covariance matrix (8).

𝜎 = 𝛽 [ 4
𝑑 + 2𝑁]

1/(𝑑+4)

(8)

To make the new GMM better fit the sample set, the new
component’s weight and the parameters vector 𝜃 need to be

adjusted.Theoptimization goal is tomaximize the binary log-
likelihood function.

L𝑘+1 =
𝑁

∑
𝑗=1

log𝑓𝑘+1 (𝑥𝑗)

=
𝑁

∑
𝑗=1

log [(1 − 𝑎𝑛𝑒𝑤) 𝑓𝑘 (𝑥𝑗) + 𝑎𝑛𝑒𝑤𝜙 (𝑥 | 𝜃)]
(9)

According to the maximum likelihood estimation, binary
EM iterations are performed on the current GMM and the
new Gaussian component. The binary EM iteration process
is as follows.

Set the initial number of components 𝑘 to 1, and initialize
the parameters of the component according to the above
method.

Step E. Initialize the new Gaussian component’ parameters
𝜃 and calculate its expected probability to each observation
sample 𝑥𝑗.

𝑃 (𝑘 + 1 | 𝑥𝑗) =
𝑎𝑛𝑒𝑤𝜙 (𝑥𝑗 | 𝜃)

(1 − 𝑎𝑛𝑒𝑤) 𝑓𝑘 (𝑥𝑗) + 𝑎𝑛𝑒𝑤𝜙 (𝑥𝑗 | 𝜃)
(10)
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1: function BUILD GMM(𝑋𝑐𝑜𝑙)
2: 𝐺𝑐𝑜𝑙 ←󳨀INITIAL GMM(𝑋𝑐𝑜𝑙)
3: while L𝑘/L𝑘−1 − 1 > 1𝑒−3 do
4: 𝑚𝑛𝑒𝑤 ←󳨀RandomSelect(𝑋𝑐𝑜𝑙)
5: 𝑆𝑛𝑒𝑤 ←󳨀 𝜎2𝐼
6: 𝑎𝑛𝑒𝑤 ←󳨀 2/(𝑘 + 1)
7: (𝑎𝑛𝑒𝑤, 𝑚𝑛𝑒𝑤, 𝑆𝑛𝑒𝑤) ←󳨀

BINARY EM(𝐺𝑐𝑜𝑙, 𝑎𝑛𝑒𝑤, 𝑚𝑛𝑒𝑤, 𝑆𝑛𝑒𝑤)
8: 𝐺𝑐𝑜𝑙 ←󳨀 AddToGMM(𝐺𝑐𝑜𝑙, 𝑎𝑛𝑒𝑤, 𝑚𝑛𝑒𝑤, 𝑆n𝑒𝑤)
9: 𝐺𝑐𝑜𝑙 ←󳨀GLOBLE EM(𝐺𝑐𝑜𝑙)
10: end while
11: return 𝐺𝑐𝑜𝑙
12: end function
13: function Initial GMM(𝑋𝑐𝑜𝑙)
14: a[1] ←󳨀 1
15: m[1] ←󳨀 E(𝑋𝑐𝑜𝑙)
16: S[1] ←󳨀Cov(𝑋𝑐𝑜𝑙)
17: 𝐺𝑐𝑜𝑙 ←󳨀GLOBLE EM(𝐺𝑐𝑜𝑙)
18: return 𝐺𝑐𝑜𝑙
19: end function
20: function AddToGMM (𝐺𝑐𝑜𝑙, 𝑎𝑛𝑒𝑤, 𝑚𝑛𝑒𝑤, 𝑆𝑛𝑒𝑤)
21: for 𝑗 = 1 󳨀→ 𝑘 do
22: 𝑎[𝑗] ←󳨀 𝑎[𝑗]/(1 + 𝑎𝑛𝑒𝑤)
23: end for
24: a[𝑘 + 1] ←󳨀 𝑎𝑛𝑒𝑤
25: m[𝑘 + 1] ←󳨀 𝑚𝑛𝑒𝑤
26: S[𝑘 + 1] ←󳨀 𝑆𝑛𝑒𝑤
27: return 𝐺𝑐𝑜𝑙
28: end function

Algorithm 1: The Greedy EM Algorithm.

StepM.Maximize the log-likelihood function (9) by adjusting
the new component’s weight 𝑎𝑛𝑒𝑤, mean𝑚𝑛𝑒𝑤, and covariance
matrix 𝑆𝑛𝑒𝑤.

𝑎𝑛𝑒𝑤 = 1𝑁
𝑁

∑
𝑗=1

𝑃 (𝑘 + 1 | 𝑥𝑗)

𝑚𝑛𝑒𝑤 =
∑𝑁𝑗=1 𝑃 (𝑘 + 1 | 𝑥𝑗) 𝑥𝑗
∑𝑁𝑗=1 𝑃 (𝑘 + 1 | 𝑥𝑗)

𝑆𝑛𝑒𝑤 =
∑𝑁𝑗=1 𝑃 (𝑘 + 1 | 𝑥𝑗) (𝑥𝑗 − 𝑚) (𝑥𝑗 − 𝑚)

T

∑𝑁𝑗=1 𝑃 (𝑘 + 1 | 𝑥𝑗)

(11)

Then, as shown in line 20 to line 28 of Algorithm 1, the
weights of all components in the current GMM are diluted,
and the new component trained by the binary EM algorithm
is added to the GMM. Then the new GMM’s parameters are
adjusted through the global EM iterations until convergence.

As shown in line 3 to line 10 of Algorithm 1, the global
EM iterations and binary EM iterations are alternated to
implement the incremental training of GMM. When the
overall log-likelihood function value L𝑘 becomes stable
(which means L𝑘/L𝑘−1 − 1 < 1𝑒−3, as shown in line 3 of
Algorithm 1), the addition of a new Gaussian component is
stopped and the training is completed. In this way, according

to the convergence of the overall log-likelihood function,
the number of Gaussian components 𝐾 can be adaptively
adjusted without being specified in advance, so as to rea-
sonably weigh the accuracy and computational efficiency of
the GMM. Beside, compared with the basic EM algorithm,
the GMM trained by Greedy EM algorithm has better fitting
accuracy [25].

3.2. Online Updating of Gaussian Mixture Model. The actual
working environment of the robot is dynamic and uncertain.
The Gaussian mixture model trained off-line by the above
method may cause errors due to the changes of environment
or robot base, so the GMM is required to have the ability
to update online. Through the Greedy EM algorithm, a new
Gaussian component is added to fit the new collision region
due to environmental changes, and some useless Gaussian
components are eliminated.

As shown in line 2 to line 4 of Algorithm 2, the octreemap
O𝑜𝑐𝑡𝑟𝑒𝑒 is updated according to the point cloud dataP𝑝𝑜𝑖𝑛𝑡𝑐𝑙𝑜𝑢𝑑
acquired by the RGB-D camera. The sample set 𝑋𝑐𝑜𝑙 of the
high-dimensional collision region is updated according to the
new octree map and robot kinematics model K𝑟𝑜𝑏𝑜𝑡. Then,
according to (1) and (2), the probability that each sample
belongs to the current GMM is calculated. If the probability
is small, it indicates that the sample is a new collision sample
point due to environmental changes. In this way, new samples
are screened, and a sample is randomly selected as the initial
mean value of the newly added Gaussian component. Finally,
the Greedy EM algorithm is used to train the GMM, and
the new component is added continuously until the log-
likelihood function converges.

As shown in line 13 of Algorithm 2, 𝐺𝑐𝑜𝑙 is the GMM
to fit the collision region in configuration space. in order to
prevent the infinite increase of the number of components
and inefficiency of calculation, some useless Gaussian com-
ponents in the new GMM need to be eliminated, such as the
weights being very small, or the components with covariance
matrix determinant close to 0, as shown in Figure 4. Other
components obtain the weight of the removed components
according to their respective weights. The sum of weights of
all components is always 1. This process enables the GMM to
adapt quickly and accurately to environment changes.

3.3. GMM-Based Motion Planner. After the GMM of the
high-dimensional collision region is established by the
Greedy EM algorithm, the probability of the new samples
belonging to the GMM can be calculated by (1) and (2),
thereby determining whether the sample is feasible. In this
way, the forward kinematics calculation and precise collision
query are avoided, and the total collision query time is greatly
shortened.

As shown in line 7 to line 13 of Algorithm 3, if the
probability of the new sample P(𝑞𝑛𝑒𝑤) belonging to the
current GMM is less than the upper probabilistic boundary
of the collision-free region 𝛿𝑐𝑜l−𝑓𝑟𝑒𝑒, the sample is consid-
ered feasible. If the probability of the new sample P(𝑞𝑛𝑒𝑤)
belonging to the GMM is greater than the lower probabilistic
boundary 𝛿𝑐𝑜𝑙 of the collision region, the sample is considered
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Previous GMMs

Current GMMs

Olds samples

New samples

Add new component

Eliminate useless component

Figure 4: The schematic diagram of GMM’s online updating process.

1: function UPDATE GMM(𝐺𝑐𝑜𝑙, 𝑋𝑐𝑜𝑙,P𝑝𝑜𝑖𝑛𝑡𝑐𝑙𝑜𝑢𝑑)
2: O𝑜𝑐𝑡𝑟𝑒𝑒.𝑢𝑝𝑑𝑎𝑡𝑒(P𝑝𝑜𝑖𝑛𝑡𝑐𝑙𝑜𝑢𝑑)
3: 𝑋𝑐𝑜𝑙.𝑢𝑝𝑑𝑎𝑡𝑒(O𝑜𝑐𝑡𝑟𝑒𝑒,K𝑟𝑜𝑏𝑜𝑡)
4: 𝑋𝑐𝑜𝑙 𝑛𝑒𝑤 ←󳨀 ScreenSamples(𝑋𝑐𝑜𝑙, 𝐺𝑐𝑜𝑙)
5: while L𝑘/L𝑘−1 − 1 > 1𝑒−3 do
6: 𝑚𝑛𝑒𝑤 ←󳨀RandomSelect(𝑋𝑐𝑜𝑙 𝑛𝑒𝑤)
7: 𝑆𝑛𝑒𝑤 ←󳨀 𝜎2𝐼
8: 𝑎𝑛𝑒𝑤 ←󳨀 2/(𝑘 + 1)
9: (𝑎𝑛𝑒𝑤, 𝑚𝑛𝑒𝑤, 𝑆𝑛𝑒𝑤) ←󳨀

BINARY EM(𝐺𝑐𝑜𝑙, 𝑎𝑛𝑒𝑤, 𝑚𝑛𝑒𝑤, 𝑆𝑛𝑒𝑤)
10: 𝐺𝑐𝑜𝑙 ←󳨀AddToGMM(𝐺𝑐𝑜𝑙, 𝑎𝑛𝑒𝑤, 𝑚𝑛𝑒𝑤, 𝑆𝑛𝑒𝑤)
11: 𝐺𝑐𝑜𝑙 ←󳨀GLOBLE EM(𝐺𝑐𝑜𝑙)
12: end while
13: 𝐺𝑐𝑜𝑙 ←󳨀Eliminate(𝐺𝑐𝑜𝑙)
14: return 𝐺𝑐𝑜𝑙
15: end function

Algorithm 2: GMM’s Online Updating.

Require: 𝑋𝑐𝑜𝑙 examplars
1: 𝐺𝑐𝑜𝑙 ←󳨀BUILD GMM(𝑋𝑐𝑜𝑙)
2:D.𝑖𝑛𝑖𝑡(𝑞𝑖𝑛𝑖𝑡)
3: while Distrance(𝑞𝑔𝑜𝑎𝑙, 𝑞𝑛𝑒𝑤) < 𝑑𝑚𝑖𝑛 do
4: 𝑞𝑟𝑎𝑛𝑑 ←󳨀RandomSampling()
5: 𝑞𝑛𝑒𝑎𝑟 ←󳨀NodeSelection(D, 𝑞𝑟𝑎𝑛𝑑)
6: 𝑞𝑛𝑒𝑤 ←󳨀NodeExpansion(D, 𝑞𝑟𝑎𝑛𝑑, 𝑞𝑛𝑒𝑎𝑟)
7: if P(𝑞𝑛𝑒𝑤) < 𝛿𝑐𝑜𝑙−𝑓𝑟𝑒𝑒 then
8: 𝑞𝑛𝑒𝑤 is collision-free
9: else if P(𝑞𝑛𝑒𝑤) > 𝛿𝑐𝑜𝑙 then
10: 𝑞𝑛e𝑤 is collision
11: else
12: FCLCollisionQuery(𝑞𝑛𝑒𝑤)
13: end if
14: end while
15: 𝐺𝑐𝑜𝑙 ←󳨀UPDATE GMM(𝐺𝑐𝑜𝑙, 𝑋𝑐𝑜𝑙,P𝑝𝑜𝑖𝑛𝑡𝑐𝑙𝑜𝑢𝑑)

Algorithm 3: GMM-based Motion Planner.

Figure 5: GMM’s training scene.

unfeasible. If the probability is between the 𝛿𝑐𝑜𝑙 and 𝛿𝑐𝑜𝑙−𝑓𝑟𝑒𝑒,
the GMM’s prediction result is ambiguous. Therefore, the
precise collision query on these samples will be implemented
by the kinematics and Flexible Collision Library (FCL) [26].
𝛿𝑐𝑜𝑙 and 𝛿𝑐𝑜𝑙−𝑓𝑟𝑒𝑒 can be determined by cross-validation.

Cross-validation is a method commonly used in machine
learning to evaluate the prediction effect of a model with a
small sample set. 1000 samples in the collision region and
collision-free region are collected, respectively, to form two
cross-validation sets. Through multiple tests, the probability
of GMM’ generalization error for two cross-validation sets
under different decision boundaries 𝛿 can be obtained.
For robot motion planning, false positive means that the
collision-free samples are classified as collision samples,
which may cause the motion planner to fail to find a feasible
solution. False negative means that the collision samples are
classified as collision-free samples and may cause the final
path to pass through collision region.

For example, in the environment of Figure 5, the GMM is
trained by Greedy EM algorithm to fit collision region in 6-
DOF robot’s configuration space.Then, the above-mentioned
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Figure 7: The learning curve of Greedy EM algorithm.

cross-validation is performed on the six-dimensional GMM
to obtain the generalization error curves as shown in Figure 6.
In order to guarantee the safety and success rate of motion
planning, the tolerable generalization error probability is set
to 3.0%, which is the empirical value obtained bymany simu-
lation experiments.The intersections with two generalization
error curves are 𝛿𝑐𝑜𝑙 and 𝛿𝑐𝑜𝑙−𝑓𝑟𝑒𝑒.

4. Simulations and Experiments

This section provides some simulations and real world
experiments’ results to support the method proposed in this
paper. All experiments are conducted on an Intel Core i5-
4590 3.3GHz personal computer. ROS and Gazebo are used
to build a simulation platform. FCL is used to acquire the
sample set of the collision region in robot configuration space
and perform accurate collision query when the GMM-based
collision query results are ambiguous. OMPL [27] (Open

Motion Planning Library) provides a variety of sampling-
based motion planning algorithms for comparison experi-
ments.

4.1. Learning and Online Updating. In order to prove the
effectiveness of the algorithm, the 6-DOF UR10 robot in
Figure 5 is used for the simulation test. First, according
to Algorithm 1, a six-dimensional Gaussian mixture model
under the environment is trained. By alternately using the
global EM iterations and binary EM iterations, the number
of Gaussian components 𝐾 gradually increases. When 𝐾 =
25, the log-likelihood function L𝑘 converges, meaning that
the GMM has completed training and stopped adding new
Gaussian components, as shown in Figure 7.

After the model training is completed, the incremental
GMM’s online updating capability is tested by changing the
environment. As shown in Figure 8, the table in Figure 5 is
rotated and translated to change the environment. Besides,
We have also carried out simulations to change the envi-
ronment through moving the robot. Algorithm 2 is used to
update the GMM online. The new Gaussian components are
added and trained according to the binary EM iterations from
(7) to (11), and the basic EM algorithm from (3) to (5) is
used to train the GMM with new components added. This
will allow the GMM to fit the new collision sample set. After
the training is completed, the Gaussian components that
cannot help to fit the new collision sample set are eliminated
to reduce the computational overhead of the algorithm. As
shown in Figures 8(b), 8(d), 8(f), and 8(h), the projections
of the GMM on the first joint and the third joint subspace
change according to the changes of environment and robot
base. Therefore, GMM has the ability to respond to the
environmental changes online.

4.2. 6-DOF Robot Motion Planning. The 6-DOF UR10
robot is used to perform motion planning in the simulation
environment of Figure 5. After the completion of GMM’s
incremental training, the false positive and false negative
generalization error curves (Figure 6) are obtained using
the cross-validation method in Section 3.3, and the decision
boundaries 𝛿𝑐𝑜𝑙 and 𝛿𝑐𝑜𝑙−𝑓𝑟𝑒𝑒 are determined accordingly.
Finally, the GMM-based collision query strategy described
above is applied to four sampling-based motion planning
algorithms: RRT [3], RRT-Connect [28], BiEST [29], and
KPIECE [30].

The initial state and the goal region of the planning
problem are specified, and the above planners are used to
solve the planning problem repeatedly to obtain the boxplots
of the planning time (Figure 9). Besides, we provide the
average planning time and the planning success rate, as
shown in Table 1. The allowed planning time is set to 50s. It
can be seen that the collision query strategy based on GMM
is generally applicable to various sampling-based motion
planning algorithms. Compared with the basic collision
query methods based on forward kinematics and space
geometry, the computational overhead is greatly reduced, and
the overall motion planning efficiency is improved by 2-3
times.
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Figure 8: Continued.
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(g) Rotating the robot
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Figure 8: GMM’s online updating.
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(a) Scene 1: desk (b) Scene 2: kitchen

(c) Scene 3: microwave oven (d) Scene 4: cabinet

Figure 10: A 6-DOF UR10 robot is used to pick and place a cup in various home environments, and the universality of the proposed method
is verified. The green grid represents occupied space stored in the octree data structure, and the blue line represents the trajectory of the end
effector when the robot performs the pick and place task.

Table 1: Planning performance of the motion planning algorithms.

Planning Methods RRT RRT-Connect BiEST KPIECE
Basic GMM Basic GMM Basic GMM Basic GMM

Average Planning Time(s) 22.04 10.63 5.122 2.239 18.05 5.200 34.34 15.19
Successful Rate(%) 67.4 95.3 100 100 96.3 100 46.2 93.1

In order to further test the effectiveness of the proposed
method in various environments, four common scenes (Fig-
ure 10) are built in a simulation environment. The RGB-D
camera is used to acquire the point cloud data of each scene,
and a three-dimensional octree map is created based on the
OctoMap library [31]. The Greedy EM algorithm is used
to train the GMMs of the robot configuration space in the
four scenes, respectively, and the GMM-based and the basic
collision query methods are applied to the above four kinds
of motion planners, respectively. In the four planning scenes,
the task of picking and placing a cup is accomplished by
motion planning of a robot, repeatedly testing this planning
task and obtaining the average planning time and successful
rate with the GMM-based and basic collision query methods,
as shown in Table 2. The allowed planning time is set to 50s.

From Table 2, it can be seen that the actual performance
of the proposed method varies due to different complexity
of the planning tasks and number of Gaussian components,
the latter of which is caused by different planning scenes.

However, the average planning time of the GMM-based
motion planning method is reduced by 2-4 times compared
with the basic collision query method.

4.3. 12-DOF Robot Motion Planning. In order to verify the
application effect of this algorithm in the actual scene, two
UR10 robots and RealSense camera are used to build a 12-
DOF dual-arm robot experimental platform, as shown in
Figures 11(a) and 11(b). In order to prevent the robot obstruct
camera’s view, the “Eye in Hand” arrangement is adopted.

Due to the high planning dimensions of dual-arm robots,
the successful rate under allowed planning time (50s) of
most motion planning algorithms is too low, and it is
difficult to obtain large amounts of data through multiple
experiments. Therefore, only the RRT-Connect algorithm
is used to perform multiple experiments, and the planning
times based on the GMMmethod and the basic method are,
respectively, obtained (Figure 11(d)). The success rate of both
methods is 100%.
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(a) Initial state (b) Goal state

(c) Octree map and trajectory
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(d) Boxplots of planning time

Figure 11: 12-DOF dual-arm robot experiment.(a), (b)The initial and goal state of the planning problem, respectively. (c)The environmental
model represented by octree, and the lines represent the trajectory of end effectors. (d) The boxplots of planning time based on GMM and
basic collision query method.

Experiments show that the method proposed in this
paper is also applicable to higher-dimensional motion plan-
ning problems.

5. Conclusion

In order to improve the planning efficiency of the sampling-
based motion planning algorithm, this paper studies the
influence of the number of components on the fitting accu-
racy and proposes a self-adapting model training method,
which achieves a rapid collision query in the robot high-
dimensional configuration space. Using themachine learning
method, the robot learns the collision query results gen-
erated during the previous motion planning instances, and
the Gaussian mixture model is incrementally established to
quickly estimate the new high-dimensional samples’ collision
probability. In order to eliminate the model fitting errors
caused by environmental changes, the Greedy EM algo-
rithm is used to adaptively select number of components of
the GMM-based on the convergence of the log-likelihood
function and achieved online response to the changes of

external environment. This method is applied to several
kinds of sampling-based motion planning algorithms. The
simulations and real world experiments are performed on the
6-DOF and 12-DOF robots in various scenes. Compared with
the basicmethods, the planning time is greatly shortened.The
effectiveness of the proposed algorithm is proved.

In the future work, we will continue to focus on
improving the practical performance of this method in
higher-dimensional robotmotionplanning problems, such as
Humanoid robots and quadruped robots. The GMM will be
used for guided sampling to further narrow the scope of the
search algorithm.
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